JPH01114026A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor

Info

Publication number
JPH01114026A
JPH01114026A JP62272471A JP27247187A JPH01114026A JP H01114026 A JPH01114026 A JP H01114026A JP 62272471 A JP62272471 A JP 62272471A JP 27247187 A JP27247187 A JP 27247187A JP H01114026 A JPH01114026 A JP H01114026A
Authority
JP
Japan
Prior art keywords
salt
acid
butyrolactone
electrolytic capacitor
tetraethylammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62272471A
Other languages
Japanese (ja)
Inventor
Hisao Nagara
久雄 長柄
Hideki Shimamoto
秀樹 島本
Keiji Mori
啓治 森
Shingo Yoshida
真吾 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62272471A priority Critical patent/JPH01114026A/en
Publication of JPH01114026A publication Critical patent/JPH01114026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To improve loss characteristic of a capacitor and to increase its life at a high temperature by employing electrolyte in which protochatechuic acid or its salt is added to be decomposed with tetramethyl/ethylammonium salt of phthalic acid or maleic acid is dissolved as solute in solvent which contains as main body gamma-butyrolactone. CONSTITUTION:Tetramethylammonium salt of phthalic acid, tetraethylammonium salt, tetramethylammonium salt of maleic acid or tetraethylammonium salt is dissolved as solute in solvent which contains as main body gamma-butyrolactone, and 0.01-10wt.% protochatechic acid or its salt is further added as additive thereto. Thus, a dielectric oxide film is protected to suppress a reduction in its electrostatic capacity and an increase in its dielectric loss. Accordingly, the loss characteristic of a capacitor is improved, it is stable at a high temperature with long life.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解コンデンサに関するものであり、詳しく言
えば、アルミ電解コンデンサ駆動用電解液に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to electrolytic capacitors, and more specifically, to an electrolytic solution for driving an aluminum electrolytic capacitor.

従来の技術 従来、電解コンデンサ駆動用電解液としては、エチレン
グリコールにイオノゲンを溶解した電解液が用いられて
いる。この種の電解コンデンサは低温における特性を鹿
化させる。以上のような欠点を改良するため、特開昭6
1−70711号公報にみられるように、γ−ブチロラ
クトンを溶媒とし、7タル酸のトリエチルアミン塩を用
いる例や、特開昭54−7564号公報にみられるよう
に、γ−ブチロラクトンとエチレングリコールの混合溶
媒にマレイン酸のアミン塩を用いる例がある。
2. Description of the Related Art Conventionally, as an electrolytic solution for driving an electrolytic capacitor, an electrolytic solution in which ionogen is dissolved in ethylene glycol has been used. This type of electrolytic capacitor has poor characteristics at low temperatures. In order to improve the above-mentioned drawbacks,
1-70711, using γ-butyrolactone as a solvent and triethylamine salt of 7-talic acid, and JP-A-54-7564, using γ-butyrolactone and ethylene glycol. There is an example of using an amine salt of maleic acid as a mixed solvent.

発明が解決しようとする問題点 しかし、従来の問題点として、γ−ブチロラクトンを’
18にとし、フタル酸のトリエチルアミン塩を用いた場
合、比電導度が低く、また106℃中では高い安定性を
示すが、126℃中ではあまり安定でないという欠点が
ある。またγ−ブチロラクトンとエチレングリコールの
混合溶媒にマレイン酸のアミン塩を用いた場合、比電導
度は十分高い値が得られるが、高温での安定性に欠け1
06℃中でも安定性は低いという欠点がある。
Problems to be Solved by the Invention However, as a conventional problem, γ-butyrolactone is
No. 18, when triethylamine salt of phthalic acid is used, the specific conductivity is low and, although it shows high stability at 106°C, it is not very stable at 126°C. Furthermore, when an amine salt of maleic acid is used in a mixed solvent of γ-butyrolactone and ethylene glycol, a sufficiently high value of specific conductivity can be obtained, but it lacks stability at high temperatures and
It has the disadvantage of low stability even at 06°C.

本発明はこのような従来の欠点を解決するもので、高電
導度で高温劣化の小さい電解液を提供し、電解コンデン
サの損失特性の改善、並びに高温で長寿命化を図ること
を目的とする。
The present invention solves these conventional drawbacks, and aims to provide an electrolytic solution with high conductivity and little deterioration at high temperatures, and to improve the loss characteristics of electrolytic capacitors and extend their life at high temperatures. .

問題点を解決するための手段 このような問題点を解決するために、本発明はγ−ブチ
ロラクトンを主体とする溶媒に、フタル酸のテトラメチ
ルアンモニウム塩あるいはテトラエチルアンモニウム塩
、もしくはマレイン酸のテトラメチルアンモニウム塩あ
るいはテトラエチルアンモニウム塩を溶解して溶質とし
、さらにプロトカテク酸又はその塩を添加剤として用い
る電解コンデンサ駆動用電解液である。
Means for Solving the Problems In order to solve these problems, the present invention provides a method for adding tetramethylammonium salt or tetraethylammonium salt of phthalic acid, or tetramethylammonium maleic acid to a solvent mainly composed of γ-butyrolactone. This is an electrolytic solution for driving an electrolytic capacitor that uses ammonium salt or tetraethylammonium salt dissolved as a solute and protocatechuic acid or its salt as an additive.

