JPH031819B2 - - Google Patents

Info

Publication number
JPH031819B2
JPH031819B2 JP60136632A JP13663285A JPH031819B2 JP H031819 B2 JPH031819 B2 JP H031819B2 JP 60136632 A JP60136632 A JP 60136632A JP 13663285 A JP13663285 A JP 13663285A JP H031819 B2 JPH031819 B2 JP H031819B2
Authority
JP
Japan
Prior art keywords
decanedicarboxylic acid
electrolyte
electrolytic
capacitance
leakage current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60136632A
Other languages
Japanese (ja)
Other versions
JPS61294809A (en
Inventor
Hideo Shimizu
Naoto Iwano
Hiroshi Hotsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP13663285A priority Critical patent/JPS61294809A/en
Publication of JPS61294809A publication Critical patent/JPS61294809A/en
Publication of JPH031819B2 publication Critical patent/JPH031819B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Primary Cells (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は電解コンデンサ駆動用電解液に関する
もので、同電解液の比抵抗を著しく低下させるこ
とによつて電解コンデンサの損失角の正接および
高周波特性を改善し、しかも静電容量の変化およ
び漏れ電流の増加を抑えることの可能な高温度で
長寿命かつ信頼性の高い電解コンデンサを提供す
るものである。 [従来の技術と問題点] 従来、特に中高圧用のアルミニウム電解コンデ
ンサ駆動用電解液としては、所謂エチレングリコ
ール/硼酸エステル系の電解液が用いられてい
る。この種の電解液は、加熱によりエチレングリ
コールと硼酸とのエステル化反応が進み、この際
に生成水が生じ、この水が電解コンデンサ中のコ
ンデンサ素子の材料であるアルミニウム箔と反応
してこれを溶解し、かつ水素ガスを発生してコン
デンサの内圧上昇をもたらすために、この電解液
を用いた電解コンデンサはより高温度の目的に対
しては使用できなかつた。また、上述の問題を解
決するために、同系でエステル化を促進して生成
水を除去した電解液も提案されているが、水との
反応は抑制されるものの、電解液の粘度が増大
し、比抵抗が著しく高くなり、この電解液を用い
た電解コンデンサでは損失角の正接および高周波
でのインピーダンスが著しく増大し、高特性の要
求には応えられないものであつた。このような理
由から、高温度用の電解コンデンサにはエチレン
グリコール/硼酸エステル系の電解液は用いられ
ず、比較的分子量の大きい有機酸あるいはその塩
を溶質とする有機酸系電解液が使用および検討さ
れている。 中高圧用の有機酸系電解液の溶質としては1.6
−デカンジカルボン酸(特公昭60−13293号『電
解コンデンサ駆動用電解液』)が公知であるが、
この1.6−デカンジカルボン酸を含む電解液を使
用した電解コンデンサは溶質そのものがコンデン
サ素子を形成するアルミニウム箔と反応し、錯体
形成するために初期静電容量が低く、また高温負
荷試験や高温無負荷試験において、静電容量の極
端な減少および著しい漏れ電流の増大が見られ、
より性能の高い電解コンデンサの要求には応えら
れないものであつた。 [発明の改良点と概要] しかるに、本発明は上述のような欠点を除去し
うるもので、具体的には1.6−デカンジカルボン
酸と1.10−デカンジカルボン酸の混合物あるいは
それらの塩の混合物を溶質として用いることによ
つて、1.6−デカンジカルボン酸とアルミニウム
箔との錯体形成を防止して電解コンデンサの静電
容量変化や漏れ電流の増大を抑え、さらに電解液
の比抵抗を下げて、損失角の正接や高周波でのイ
ンピーダンスを小さくすることにより、より高性
能で信頼性の高い電解コンデンサを提供するもの
である。 [実施例] 次に、上述の1.6−デカンジカルボン酸と1.10
−デカンジカルボン酸の混合物あるいはそれらの
塩の混合物をエチレングリコールに溶解した本発
明に係る電解液の実施例を従来例と共に第1表に
示す。電解液組成はwt%、比抵抗(Ω・cm)は
液温が20℃のものである。また、火花電圧は85℃
のものである。
[Industrial Application Field] The present invention relates to an electrolytic solution for driving an electrolytic capacitor, and by significantly lowering the specific resistance of the electrolytic solution, the tangent of the loss angle and high frequency characteristics of the electrolytic capacitor are improved. The present invention provides an electrolytic capacitor that has a long life and high reliability at high temperatures and can suppress changes in capacitance and increases in leakage current. [Prior Art and Problems] Conventionally, so-called ethylene glycol/boric acid ester-based electrolytes have been used as electrolytes for driving aluminum electrolytic capacitors, particularly for medium and high voltages. When this type of electrolyte is heated, the esterification reaction between ethylene glycol and boric acid progresses, and water is generated at this time.This water reacts with the aluminum foil that is the material of the capacitor element in the electrolytic capacitor. Electrolytic capacitors using this electrolyte could not be used for higher temperature purposes because it would dissolve and generate hydrogen gas, causing an increase in the internal pressure of the capacitor. In addition, in order to solve the above-mentioned problem, an electrolytic solution of the same type that promotes esterification and removes the produced water has been proposed, but although the reaction with water is suppressed, the viscosity of the electrolytic solution increases. The electrolytic capacitor using this electrolyte has a significantly increased resistivity, and the loss angle tangent and impedance at high frequencies have significantly increased, making it impossible to meet the demands for high characteristics. For these reasons, electrolytic capacitors for high temperatures do not use ethylene glycol/boric acid ester electrolytes, but rather organic acid electrolytes containing relatively large molecular weight organic acids or their salts as solutes. It is being considered. The solute of organic acid electrolyte for medium and high pressure is 1.6.
- Decanedicarboxylic acid (Japanese Patent Publication No. 13293/1983 ``Electrolytic solution for driving electrolytic capacitors'') is known,
Electrolytic capacitors that use an electrolyte containing 1.6-decanedicarboxylic acid have a low initial capacitance because the solute itself reacts with the aluminum foil that forms the capacitor element to form a complex, and it also has low initial capacitance during high-temperature load tests and high-temperature no-load tests. Tests showed an extreme decrease in capacitance and a significant increase in leakage current.
The demand for electrolytic capacitors with higher performance could not be met. [Improvements and Summary of the Invention] However, the present invention can eliminate the above-mentioned drawbacks. Specifically, the present invention can eliminate the above-mentioned drawbacks. By using it as an electrolyte, it prevents the formation of complexes between 1,6-decanedicarboxylic acid and aluminum foil, suppresses capacitance changes and increases in leakage current of electrolytic capacitors, and further lowers the specific resistance of the electrolyte, increasing the loss angle. By reducing the tangent of and impedance at high frequencies, we can provide electrolytic capacitors with higher performance and reliability. [Example] Next, the above-mentioned 1.6-decanedicarboxylic acid and 1.10
Examples of the electrolytic solution according to the present invention in which a mixture of -decanedicarboxylic acids or a mixture of their salts are dissolved in ethylene glycol are shown in Table 1 together with conventional examples. The electrolyte composition is wt%, and the specific resistance (Ω cm) is at a liquid temperature of 20°C. Also, the spark voltage is 85℃
belongs to.

