JPS62234313A - Driving electrolyte for electrolytic capacitor - Google Patents

Driving electrolyte for electrolytic capacitor

Info

Publication number
JPS62234313A
JPS62234313A JP7802386A JP7802386A JPS62234313A JP S62234313 A JPS62234313 A JP S62234313A JP 7802386 A JP7802386 A JP 7802386A JP 7802386 A JP7802386 A JP 7802386A JP S62234313 A JPS62234313 A JP S62234313A
Authority
JP
Japan
Prior art keywords
salt
electrolytic capacitor
decanedicarboxylic acid
electrolytic
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7802386A
Other languages
Japanese (ja)
Inventor
英夫 清水
茂生 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP7802386A priority Critical patent/JPS62234313A/en
Publication of JPS62234313A publication Critical patent/JPS62234313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Primary Cells (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電解コンデンサ駆動用電解液に関するもので、
同電解液の比抵抗を著しく低下させることによって電解
コンデンサの損失角の正接および高周波特性を改薄し、
しかも静電容量の変化および漏れ電流の増加を抑えるこ
とのii(能な高温度で長寿命かつ(j頼性の高い電解
コンデンサを提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrolytic solution for driving an electrolytic capacitor,
By significantly lowering the specific resistance of the electrolyte, the loss angle tangent and high frequency characteristics of the electrolytic capacitor are improved.
Moreover, it provides an electrolytic capacitor that can suppress changes in capacitance and increase in leakage current, has a long life at high temperatures, and is highly reliable.

[従来の技術と問題点] 従来、特に中高圧用のアルミニウム電解コンデンサ駆動
用電解液としては、所謂エチレングリコール/(11酸
エステlし系の電解液が用いられ′Cいる。この種の電
解液は、加熱によりエチレングリールと硼酸とのエステ
ル化反応が進み、この際に生成水が)1じ、この水が電
解コンデンサ中のコンデンサ素rの材料であるアルミニ
ウム箔と反応してこわを溶解し、かつ水素ガスを発生し
てコンデンサの内圧に昇をもたらすために、この電解液
を用いた電解コンデンサはより高温度の「1的に対して
は使用できなかった。また、上述の問題を解決するため
に、同系でエステル化を促進して生成水を除去した電解
液も提案されているが、水との反応は抑制されるものの
、電解液の粘度が増大し、比抵抗が片しく高くなり、こ
の電解液を用いた電解コンデンサでは損失角の正接およ
び高周波でのインピーダンスが片しく増大し、高特性の
要求Cは応えられないものであった。このような理由か
ら、高温度用の電解コンデンサにはエチレングリコール
、・′硼酸エステル系の電解液は用いられず、比較的分
子量の大きいイflU酸あるいはその塩を溶質とするイ
「機酸系′a解液が使用および検討されている。
[Prior art and problems] Conventionally, so-called ethylene glycol/(11-acid ester)-based electrolytes have been used as electrolytes for driving aluminum electrolytic capacitors, especially for medium and high voltages. When the liquid is heated, the esterification reaction between ethylene glycol and boric acid progresses, and the water produced at this time reacts with the aluminum foil that is the material of the capacitor element in the electrolytic capacitor, causing stiffness. Electrolytic capacitors using this electrolyte could not be used at higher temperatures because the electrolyte dissolved and generated hydrogen gas, raising the internal pressure of the capacitor. In order to solve this problem, an electrolytic solution of the same type that promotes esterification and removes the produced water has been proposed, but although the reaction with water is suppressed, the viscosity of the electrolytic solution increases and the specific resistance becomes uneven. In electrolytic capacitors using this electrolyte, the loss angle tangent and impedance at high frequencies increase unnecessarily, making it impossible to meet requirement C of high characteristics.For these reasons, high temperature Ethylene glycol and boric acid ester-based electrolytes are not used in electrolytic capacitors for commercial use, but organic acid-based electrolytes with relatively large molecular weight iflU acids or their salts as solutes are used and studied. has been done.

