JP3657664B2 - Electrolytic solution for electrolytic capacitor drive - Google Patents

Electrolytic solution for electrolytic capacitor drive Download PDF

Info

Publication number
JP3657664B2
JP3657664B2 JP26005195A JP26005195A JP3657664B2 JP 3657664 B2 JP3657664 B2 JP 3657664B2 JP 26005195 A JP26005195 A JP 26005195A JP 26005195 A JP26005195 A JP 26005195A JP 3657664 B2 JP3657664 B2 JP 3657664B2
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic solution
electrolytic capacitor
acid
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26005195A
Other languages
Japanese (ja)
Other versions
JPH09102439A (en
Inventor
浩一 田村
宏司 麻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP26005195A priority Critical patent/JP3657664B2/en
Publication of JPH09102439A publication Critical patent/JPH09102439A/en
Application granted granted Critical
Publication of JP3657664B2 publication Critical patent/JP3657664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、中高圧用電解コンデンサの駆動用電解液に関するものである。
【0002】
【従来の技術】
従来より電解コンデンサの駆動用電解液(以下電解液という)には、酸化皮膜形成能を有し、アルミ箔の耐水性を向上させ、かつ皮膜劣化の抑制を目的としたオルトリン酸またはそのアンモニウム塩等のリン酸化合物の添加が検討されている。
【0003】
【発明が解決しようとする課題】
オルトリン酸またはそのアンモニウム塩は酸化皮膜形成時に消費されるため電解液中の濃度は経時的に低下し、長期に及ぶ電解コンデンサの高温負荷試験や高温無負荷試験においてアルミ箔の酸化皮膜の劣化により静電容量の低下や、漏れ電流の増大を招く。そこでオルトリン酸またはそのアンモニウム塩の添加量を過剰に増加させると、アルミ箔および酸化皮膜に対して溶解性が増大し腐食を生じさせるので好ましくない。さらに、オルトリン酸またはそのアンモニウム塩は熱的安定性に乏しく、高温領域では上述の酸化皮膜の劣化を抑制する効果が減少するなどの欠点をもっていた。
本発明は以上の欠点を改善し、電解コンデンサの特性を長時間にわたって安定化し、高温下において皮膜劣化抑制効果を示す電解コンデンサの駆動用電解液を提供することを目的とする。
【0004】
【課題を解決するための手段】
エチレングリコールを主成分とする溶媒に、高級二塩基酸またはそのアンモニウム塩及びホウ酸またはそのアンモニウム塩を溶解した電解コンデンサ用電解液に、メタリン酸またはメタリン酸ナトリウム、あるいはヘキサメタリン酸ナトリウムを溶解させた電解液であり、上記メタリン酸またはメタリン酸ナトリウムを電解液全体に対して0.01〜0.45重量%溶解するか、あるいは上記ヘキサメタリン酸ナトリウムを電解液全体に対して0.01〜0.09重量%溶解した電解液を用いることで、長期にわたって安定した特性を示す電解コンデンサを提供できることを見いだした。
【0005】
【作用】
メタリン酸は水溶液中において水和反応によりオルトリン酸に変化するが、水分の少ない電解コンデンサ用電解液中ではその反応が緩やかに進行し、徐々にオルトリン酸が電解液中に供給されるため、オルトリン酸のもつアルミ箔の耐水性、酸化皮膜形成能を低下させず維持できることから、電解コンデンサの静電容量の低下や、漏れ電流の増大を防止できる。
また、分子量の大きいヘキサメタリン酸ナトリウムはその構造から熱的安定性に優れるため高温領域においても電解コンデンサの特性の長期安定化が可能である。
【0006】
【実施例】
以下、実施例の具体的内容について説明する。溶媒には、エチレングリコール等の多価アルコールを用いる。溶質には7−ビニル−9−ヘキサデセン−1−16−ジカルボン酸またはそのアンモニウム塩を用いる。添加剤としてはホウ酸、マンニットを用いる。表1、表2に実施例の組成および測定結果を示す。但し、比抵抗は30℃、火花電圧は85℃において測定した。表1、表2から明らかなように、従来例及び実施例ともに比抵抗は710Ω・cm程度であったが、従来例において火花電圧は430Vであったのに対し実施例1〜9では440〜450Vとなる。すなわち比抵抗はほぼ同等で、火花電圧は実施例1〜9の方が2.0〜5.0%高い値を示した。
【0007】
【表1】

