JPH01152615A - Electrolyte for electrolytic capacitor - Google Patents

Electrolyte for electrolytic capacitor

Info

Publication number
JPH01152615A
JPH01152615A JP62309737A JP30973787A JPH01152615A JP H01152615 A JPH01152615 A JP H01152615A JP 62309737 A JP62309737 A JP 62309737A JP 30973787 A JP30973787 A JP 30973787A JP H01152615 A JPH01152615 A JP H01152615A
Authority
JP
Japan
Prior art keywords
acid
methyl
electrolytic capacitor
electrolyte
unsaturated dicarboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62309737A
Other languages
Japanese (ja)
Inventor
Hideo Shimizu
英夫 清水
Naoto Iwano
直人 岩野
Shigeo Komatsu
茂生 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Elna Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62309737A priority Critical patent/JPH01152615A/en
Publication of JPH01152615A publication Critical patent/JPH01152615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To reduce specific resistance of electrolyte remarkably, to improve tangent of loss angle and high-frequency characteristics of an electrolytic capacitor, and to obtain an electrolytic capacitor with improved reliability at high temperature by using 7-methyl-1, 14-tetradecanedicarboxylic acid and by adding unsaturated dicarboxylic acid. CONSTITUTION:7-methyl-1, 14-tetradecanedioic carbon acid or the salt are main dissolved substances and an unsaturated diocarboxylic acid consisting of maleic acid, fumaric acid, itaconic acid, or citraconic acid is added. It is desirable that the amount of 7-methyl-1 and 14-tetradecanedioic carbon acid ranges 8-30wt.% and the added amount of unsaturated dicarboxylic acid ranges 0.05-3wt.%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電解コンデンサ駆動用電解液に関するもので、
同電解液の比抵抗を著しく低下させることによって電解
コンデンサの損失角の正接および高周波特性を改善し、
高温度で信頼性の高い電解コンデンサを提供するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrolytic solution for driving an electrolytic capacitor,
By significantly lowering the specific resistance of the electrolyte, the loss angle tangent and high frequency characteristics of electrolytic capacitors are improved.
This provides an electrolytic capacitor that is highly reliable at high temperatures.

[従来の技術と問題点] 従来、特に中高圧用のアルミニウム電解コンデンサ駆動
用電解液としては、所謂エチレングリコール/硼酸エス
テル系の電解液が用いられている。この種の電解液は、
加熱によりエチレングリールと硼酸とのエステル化反応
が進み、この際に生成水が生じ、この水が電解コンデン
サ中のコンデンサ素子の材料であるアルミニウム箔と反
応してこれを溶解し、かつ水素ガスを発生してコンデン
サの内圧上昇をもたらすために、この電解液を用いた電
解コンデンサはより高温度の目的に対しては使用できな
かった。また、上述の問題を解決するために、同系でエ
ステル化を促進して生成水を除去した電解液も提案され
ているが、水との反応は抑制されるものの、電解液の粘
度が増大し、比抵抗が著しく高くなり、この電解液を用
いた電解コンデンサでは損失角の正接および高周波での
インピーダンスが著しく増大し、高特性の要求には応え
られないものであった。このような理由から、高温度用
の電解コンデンサにはエチレングリコール/硼酸エステ
ル系の電解液は用いられず、比較的分子量の大きい有機
酸あるいはその塩を溶質とする4rR酸系電解液が使用
および検討されている。
[Prior Art and Problems] Conventionally, so-called ethylene glycol/boric acid ester-based electrolytes have been used as electrolytes for driving aluminum electrolytic capacitors, particularly for medium and high voltages. This type of electrolyte is
Heating progresses the esterification reaction between ethylene glycol and boric acid, and at this time water is produced.This water reacts with the aluminum foil, which is the material of the capacitor element in the electrolytic capacitor, and dissolves it, and also produces hydrogen gas. electrolytic capacitors using this electrolyte could not be used for higher temperature purposes. In addition, in order to solve the above-mentioned problem, an electrolytic solution of the same type that promotes esterification and removes the produced water has been proposed, but although the reaction with water is suppressed, the viscosity of the electrolytic solution increases. , the specific resistance became significantly high, and in electrolytic capacitors using this electrolyte, the loss angle tangent and impedance at high frequencies increased significantly, making it impossible to meet the demands for high characteristics. For these reasons, ethylene glycol/boric acid ester-based electrolytes are not used in high-temperature electrolytic capacitors, but 4rR acid-based electrolytes with relatively large molecular weight organic acids or their salts as solutes are used. It is being considered.