中高圧用の有機酸、V−電解液の溶質としては総炭素数
か16〜22て側鎖を4i−’fる二塩1^性酸く特開
昭58−27320号r′心解コンデンサ駆動用電解液
J)が公知であるが、この上うな二塩基性酸を含む電解
液を使用した電解コンデンサは溶質そのものがコンデン
サ素子を形1表するアルミニウム箔と反応し、錯体形成
するために初明静電容IItか低く、また高温「L荷試
験や高温無負荷コ(験において、静電8埴の極端な減少
および著しい漏れ電流の増大が見ら九、より性能の高い
電解コンデンサの要求には応えられないものであった。
The organic acid for medium and high pressures, the solute of the V-electrolyte, is a di-salt 1^ acid with a total carbon number of 16 to 22 and a side chain of 4i-'f. Driving electrolyte J) is well known, but in electrolytic capacitors using an electrolyte containing a dibasic acid, the solute itself reacts with the aluminum foil representing the capacitor element to form a complex. In high-temperature load tests and high-temperature no-load tests, an extreme decrease in electrostatic capacitance and a significant increase in leakage current were observed, creating a demand for electrolytic capacitors with higher performance. It was impossible to respond to this.

[発明の改良点と概要] しかるに1本発明は1−述のような欠点を除去し得るも
ので、具体的には1.10−デカンジカルボン酸あるい
はその塩を用いることによって、側鎖を有する一塩基性
酸とアルミニウム箔との錯体形成を防エトして電解コン
デンサの静電界q変化や漏れ電流の増大を抑え、さらに
1゜6−デカンジカルボン酸あるいはその塩を用いるこ
とにより電解液の比抵抗を下げて、損失角の正接や高周
波でのインピーダンスを小さくすることにより、より高
性能で信頼性の高い電解コンデンサを提供するものであ
る。
[Improvements and Summary of the Invention] However, the present invention can eliminate the drawbacks mentioned in 1-1. Specifically, by using 1.10-decanedicarboxylic acid or a salt thereof, By preventing the formation of complexes between monobasic acids and aluminum foil, changes in the electrostatic field q of electrolytic capacitors and increases in leakage current can be suppressed, and by using 1°6-decanedicarboxylic acid or its salt, the ratio of electrolyte solution can be reduced. By lowering the resistance and reducing the tangent of loss angle and impedance at high frequencies, we can provide electrolytic capacitors with higher performance and reliability.

[実施例] 次に、総炭素数が12〜34の側鎖にビニル基またはカ
ルボキシル基を有するご一塩基性酸の具体例を示す。
[Example] Next, specific examples of monobasic acids having a total number of carbon atoms of 12 to 34 and having a vinyl group or a carboxyl group in the side chain will be shown.

本発明において、溶媒としてはエチレングリコール等の
多価アルコール類の中の1種または2種以」−からなる
ものが使用される。
In the present invention, the solvent used is one or more of polyhydric alcohols such as ethylene glycol.

L記の二塩基性酸あるいはその塩、1.10−デカンジ
カルボン酸あるいはその塩、および1゜6−デカンジカ
ルボン酸あるいはそれらの塩の混合物を溶媒に溶解した
本発明に係る電解液の実施例を従来例と共にi1表に示
す。電解液組成はwt%、比抵抗(Ω・cm)は液温が
20℃のものである。また、火花電圧は85℃のもので
ある。
Example of an electrolytic solution according to the present invention in which a mixture of the dibasic acid or its salt listed in L, 1.10-decanedicarboxylic acid or its salt, and 1゜6-decanedicarboxylic acid or its salt is dissolved in a solvent. are shown in Table i1 along with a conventional example. The electrolytic solution composition is wt%, and the specific resistance (Ω·cm) is at a solution temperature of 20°C. Further, the spark voltage was at 85°C.

第4表句附舶曲戎例 次に、第1表に示した電解液のうち、従来例2)実施例
!および実施例9の電解液を使用した電解コンデンサ(
定fi400V−10μF)の各20個についての温度
105℃、定格電圧印加1000時間の高温負荷試験の
結果を第2表に示す。また、電解コンデンサ(定格40
0V・220μF)についての高温無負荷試験(105
℃。
Table 4 Examples of Ship Songs with ClausesNext, among the electrolytes shown in Table 1, conventional examples 2) Examples! and an electrolytic capacitor using the electrolyte of Example 9 (
Table 2 shows the results of a high temperature load test of 20 pieces each with a constant fi of 400 V-10 μF at a temperature of 105° C. and a rated voltage applied for 1000 hours. In addition, electrolytic capacitors (rated 40
High temperature no-load test (105
℃.