Figure 0003657664
【0008】
【表2】
Figure 0003657664
【0009】
また、表1、表2に示す従来例及び実施例1〜9の電解液を用いた定格400V、10μFの電解コンデンサによる高温負荷試験及び高温無負荷試験を行った。高温負荷試験条件は、温度105℃、印加電圧400V、放置時間2000hとし、高温無負荷試験条件は、温度105℃、放置時間2000hとし、電解コンデンサ試料数は各電解液、各試験10個とした。測定結果を表3及び表4に示す。
【0010】
【表3】
Figure 0003657664
【0011】
【表4】
Figure 0003657664
【0012】
表3、表4より明らかなように、初期において、実施例1〜6は従来例と顕著な差はみられないが、実施例7〜9については、従来例と比較するとtanδ、漏れ電流で若干改善されている。
高温負荷試験2000h後においては、表3より明らかなように従来例と実施例の差はより顕著にみられ、特に実施例7〜9では従来例に対して、静電容量変化率、tanδ、漏れ電流のいずれにおいても大幅に改善されている。
【0013】
表4に示されているように、高温負荷試験2000h後と同様、高温無負荷試験2000h後の測定結果においても従来例に比べ実施例では各特性において改善されている。このことから、メタリン酸、メタリン酸ナトリウム、ヘキサメタリン酸ナトリウムはコンデンサ特性を向上させ、特にヘキサメタリン酸ナトリウムは高温領域でも改善効果が顕著であることがわかる。メタリン酸、メタリン酸ナトリウムおよびヘキサメタリン酸ナトリウムにおいて添加量が0.01%未満では、顕著な効果がみられず、メタリン酸およびメタリン酸ナトリウムは添加量が0.5%以上、ヘキサメタリン酸ナトリウムは添加量が0.1%以上では、溶解に時間を要し、また溶質の析出を招き、さらに火花電圧が低下するので好ましくない。
【0014】
【発明の効果】
上述の通り、本発明は、従来の電解液に比べ、静電容量、tanδ、漏れ電流等の電解コンデンサの諸特性を向上させ、高温下で長時間にわたって安定な電解コンデンサを実現できる電解液の提供が可能である。[0001]
[Industrial application fields]
The present invention relates to an electrolyte for driving a medium-high voltage electrolytic capacitor.
[0002]
[Prior art]
Conventionally, an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution) is orthophosphoric acid or an ammonium salt thereof having an oxide film forming ability, improving water resistance of an aluminum foil, and suppressing film deterioration. The addition of phosphoric acid compounds such as these has been studied.
[0003]
[Problems to be solved by the invention]
Since orthophosphoric acid or its ammonium salt is consumed during the formation of the oxide film, the concentration in the electrolyte decreases with time, and due to deterioration of the oxide film on the aluminum foil in long-term high-temperature load tests and high-temperature no-load tests of electrolytic capacitors. It causes a decrease in capacitance and an increase in leakage current. Therefore, if the amount of orthophosphoric acid or its ammonium salt added is excessively increased, the solubility in the aluminum foil and the oxide film is increased, which causes corrosion. Furthermore, orthophosphoric acid or its ammonium salt has poor thermal stability, and has the disadvantage that the effect of suppressing the deterioration of the above-described oxide film is reduced at high temperatures.
An object of the present invention is to provide an electrolytic solution for driving an electrolytic capacitor that improves the above drawbacks, stabilizes the characteristics of the electrolytic capacitor over a long period of time, and exhibits an effect of suppressing film deterioration at high temperatures.
[0004]
[Means for Solving the Problems]
Metaphosphoric acid or sodium metaphosphate or sodium hexametaphosphate was dissolved in an electrolytic solution for an electrolytic capacitor in which a higher dibasic acid or its ammonium salt and boric acid or its ammonium salt were dissolved in a solvent containing ethylene glycol as a main component. an electrolyte solution, 0.01 to 0 the metaphosphate or sodium metaphosphate for the entire electrolyte. 45 or wt% dissolved, or sodium the hexametaphosphate for the entire electrolytic solution from 0.01 to 0. It has been found that an electrolytic capacitor exhibiting stable characteristics over a long period of time can be provided by using an electrolytic solution in which 09 % by weight is dissolved.
[0005]
[Action]
Metaphosphoric acid changes to orthophosphoric acid in an aqueous solution due to a hydration reaction, but the reaction proceeds slowly in an electrolytic solution for electrolytic capacitors with little moisture, and orthophosphoric acid is gradually supplied into the electrolytic solution. Since the water resistance of the aluminum foil with acid and the ability to form an oxide film can be maintained without lowering, the capacitance of the electrolytic capacitor can be prevented from decreasing and the leakage current can be prevented from increasing.