プロトカテク酸又はその塩の添加量は電解液重量に対し
て0.01〜10重量%が好ましい。これは0.01重
量%以下では効果がなく、10重量%を越えると電導度
低下が大きくなるからである。
The amount of protocatechuic acid or its salt added is preferably 0.01 to 10% by weight based on the weight of the electrolyte. This is because if it is less than 0.01% by weight, there is no effect, and if it exceeds 10% by weight, the conductivity will be significantly lowered.

作  用 γ−ブチロラクトンを主体とする溶媒に、フタル酸のテ
トラメチルアンモニウム塩あるいはテトラエチルアンモ
ニウム塩もシくは、マレイン酸のテトラメチルアンモニ
ウム塩あるいはテトラエチルアンモニウム塩を溶質とし
て組合わせた場合高い電導度が得られる。
Effect When a solvent mainly composed of γ-butyrolactone is combined with a tetramethylammonium salt or a tetraethylammonium salt of phthalic acid or a tetramethylammonium salt or a tetraethylammonium salt of maleic acid as a solute, high conductivity can be obtained. can get.

γ−ブチロラクトンを主体とする溶媒の時、フタル酸お
よびマレイン酸は高温中で分解しにくく、またテトラメ
チルアンモニウムあるいはテトラエチルアンモニウムと
の反応も起こりにくい。このため高温中での特性変化が
きわめて低い電解液が得られると考えられる。
When the solvent is mainly composed of γ-butyrolactone, phthalic acid and maleic acid are difficult to decompose at high temperatures, and reactions with tetramethylammonium or tetraethylammonium are also difficult to occur. Therefore, it is thought that an electrolytic solution with extremely low change in properties at high temperatures can be obtained.

さらにプロトカテク酸がアルミニウム電極箔表面に吸着
し、誘電体酸化皮膜を保護することにより、静電容量の
減少及び−δの増加が大幅に抑制できるものと考えられ
る。
Furthermore, it is considered that protocatechuic acid adsorbs to the surface of the aluminum electrode foil and protects the dielectric oxide film, thereby significantly suppressing the decrease in capacitance and the increase in -δ.

実施例 以下、本発明による実施例について述べる。Example Examples according to the present invention will be described below.

表1に本発明の実施例及び従来の電解液組成例並びに常
温における比電導度を示す。
Table 1 shows examples of the present invention, examples of conventional electrolyte compositions, and specific conductivities at room temperature.

表1 実施例並びに従来例の電解液組成及び比電導度□
−」 表1から明らかなように、従来の電解液と比較して高い
比電導度を得ることができる。
Table 1 Electrolyte composition and specific conductivity of Example and Conventional Example □
-'' As is clear from Table 1, a higher specific conductivity can be obtained compared to conventional electrolytes.

表2に表1の従来例および実施例の電解液を用いたコン
デンサの初期特性を示す。試料コンデンサは8.3V1
 oooμF (φ10X12.5)(7)フルミ電解
コンデンサである。
Table 2 shows the initial characteristics of capacitors using the electrolytes of the conventional example and example shown in Table 1. Sample capacitor is 8.3V1
oooμF (φ10X12.5) (7) This is a Fulmi electrolytic capacitor.

表2 初期特性比較 表2から明らかなように、実施例は従来例と比較してt
anδを低くすることができる。
Table 2 Initial Characteristic Comparison As is clear from Table 2, the example has a t
anδ can be lowered.

第1図〜第3図に、表2で示したアルミ電解コンデンサ
の125℃における特性経時変化を示している。第1図
は定格電圧印加における静電容量変化、第2図は定格電
圧印加における損失角の正接変化、第3図は電圧印加な
しにお′ける漏れ電流変化を示す図である。
Figures 1 to 3 show changes in characteristics over time at 125°C of the aluminum electrolytic capacitors shown in Table 2. FIG. 1 shows the capacitance change when the rated voltage is applied, FIG. 2 shows the loss angle tangent change when the rated voltage is applied, and FIG. 3 shows the leakage current change when no voltage is applied.

この第1図〜第3図から明らかなように、高温中におい
ても特性変化はきわめて小さく、信頼性の高いコンデン
サを得ることができる。
As is clear from FIGS. 1 to 3, the change in characteristics is extremely small even at high temperatures, and a highly reliable capacitor can be obtained.

発明の効果 以上のように本発明によれば、従来の電解液と比較して
、損失特性を改善でき、しかも125℃という高温中で
もきわめて安定な信頼性の高い電解コンデンサを提供で
き、工業的価値の大なるものである。
Effects of the Invention As described above, according to the present invention, it is possible to provide a highly reliable electrolytic capacitor that can improve loss characteristics compared to conventional electrolytes and is extremely stable even at high temperatures of 125°C, and has industrial value. It is a great thing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ従来の電解液および本発明の
電解液を用いた定格6.3V1000μF(φ1ox 
12.5)のアルミ電解コンデンサの125℃における
特性経時変化を示したものであり、第1図は定格電圧印
加における静電容量変化を示す特性図、第2図は定格電
圧印加における損失角の正接変化を示す特性図、第3図
は電圧印加なしにおける漏れ電流変化を示す特性図であ
る。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図x% 7’?+ <hrs) 第3゜   ″与蘭゛酔゛2 ′H41%j  (hrs)
Figures 1 to 3 show a rated 6.3V 1000μF (φ1ox
12.5) shows the change in characteristics over time at 125°C of the aluminum electrolytic capacitor. Figure 1 is a characteristic diagram showing the capacitance change when the rated voltage is applied, and Figure 2 is the characteristic diagram showing the change in capacitance when the rated voltage is applied. FIG. 3 is a characteristic diagram showing changes in tangent, and FIG. 3 is a characteristic diagram showing changes in leakage current when no voltage is applied. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 x% 7'? + <hrs) 3rd゜ ``Yoran゛Drunken゛2 ``H41%j (hrs)

Claims (2)

【特許請求の範囲】[Claims] (1)γ−ブチロラクトンを主体とする溶媒に、フタル
酸のテトラメチルアンモニウム塩あるいはテトラエチル
アンモニウム塩もしくは、マレイン酸のテトラメチルア
ンモニウム塩あるいはテトラエチルアンモニウム塩を溶
質とし、プロトカテク酸又はその塩を添加溶解したこと
を特徴とする電解コンデンサ駆動用電解液。
(1) Protocatechuic acid or its salt was added and dissolved in a solvent mainly composed of γ-butyrolactone, with tetramethylammonium salt or tetraethylammonium salt of phthalic acid, or tetramethylammonium salt or tetraethylammonium salt of maleic acid as a solute. An electrolytic solution for driving an electrolytic capacitor, which is characterized by:
(2)プロトカテク酸又はその塩の添加量が電解液重量
に対して0.01〜10重量%であることを特徴とする
特許請求の範囲第1項記載の電解コンデンサ駆動用電解
液。
(2) The electrolyte solution for driving an electrolytic capacitor according to claim 1, wherein the amount of protocatechuic acid or its salt added is 0.01 to 10% by weight based on the weight of the electrolyte solution.
JP62272471A 1987-10-28 1987-10-28 Electrolyte for driving electrolytic capacitor Pending JPH01114026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62272471A JPH01114026A (en) 1987-10-28 1987-10-28 Electrolyte for driving electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62272471A JPH01114026A (en) 1987-10-28 1987-10-28 Electrolyte for driving electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH01114026A true JPH01114026A (en) 1989-05-02

Family

ID=17514384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62272471A Pending JPH01114026A (en) 1987-10-28 1987-10-28 Electrolyte for driving electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH01114026A (en)

Similar Documents

Publication Publication Date Title
JPH01114026A (en) Electrolyte for driving electrolytic capacitor
JPS6114649B2 (en)
JPH11340097A (en) Electrolytic solution for driving electrolytic capacitor
JPS63261820A (en) Electrolyte for driving electrolytic capacitor
JPH01114018A (en) Electrolyte for driving electrolytic capacitor
JPS63261822A (en) Electrolyte for driving electrolytic capacitor
JP3285991B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JPS59123217A (en) Electrolyte for electrolytic condenser
JP2665243B2 (en) Electrolyte for electrolytic capacitors
JPH01114017A (en) Electrolyte for driving electrolytic capacitor
JPH01114025A (en) Electrolyte for driving electrolytic capacitor
JP3169970B2 (en) Electrolyte for driving electrolytic capacitors
JPH0636973A (en) Electrolyte for driving electrolytic capacitor
JPH031819B2 (en)
JP3212322B2 (en) Electrolyte for driving electrolytic capacitors
JPS6265406A (en) Electrolyte for driving aluminum electrolytic condenser
JPH02248026A (en) Electrolyte for driving electrolytic capacitor
JPH0782965B2 (en) Electrolytic solution for driving electrolytic capacitors
JPS63261824A (en) Electrolyte for driving electrolytic capacitor
JPS6366915A (en) Electrolyte for driving aluminum electrolytic capacitor
JPS6351620A (en) Electrolytic capacitor driving electrolyte
JP2002299178A (en) Electrolyte for driving electrolytic capacitor
JPH0513277A (en) Electrolyte for driving electrolytic capacitor
JPH04343409A (en) Electrolyte for driving electrolytic capacitor
JPH01114024A (en) Electrolyte for driving electrolytic capacitor