1000時間)の結果を第3表に示す。(?7J期およ
び試験後の特性の各値は電解コンデンサ各20個の平均
値である。) [発明の効果] 第2表および第3人から分かるように従来例2では、初
116電容量が定格値に対して約10%はど低く、さら
に試験後に右いてもその変化率が大きい。また、茅3表
から分かるように従来例2では漏れ電流が約60倍にも
なっている。
1000 hours) are shown in Table 3. (Each value of the characteristic during the ?7J period and after the test is the average value of each 20 electrolytic capacitors.) [Effect of the invention] As can be seen from Table 2 and the third person, in Conventional Example 2, the initial 116 capacitance is about 10% lower than the rated value, and even after testing, the rate of change is large. Furthermore, as can be seen from Table 3, the leakage current in Conventional Example 2 is approximately 60 times greater.

第2表および第3jI2によって丞された従来例のよう
な現象は航述したように駆動用電解液中の1−溶質であ
る二二塩基性酸がコンデンサ素子を形成するアルミニウ
ム箔と反応し、その表面積をxしく低下させるため、表
面積と比例関係のある静電   “8寸が減少するもの
であり、また漏れ電流の増加はこの一’ 4 騙性酸が
誘電体であるアルミニウム陽極酸化11Qと反応して不
安定なアルミニウム錯体)漠を形成し、これがI″F:
1温下においてル動用電解液中に溶解するために漏れ電
流が増大するものである。
As described above, the phenomenon in the conventional example summarized by Table 2 and 3jI2 is caused by the dibasic acid, which is a 1-solute in the driving electrolyte, reacting with the aluminum foil forming the capacitor element. In order to reduce the surface area by an Reacts to form an unstable aluminum complex, which is I″F:
The leakage current increases because the metal dissolves in the electrolytic solution at 1 temperature.

−・方、本発明はさらに1.1O−−L′カンジカルボ
ン醜および1.6−デカンジカルボン酸あるいはそれら
の塩を用いることにより、この二塩塙性酸の酸の錯体形
成を抑制することにより、このような現象を防IL、す
ることがてきる。また、比抵抗をドげることによって損
失角の正接や高周波でのインピーダンスを低く抑えるこ
とができる。
- On the other hand, the present invention furthermore suppresses the acid complex formation of this dichloride acid by using 1.1O--L' candicarboxylic acid and 1,6-decanedicarboxylic acid or salts thereof. This makes it possible to prevent IL from occurring. In addition, by lowering the specific resistance, the tangent of the loss angle and the impedance at high frequencies can be kept low.

次に、1.10−デカンジカルボン酸あるいはその塩の
添加によって、錯体形成を抑制されることにより生じる
製品特性への効果について、例えば化合物1を5wt、
%を含む°a電解液1.10−デカンジカルボン酸アン
モニウム塩を添加していフた場合の様子を定格静電界−
■に対する初期静電容量比の変化を例にとってTrJ1
図に示し、また105℃、1000時間後の高温無負荷
試験における漏わ電流値の変化を第2図に示す。ここで
使用した電解コンデンサはいずわも定格400V−LO
μFであり、谷値は20個のγ均値である。
Next, we will discuss the effect on product properties caused by suppressing complex formation by adding 1.10-decanedicarboxylic acid or its salt, for example, when compound 1 was added at 5 wt.
The rated electrostatic field is as follows:
Taking as an example the change in the initial capacitance ratio for TrJ1
Figure 2 shows the change in leakage current value in a high temperature no-load test at 105°C for 1000 hours. The electrolytic capacitors used here are all rated at 400V-LO.
μF, and the valley value is the average value of 20 γ values.

また、1.6−デカンジカルボン酸あるいはその塩の添
加によって生じる製品特性への効果について、例えば化
合物lを5wt%を含む′電解液に1.6−デカンジカ
ルボン酸アンモニウム塩を添加していった場合のインピ
ーダンス(100KH7)の変化を例にとって第3図に
示す。ここで使用した′It解コンデンサは定格400
■・220μFであり、外植は20個の平均値である。
In addition, regarding the effect on product characteristics caused by the addition of 1.6-decanedicarboxylic acid or its salt, for example, 1.6-decanedicarboxylic acid ammonium salt was added to an electrolytic solution containing 5 wt% of compound l. FIG. 3 shows an example of the change in impedance (100KH7) in this case. The 'It solution capacitor used here has a rating of 400
■・220μF, the average value of 20 explants.

第1図から分かるように、1.10−デカンジカルボン
酸アンモニウム塩の添加濃度が低いと、初期静電容量比
は低い。0.5wt%の添加では効果は少ないが、1w
t%の添加で充分効果が生じる。したがって、1wt%
以上の添加が好ましい。72図から分かるように、1.
to−デカンジカルボン酸アンモニウム塩の添加濃度が
低いと、漏れ電流値は大きく、0.5wt%、1wt%
の添加の順に小さくなる。0.5wt%の添加では効果
は少ないが、1wt%の添加で効果は充分に明確となっ
てくる。第3図から分かるように1.6−デカンジカル
ボン酸アンモニウム塩の添加濃度が低いと、インピーダ
ンスは高く、添加ritを増加することによりインピー
ダンスは低くなり効果が充分明確となる。
As can be seen from FIG. 1, when the concentration of 1.10-decanedicarboxylic acid ammonium salt added is low, the initial capacitance ratio is low. Addition of 0.5wt% has little effect, but 1w
Addition of t% produces a sufficient effect. Therefore, 1wt%
The above addition is preferable. As can be seen from Figure 72, 1.
When the addition concentration of to-decanedicarboxylic acid ammonium salt is low, the leakage current value is large, 0.5 wt%, 1 wt%
decreases with the addition of The effect is small when added at 0.5 wt%, but the effect becomes sufficiently clear when added at 1 wt%. As can be seen from FIG. 3, when the concentration of 1,6-decanedicarboxylic acid ammonium salt added is low, the impedance is high, and by increasing the added rit, the impedance becomes low and the effect becomes sufficiently clear.

よって、本発明に係る駆動用電解液を用いることによっ
て、より高性能で信頼性の高い電解コンデンサを提供す
ることができる。
Therefore, by using the driving electrolyte according to the present invention, it is possible to provide an electrolytic capacitor with higher performance and higher reliability.

[発明の実用化の範囲] なお、本発明に係る電解液の成分中、1.l〇−デカン
ジカルボン酸あるいはその塩の混合量は1wt%以上が
好ましく、1wt%以下であると製品特性劣化が大とな
り、1.6−デカンジカルボン酸あるいはその塩の混合
量は1wt%〜10wt%の範囲が好ましい。しかし、
1.6−デカンジカルボン酸の混合【シの増加に伴って
電解液の火花電圧が下がるために10wt%以上では実
用化に供しえない。例えば、化合物1を5wt%含む電
解液に1.6−デカンジカルボン酸アンモニウム塩を添
加したときの濃度と火花電圧の変化を第4図に示す。
[Scope of Practical Application of the Invention] Among the components of the electrolytic solution according to the present invention, 1. The amount of 10-decanedicarboxylic acid or its salt mixed is preferably 1 wt% or more, and if it is less than 1 wt%, the product characteristics will deteriorate significantly, and the amount of 1,6-decanedicarboxylic acid or its salt mixed is 1 wt% to 10 wt%. A range of % is preferred. but,
1. Mixing of 6-decanedicarboxylic acid [Since the spark voltage of the electrolyte decreases as the amount increases, it cannot be put into practical use at a concentration of 10 wt% or more. For example, FIG. 4 shows changes in concentration and spark voltage when 1,6-decanedicarboxylic acid ammonium salt is added to an electrolytic solution containing 5 wt % of Compound 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1表に示した化合物1に対する1゜10−デ
カンジカルボン酸アンモニウム塩の添加濃度と電解コン
デンサの初期静電8礒と定格静電容量との比の関係を示
す特性図、第2図は化合物1に対する1、6−デカンジ
カルボン酸アンモニウム塩の添加濃度と電解コンデンサ
の漏わ電流の関係を示す特性図、第3図は化合物lに対
する16−デカンジカルボン酸アンモニウム塩の添加濃
度と電解コンデンサのインピーダンスの関係を示す特性
lz1、第4図は化合物1に対する1、6−デカンジカ
ルボン酸アンモニウム塩の添加濃度と電解液の火花電圧
の関係を示す特性図である。
Figure 1 is a characteristic diagram showing the relationship between the concentration of 1°10-decanedicarboxylic acid ammonium salt added to Compound 1 shown in Table 1 and the ratio between the initial electrostatic capacitance and the rated capacitance of an electrolytic capacitor. Figure 2 is a characteristic diagram showing the relationship between the concentration of 1,6-decanedicarboxylic acid ammonium salt added to compound 1 and the leakage current of an electrolytic capacitor, and Figure 3 is a characteristic diagram showing the relationship between the added concentration of 1,6-decanedicarboxylic acid ammonium salt to compound 1 and the leakage current of the electrolytic capacitor. FIG. 4 is a characteristic diagram showing the relationship between the concentration of 1,6-decanedicarboxylic acid ammonium salt added to Compound 1 and the spark voltage of the electrolytic solution.

Claims (2)

【特許請求の範囲】[Claims] (1)総炭素数が12乃至34で側鎖にビニル基または
カルボキシル基を有する二塩基性酸あるいはその塩の中
の1種または2種以上、1.10−デカンジカルボン酸
あるいはその塩、および1.6デカンジカルボン酸ある
いはその塩からなる溶質と、有機極性溶媒とからなるこ
とを特徴とする電解コンデンサ駆動用電解液。
(1) One or more dibasic acids having a total carbon number of 12 to 34 and having a vinyl group or a carboxyl group in the side chain or a salt thereof, 1.10-decanedicarboxylic acid or a salt thereof, and 1.6 An electrolytic solution for driving an electrolytic capacitor, comprising a solute consisting of decanedicarboxylic acid or a salt thereof, and an organic polar solvent.
(2)特許請求の範囲(1)において、有機極性溶媒は
多価アルコール類の中の1種または2種以上からなるこ
とを特徴とする電解コンデンサ駆動用電解液。
(2) The electrolytic solution for driving an electrolytic capacitor according to claim (1), wherein the organic polar solvent is composed of one or more types of polyhydric alcohols.
JP7802386A 1986-04-04 1986-04-04 Driving electrolyte for electrolytic capacitor Pending JPS62234313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7802386A JPS62234313A (en) 1986-04-04 1986-04-04 Driving electrolyte for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7802386A JPS62234313A (en) 1986-04-04 1986-04-04 Driving electrolyte for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS62234313A true JPS62234313A (en) 1987-10-14

Family

ID=13650209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7802386A Pending JPS62234313A (en) 1986-04-04 1986-04-04 Driving electrolyte for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS62234313A (en)

Similar Documents

Publication Publication Date Title
JPS62268121A (en) Electrolyte for electrolytic capacitor
JPS62234313A (en) Driving electrolyte for electrolytic capacitor
JPS6032345B2 (en) Electrolyte for electrolytic capacitors
JPS61294809A (en) Electrolytic liquid for driving electrolytic capacitor
JPS625627A (en) Electrolytic liquid for driving electrolytic capacitor
JPS63261820A (en) Electrolyte for driving electrolytic capacitor
JP2625464B2 (en) Electrolyte for driving electrolytic capacitors
JPS63261822A (en) Electrolyte for driving electrolytic capacitor
JPH01103820A (en) Electrolyte for driving electrolytic capacitor
JPS59123217A (en) Electrolyte for electrolytic condenser
JPH01114020A (en) Electrolyte for driving electrolytic capacitor
JPH0376007B2 (en)
JPH01137616A (en) Electrolytic capacitor driving electrolyte
JPH01137617A (en) Electrolytic capacitor driving electrolyte
JPS62263625A (en) Electrolyte for driving electrolytic capacitor
JP3285991B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JPH01152614A (en) Electrolyte for electrolytic capacitor
JPS629617A (en) Electrolytic liquid for driving electrolytic capacitor
JP3657664B2 (en) Electrolytic solution for electrolytic capacitor drive
JPS6351620A (en) Electrolytic capacitor driving electrolyte
JPH03235318A (en) Electrolyte for driving electrolytic capacitor
JP3217093B2 (en) Electrolyte for driving electrolytic capacitors
JPS6265406A (en) Electrolyte for driving aluminum electrolytic condenser
JPS6170711A (en) Electrolyte for driving electrolytic condenser
JPS61172323A (en) Electrolytic liquid for driving electrolytic capacitor