【表】【table】

【表】【table】

【表】【table】

【表】 次に、第1表に示した電解液のうち、従来例
2、実施例1および実施例3の電解液を使用した
電解コンデンサ(定格400V・10μF)の各20個に
ついての温度105℃、定格電圧印加1000時間の高
温負荷試験の結果を第2表に示す。また、電解コ
ンデンサ(定格400V・22μF)についての高温無
負荷試験(105℃、1000時間)の結果を第3表に
示す。(初期および試験後の特性の各値は電解コ
ンデンサ各20個の平均値である。)
[Table] Next, out of the electrolytes shown in Table 1, the temperature 105 Table 2 shows the results of a high-temperature load test at 1000 hours of rated voltage applied at ℃. Table 3 also shows the results of a high temperature no-load test (105°C, 1000 hours) on an electrolytic capacitor (rated 400V, 22μF). (Each value of the initial and post-test characteristics is the average value of each 20 electrolytic capacitors.)

【表】【table】

【表】 [発明の効果] 第2表および第3表から分かるように従来例2
では、初期静電容量が定格値に対して約10%ほど
低く、さらに試験後においてもその変化率が大き
い。また、第3表から分かるように従来例2では
漏れ電流が30倍以上にもなつている。 第2表および第3表によつて示された従来例の
ような現象は前述したように駆動用電解液中の
1.6−デカンジカルボン酸がコンデンサ素子を形
成するアルミニウム箔と反応し、その表面積を著
しく低下させるため、表面積と比例関係のある静
電容量が減少するものであり、また漏れの電流の
増加は1.6−デカンジカルボン酸が誘電体である
アルミニウム陽極酸化膜と反応して不安定なアル
ミニウム錯体膜を形成し、これが高温下において
駆動用電解液中に溶解するために漏れ電流が増大
するものである。 一方、本発明は1.10−デカンジカルボン酸ある
いはその塩を1.6−デカンジカルボン酸あるいは
その塩と共に溶質に用いることにより、1.6−デ
カンジカルボン酸の錯体形成を抑制することによ
り、このような現象を防止することができる。ま
た、比抵抗を下げることによつて損失角の正接や
高周波でのインピーダンスを低く抑えることがで
きる。 次に、1.10−デカンジカルボン酸あるいはその
塩の混合によつて、錯体形成を抑制されることに
より生じる製品特性への効果について、例えば
1.6−デカンジカルボン酸10wt%を含む電解液に
1.10−デカンジカルボン酸を添加していつた場合
の様子を定格静電容量に対する初期静電容量比の
変化を例にとつて第1図に示し、また105℃、
1000時間後の高温無負荷試験における漏れ電流値
の変化を第2図に示す。ここで使用した電解コン
デンサはいずれも定格400V・10μFであり、各値
は20個の平均値である。 第1図から分かるように、1.10−デカンジカル
ボン酸の添加濃度が低いと、初期静電容量値は低
い。0.5wt%の添加では効果は少ないが、1wt%
の添加で充分効果が生じる。したがつて、1wt%
以上の添加が好ましい。第2図から分かるよう
に、1.10−デカンジカルボン酸の添加濃度が低い
と、漏れ電流値は大きく、0.5wt%、1wt%の添
加の順に小さくなる。0.5wt%の添加では効果は
少ないが、1wt%の添加で効果は充分に明確とな
つてくる。 よつて、本発明に係る駆動用電解液を用いるこ
とによつて、より高性能で信頼性の高い電解コン
デンサを提供することができる。 [発明の実用化の範囲] なお、本発明に係る電解液の成分中、1.6−デ
カンジカルボン酸と1.10−デカンジカルボン酸の
混合溶質の量は8wt%〜30wt%の範囲が好まし
く、8wt%以下であると比抵抗が大きくなり、逆
に30wt%以上になると電解液の火花電圧が下が
るためにいずれも実用化に供しえない。
[Table] [Effect of the invention] As can be seen from Tables 2 and 3, Conventional Example 2
In this case, the initial capacitance is approximately 10% lower than the rated value, and the rate of change is large even after testing. Further, as can be seen from Table 3, in Conventional Example 2, the leakage current is 30 times or more. The phenomenon shown in the conventional example shown in Tables 2 and 3 is due to the presence of the electrolyte in the driving electrolyte as described above.
1.6- Decanedicarboxylic acid reacts with the aluminum foil forming the capacitor element and significantly reduces its surface area, resulting in a decrease in capacitance, which is proportional to the surface area, and an increase in leakage current. Decanedicarboxylic acid reacts with the dielectric aluminum anodic oxide film to form an unstable aluminum complex film, which dissolves in the driving electrolyte at high temperatures, resulting in an increase in leakage current. On the other hand, the present invention prevents such a phenomenon by suppressing the complex formation of 1.6-decanedicarboxylic acid by using 1.10-decanedicarboxylic acid or its salt as a solute together with 1.6-decanedicarboxylic acid or its salt. be able to. Furthermore, by lowering the specific resistance, the tangent of the loss angle and the impedance at high frequencies can be kept low. Next, we will discuss the effect on product properties caused by suppressing complex formation by mixing 1.10-decanedicarboxylic acid or its salt, for example.
1.6-In an electrolyte containing 10wt% of decanedicarboxylic acid
Figure 1 shows, as an example, the change in the ratio of initial capacitance to the rated capacitance when 1.10-decanedicarboxylic acid is added.
Figure 2 shows the change in leakage current value in the high temperature no-load test after 1000 hours. The electrolytic capacitors used here all have a rating of 400V and 10μF, and each value is the average value of 20 capacitors. As can be seen from FIG. 1, when the concentration of 1.10-decanedicarboxylic acid added is low, the initial capacitance value is low. Addition of 0.5wt% has little effect, but 1wt%
The addition of is sufficient to produce the effect. Therefore, 1wt%
The above addition is preferable. As can be seen from FIG. 2, when the concentration of 1.10-decanedicarboxylic acid added is low, the leakage current value increases, and decreases in the order of addition of 0.5 wt% and 1 wt%. The effect is small when added at 0.5 wt%, but the effect becomes sufficiently clear when added at 1 wt%. Therefore, by using the driving electrolyte according to the present invention, it is possible to provide an electrolytic capacitor with higher performance and higher reliability. [Scope of practical application of the invention] In the components of the electrolytic solution according to the present invention, the amount of the mixed solute of 1.6-decanedicarboxylic acid and 1.10-decanedicarboxylic acid is preferably in the range of 8wt% to 30wt%, and 8wt% or less If it is, the specific resistance becomes large, and conversely, if it exceeds 30 wt%, the spark voltage of the electrolyte decreases, so that neither of them can be put to practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1.6−デカンジカルボン酸に対する
1.10−デカンジカルボン酸の添加濃度と電解コン
デンサの初期静電容量と定格静電容量との比の関
係を示す特性図、第2図は1.6−デカンジカルボ
ン酸に対する1.10−デカンジカルボン酸の添加濃
度と電解コンデンサの漏れ電流の関係を示す特性
図である。
Figure 1 shows the results for 1,6-decanedicarboxylic acid.
A characteristic diagram showing the relationship between the added concentration of 1.10-decanedicarboxylic acid and the ratio between the initial capacitance and the rated capacitance of an electrolytic capacitor. FIG. 3 is a characteristic diagram showing the relationship between leakage current of an electrolytic capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 1.6−デカンジカルボン酸と1.10−デカンジ
カルボン酸の混合物またはそれらの塩の混合物を
主溶質とし、溶媒にエチレングリコールを用いた
ことを特徴とする電解コンデンサ駆動用電解液。
1. An electrolytic solution for driving an electrolytic capacitor, characterized in that the main solute is a mixture of 1.6-decanedicarboxylic acid and 1.10-decanedicarboxylic acid or a mixture of their salts, and ethylene glycol is used as a solvent.
JP13663285A 1985-06-22 1985-06-22 Electrolytic liquid for driving electrolytic capacitor Granted JPS61294809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13663285A JPS61294809A (en) 1985-06-22 1985-06-22 Electrolytic liquid for driving electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13663285A JPS61294809A (en) 1985-06-22 1985-06-22 Electrolytic liquid for driving electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS61294809A JPS61294809A (en) 1986-12-25
JPH031819B2 true JPH031819B2 (en) 1991-01-11