中高圧用の有機酸系電解液の溶質としては1゜6−デカ
ンジカルボン酸(特公昭60−13293号r電解コン
デンサ駆動用電解液」)が公知であるが、この1,6−
デカンジカルボン酸を含む電解液を使用した電解コンデ
ンサは溶質そのものがコンデンサ素rを形成するアルミ
ニウム箔と反応し、錯体形成するために初期静電容量が
低く、また高温負荷試験や・高温無負荷試験において、
静電界にの極端な減少および著しい漏れ電流の増大が見
られ、より性能の高い電解コンデンサの要求には応えら
れないものであった。
1゜6-decanedicarboxylic acid (Japanese Patent Publication No. 13293/1983 ``Electrolytic Solution for Driving Electrolytic Capacitors'') is known as a solute in organic acid-based electrolytes for medium and high pressures.
Electrolytic capacitors using an electrolytic solution containing decanedicarboxylic acid have a low initial capacitance because the solute itself reacts with the aluminum foil that forms the capacitor element and forms a complex, and also has low initial capacitance during high-temperature load tests and high-temperature no-load tests. In,
An extreme decrease in the electrostatic field and a significant increase in leakage current were observed, and the demand for higher performance electrolytic capacitors could not be met.

[発明の改良点と概要] しかるに、本発明は電解液の主溶質に7−メチル−1,
14−テトラデカンジカルボン酸を用いると共に不飽和
ジカルボン酸を添加することによりト述のような欠点を
除去することができ、さらに電解液の比抵抗を下げて、
損失角の正接や等個直列抵抗を小さくすることにより高
性能で信頼性の高い電解コンデンサを提供するものであ
る。
[Improvements and Summary of the Invention] However, the present invention uses 7-methyl-1, 7-methyl-1,
By using 14-tetradecanedicarboxylic acid and adding an unsaturated dicarboxylic acid, the above-mentioned drawbacks can be removed, and the specific resistance of the electrolytic solution can be lowered,
By reducing the tangent of the loss angle and the equal series resistance, an electrolytic capacitor with high performance and high reliability is provided.

7−メチル−1,14−テトラデカンジカルボン酸の構
造式を示すと、次のとおりである。
The structural formula of 7-methyl-1,14-tetradecanedicarboxylic acid is as follows.

次に、7−メチル−1,14−テトラデカンジカルボン
酸およびそれらの塩の混合物をエチレングリコールに溶
解し、かつ不飽和ジカルボン酸を添加した本発明に係る
電解液の実施例を従来例と共に第1表に示す。電解液組
成はwt%、比抵抗(Ω・cm)は液温20℃のもので
ある。また、火花電圧は85℃のものである。
Next, a first example of an electrolytic solution according to the present invention in which a mixture of 7-methyl-1,14-tetradecanedicarboxylic acid and its salts is dissolved in ethylene glycol and an unsaturated dicarboxylic acid is added together with a conventional example will be described. Shown in the table. The electrolytic solution composition is wt%, and the specific resistance (Ω·cm) is at a solution temperature of 20°C. Further, the spark voltage was at 85°C.

次に、第1表に示した電解液のうち、従来例2、実施例
1および実施例2の電解液を使用した電解コンデンサ(
定格400V・10μF)の各20個についての温度1
05℃、定格電圧印加1000時間の高温負荷試験の結
果を第2表に示す。また、電解コンデンサ(定格400
V・220μF)についての高温無負荷試験(105℃
Next, among the electrolytes shown in Table 1, electrolytic capacitors (
Temperature 1 for each 20 pieces with a rating of 400V/10μF)
Table 2 shows the results of a high temperature load test at 05°C and 1000 hours of rated voltage application. In addition, electrolytic capacitors (rated 400
High temperature no-load test (105℃
.

1000時間)の結果を第3表に示す。(初期および試
験後の特性の外植は電解コンデンサ各20個の平均値で
ある。) [発明の効果] 第2表および第3表から分かるように従来例2では、初
期静電容量が定格値に対して約10%はど低く、さらに
試験後においてもその変化率か大きい。また、第3表か
ら分かるように従来例2では漏れ電流が30倍以上にも
なっている。
1000 hours) are shown in Table 3. (The extrusion of the initial and post-test characteristics is the average value of each 20 electrolytic capacitors.) [Effect of the invention] As can be seen from Tables 2 and 3, in Conventional Example 2, the initial capacitance was rated Approximately 10% of the value is quite low, and even after the test, the rate of change is large. Further, as can be seen from Table 3, in Conventional Example 2, the leakage current is 30 times or more.

一方、本発明は7−メチル−1,14−テトラデカンジ
カルボン酸あるいはその塩を溶質に用い、かつ不飽和ジ
カルボン酸を添加することにより、比抵抗を下げること
ができ、損失角の正接な抑えることができる。
On the other hand, in the present invention, by using 7-methyl-1,14-tetradecanedicarboxylic acid or its salt as a solute and adding an unsaturated dicarboxylic acid, the resistivity can be lowered and the loss angle can be suppressed tangently. Can be done.