In addition, sodium hexametaphosphate having a large molecular weight is excellent in thermal stability due to its structure, and therefore, the characteristics of the electrolytic capacitor can be stabilized for a long time even in a high temperature region.
[0006]
【Example】
Hereinafter, specific contents of the embodiment will be described. A polyhydric alcohol such as ethylene glycol is used as the solvent. As the solute, 7-vinyl-9-hexadecene-1-16-dicarboxylic acid or an ammonium salt thereof is used. As the additive, boric acid or mannitol is used. Tables 1 and 2 show the compositions and measurement results of the examples. However, the specific resistance was measured at 30 ° C., and the spark voltage was measured at 85 ° C. As is clear from Tables 1 and 2, the specific resistance was about 710 Ω · cm in both the conventional example and the example. However, in the conventional example, the spark voltage was 430 V, whereas in Examples 1 to 9, the specific voltage was 440 V. 450V. That is, the specific resistance was almost the same, and the spark voltage was 2.0 to 5.0% higher in Examples 1 to 9.
[0007]
[Table 1]
Figure 0003657664
[0008]
[Table 2]
Figure 0003657664
[0009]
In addition, a high temperature load test and a high temperature no load test were performed using an electrolytic capacitor having a rating of 400 V and a 10 μF using the conventional examples shown in Tables 1 and 2 and the electrolytes of Examples 1 to 9. The high-temperature load test conditions were a temperature of 105 ° C., an applied voltage of 400 V, and a standing time of 2000 h. The high-temperature no-load test conditions were a temperature of 105 ° C. and a standing time of 2000 h, and the number of electrolytic capacitor samples was 10 for each electrolyte and each test. . The measurement results are shown in Tables 3 and 4.
[0010]
[Table 3]
Figure 0003657664
[0011]
[Table 4]
Figure 0003657664
[0012]
As is apparent from Tables 3 and 4, in the initial stage, Examples 1 to 6 are not significantly different from the conventional example, but Examples 7 to 9 are tan δ and leakage current as compared with the conventional example. Slightly improved.
After the high temperature load test 2000 h, as clearly shown in Table 3, the difference between the conventional example and the example is more noticeable. In particular, in Examples 7 to 9, the capacitance change rate, tan δ, There is a significant improvement in both leakage currents.
[0013]
As shown in Table 4, as in the case after the high temperature load test 2000 h, the measurement results after the high temperature no load test 2000 h are improved in the respective characteristics in the embodiment as compared with the conventional example. From this, it can be seen that metaphosphoric acid, sodium metaphosphate, and sodium hexametaphosphate improve the capacitor characteristics. In particular, sodium hexametaphosphate has a remarkable improvement effect even in a high temperature region. When the addition amount is less than 0.01% in metaphosphoric acid, sodium metaphosphate, and sodium hexametaphosphate, there is no significant effect. Addition amount of metaphosphoric acid and sodium metaphosphate is 0.5% or more, and sodium hexametaphosphate is added. If the amount is 0.1% or more, it takes a long time to dissolve, causes solute precipitation, and further reduces the spark voltage, which is not preferable.
[0014]
【The invention's effect】
As described above, the present invention improves the various characteristics of the electrolytic capacitor such as capacitance, tan δ, leakage current, etc., compared with the conventional electrolytic solution, and realizes a stable electrolytic capacitor for a long time at high temperature. Can be provided.