Family

ID=15179845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13663285A Granted JPS61294809A (en) 1985-06-22 1985-06-22 Electrolytic liquid for driving electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS61294809A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224919A (en) * 1986-03-27 1987-10-02 日立エーアイシー株式会社 Electrolyte for electrolytic capacitor
CN102834882B (en) 2010-03-26 2017-03-15 日本贵弥功株式会社 Electrolyte for electrolytic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108229A (en) * 1980-02-01 1981-08-27 Nippon Chemical Condenser Kk Electrolyte for driving electrolytic condenser
JPS5813019A (en) * 1981-07-16 1983-01-25 Matsushita Electric Ind Co Ltd Digital-to-analog converter
JPS6013293A (en) * 1983-07-04 1985-01-23 株式会社日立製作所 Storage facility of fuel for nuclear reactor
JPS6085509A (en) * 1983-10-17 1985-05-15 岡村製油株式会社 Electrolyte for driving electrolytic condenser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108229A (en) * 1980-02-01 1981-08-27 Nippon Chemical Condenser Kk Electrolyte for driving electrolytic condenser
JPS5813019A (en) * 1981-07-16 1983-01-25 Matsushita Electric Ind Co Ltd Digital-to-analog converter
JPS6013293A (en) * 1983-07-04 1985-01-23 株式会社日立製作所 Storage facility of fuel for nuclear reactor
JPS6085509A (en) * 1983-10-17 1985-05-15 岡村製油株式会社 Electrolyte for driving electrolytic condenser

Also Published As

Publication number Publication date
JPS61294809A (en) 1986-12-25

Similar Documents

Publication Publication Date Title
JPS61239617A (en) Solid electrolytic capacitor
JPH031819B2 (en)
JPH01152615A (en) Electrolyte for electrolytic capacitor
JPH0325005B2 (en)
JPH01152614A (en) Electrolyte for electrolytic capacitor
JPH01152616A (en) Electrolyte for electrolytic capacitor
JPH0376007B2 (en)
JPH01245508A (en) Electrolyte for electrolytic capacitor
JPH01137617A (en) Electrolytic capacitor driving electrolyte
JPS63261820A (en) Electrolyte for driving electrolytic capacitor
JPS62234313A (en) Driving electrolyte for electrolytic capacitor
JPH01114020A (en) Electrolyte for driving electrolytic capacitor
JPH01137616A (en) Electrolytic capacitor driving electrolyte
JPH01137618A (en) Electrolytic capacitor driving electrolyte
JPH0416007B2 (en)
JPH01103820A (en) Electrolyte for driving electrolytic capacitor
JP2625464B2 (en) Electrolyte for driving electrolytic capacitors
JPH03235318A (en) Electrolyte for driving electrolytic capacitor
JPS62263625A (en) Electrolyte for driving electrolytic capacitor
JPS63261822A (en) Electrolyte for driving electrolytic capacitor
JPH01216517A (en) Electrolyte for electrolytic capacitor
JPS5832774B2 (en) Electrolyte for driving electrolytic capacitors
JPH03188613A (en) Electrolyte for driving electrolytic capacitor
JPH02137308A (en) Electrolyte for electrolytic capacitor
JPH01114026A (en) Electrolyte for driving electrolytic capacitor