よって、本発明に係る駆動用電解液を用いることによっ
て、より高性能で信頼性の高いコンデンサを提供するこ
とができる。
Therefore, by using the driving electrolyte according to the present invention, a capacitor with higher performance and higher reliability can be provided.

[発明の実用化の範囲] なお、本発明に係る電解液の成分中、7−メチル−1,
14−デトラデカンジカルボン酸の溶質の犀は8〜30
wt%の範囲が好ましく、8wt%未満になると比抵抗
が大きくなり、逆に30wt%を越えると電解液の火′
花電圧がFがるためにいずれも実用化に供しえない。
[Scope of practical application of the invention] In the components of the electrolytic solution according to the present invention, 7-methyl-1,
The solute of 14-detradecanedicarboxylic acid is 8-30
A range of wt% is preferable; when it is less than 8wt%, the specific resistance becomes large, and conversely, when it exceeds 30wt%, the electrolyte may become flammable.
None of these methods can be put to practical use because the flower voltage increases by F.

また、不飽和ジカルボン酸の添加量は0.05〜3wt
%の範囲が好ましく、0.05wt%未満では添加効果
が少なく、3wt%を超°えると電解液の火花電圧がド
がるためにいずわも実用化に供しえない。
In addition, the amount of unsaturated dicarboxylic acid added is 0.05 to 3wt.
% is preferable; if it is less than 0.05 wt %, the effect of addition is small, and if it exceeds 3 wt %, the spark voltage of the electrolyte will drop, so that it cannot be put to practical use.

Claims (1)

【特許請求の範囲】[Claims] (1)7−メチル−1,14−テトラデカンジカルボン
酸またはその塩を主溶質とし、かつマレイン酸、フマル
酸、イタコン酸またはシトラコン酸からなる不飽和ジカ
ルボン酸を添加したことを特徴とする電解コンデンサ駆
動用電解液。
(1) An electrolytic capacitor characterized in that the main solute is 7-methyl-1,14-tetradecanedicarboxylic acid or a salt thereof, and an unsaturated dicarboxylic acid consisting of maleic acid, fumaric acid, itaconic acid, or citraconic acid is added. Drive electrolyte.
JP62309737A 1987-12-09 1987-12-09 Electrolyte for electrolytic capacitor Pending JPH01152615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309737A JPH01152615A (en) 1987-12-09 1987-12-09 Electrolyte for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309737A JPH01152615A (en) 1987-12-09 1987-12-09 Electrolyte for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH01152615A true JPH01152615A (en) 1989-06-15

Family

ID=17996693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309737A Pending JPH01152615A (en) 1987-12-09 1987-12-09 Electrolyte for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH01152615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176102A (en) * 2010-02-24 2011-09-08 Tomiyama Pure Chemical Industries Ltd Driving electrolyte of aluminum electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176102A (en) * 2010-02-24 2011-09-08 Tomiyama Pure Chemical Industries Ltd Driving electrolyte of aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
JPS61239617A (en) Solid electrolytic capacitor
JPH01152615A (en) Electrolyte for electrolytic capacitor
JPH01152614A (en) Electrolyte for electrolytic capacitor
JPH031819B2 (en)
JPH01137617A (en) Electrolytic capacitor driving electrolyte
JPH01137618A (en) Electrolytic capacitor driving electrolyte
JPH03235318A (en) Electrolyte for driving electrolytic capacitor
JPH01152616A (en) Electrolyte for electrolytic capacitor
JPH01137616A (en) Electrolytic capacitor driving electrolyte
JP3078171B2 (en) Electrolyte for driving electrolytic capacitors
JPH01114020A (en) Electrolyte for driving electrolytic capacitor
JP2532457B2 (en) Electrolytic solution for driving electrolytic capacitors
JPS5832774B2 (en) Electrolyte for driving electrolytic capacitors
JP3749913B2 (en) Electrolytic solution for electrolytic capacitor drive
JP3169625B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JPH0325005B2 (en)
JPS62263625A (en) Electrolyte for driving electrolytic capacitor
JP3376749B2 (en) Electrolyte for driving electrolytic capacitors
JPH01245508A (en) Electrolyte for electrolytic capacitor
JPH03161917A (en) Electrolyte for driving electrolytic capacitor
JPS637613A (en) Electrolyte for electrolytic capacitor
JPH0416007B2 (en)
JP2673438B2 (en) Electrolyte
JPS628004B2 (en)
JPS62234313A (en) Driving electrolyte for electrolytic capacitor