Claims (3)

エチレングリコールを主成分とする溶媒に高級二塩基酸またはそのアンモニウム塩及びホウ酸またはそのアンモニウム塩を溶解した電解コンデンサの駆動用電解液に、メタリン酸またはメタリン酸ナトリウム、あるいはヘキサメタリン酸ナトリウムを溶解させたことを特徴とする電解コンデンサの駆動用電解液。  Dissolve metaphosphoric acid or sodium metaphosphate or sodium hexametaphosphate in the electrolytic solution for the electrolytic capacitor in which higher dibasic acid or its ammonium salt and boric acid or its ammonium salt are dissolved in a solvent mainly composed of ethylene glycol. An electrolytic solution for driving an electrolytic capacitor. 上述メタリン酸またはメタリン酸ナトリウムを電解液全体に対して0.01〜0.45重量%溶解することを特徴とする請求項1の電解コンデンサの駆動用電解液。0.01 to 0 the above metaphosphoric acid or sodium metaphosphate for the entire electrolyte. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein 45 % by weight is dissolved. 上記ヘキサメタリン酸ナトリウムを電解液全体に対して0.01〜0.09重量%溶解することを特徴とする請求項1の電解コンデンサの駆動用電解液。0.01 to 0 Sodium above hexametaphosphate for the entire electrolyte. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the electrolytic solution dissolves 09 % by weight.
JP26005195A 1995-10-06 1995-10-06 Electrolytic solution for electrolytic capacitor drive Expired - Fee Related JP3657664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26005195A JP3657664B2 (en) 1995-10-06 1995-10-06 Electrolytic solution for electrolytic capacitor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26005195A JP3657664B2 (en) 1995-10-06 1995-10-06 Electrolytic solution for electrolytic capacitor drive

Publications (2)

Publication Number Publication Date
JPH09102439A JPH09102439A (en) 1997-04-15
JP3657664B2 true JP3657664B2 (en) 2005-06-08

Family

ID=17342630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26005195A Expired - Fee Related JP3657664B2 (en) 1995-10-06 1995-10-06 Electrolytic solution for electrolytic capacitor drive

Country Status (1)

Country Link
JP (1) JP3657664B2 (en)

Also Published As

Publication number Publication date
JPH09102439A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
JP3657664B2 (en) Electrolytic solution for electrolytic capacitor drive
JP3254981B2 (en) Electrolyte for electrolytic capacitors
JPH11340097A (en) Electrolytic solution for driving electrolytic capacitor
JP2921363B2 (en) Electrolyte for electrolytic capacitors
JP2529300B2 (en) Electrolytic solution for driving electrolytic capacitors
JP3254983B2 (en) Electrolyte for electrolytic capacitors
KR0137998B1 (en) Electrolytic Solution for Aluminum Electrolytic Capacitors
JP2532457B2 (en) Electrolytic solution for driving electrolytic capacitors
JP3494464B2 (en) Electrolyte for driving electrolytic capacitors
JP2624710B2 (en) Electrolytic capacitor
JPH0719731B2 (en) Electrolytic solution for electrolytic capacitors
JPH03225908A (en) Electrolyte for electrolytic capacitor
JP2625464B2 (en) Electrolyte for driving electrolytic capacitors
JP2765875B2 (en) Electrolyte for electrolytic capacitors
JPH04290418A (en) Electrolyte for driving electrolytic capacitor and electrolytic capacitor using the electrolyte
KR970008556B1 (en) Electrolyte of aluminium electrolytic condenser
JPS6263416A (en) Electrolyte for driving aluminum electrolytic condenser
JPH01103820A (en) Electrolyte for driving electrolytic capacitor
JPH0376007B2 (en)
JPH04364015A (en) Electrolytic capacitor driving electrolytic solution
JPS63261822A (en) Electrolyte for driving electrolytic capacitor
JPH0410514A (en) Electrolyte for electrolytic capacitor
JPH0485807A (en) Electrolyte for electrolytic capacitor
JPH0775214B2 (en) Aluminum electrolytic capacitor electrolyte
JPS6269607A (en) Electrolyte for driving aluminum electrolytic condenser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees