JPH03161917A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor

Info

Publication number
JPH03161917A
JPH03161917A JP30262889A JP30262889A JPH03161917A JP H03161917 A JPH03161917 A JP H03161917A JP 30262889 A JP30262889 A JP 30262889A JP 30262889 A JP30262889 A JP 30262889A JP H03161917 A JPH03161917 A JP H03161917A
Authority
JP
Japan
Prior art keywords
electrolyte
amount
electrolytic capacitor
polyvinyl alcohol
solute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30262889A
Other languages
Japanese (ja)
Inventor
Naoto Iwano
直人 岩野
Shigeo Komatsu
茂生 小松
Hidemi Yamada
山田 秀美
Atsumi Tamaru
田丸 敦巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP30262889A priority Critical patent/JPH03161917A/en
Publication of JPH03161917A publication Critical patent/JPH03161917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To form a high-performance and highly reliable electrolytic capacitor by a method wherein a dibasic acid, which has 12 to 22 of total carbon atoms and has a vinyl group in side chain, or its salt is used for the solute of an electrolyte and polyvinyl alcohol is added. CONSTITUTION:One kind or two kinds or more of dibasic acids, which have 12 to 22 of total carbon atoms and have a vinyl group in side chain, is/are used for the main solute of an electrolyte and at the same time, polyvinyl alcohol is added. Moreover, the specific resistance of the electrolyte is reduced, the tangent of loss angle and an equivalent series resistance are made small and a sparking voltage is made to rise. It is desirable that the amount of the solute of the dibasic acid is set in an extent of 5 to 30wt.%. When the amount is less than 5wt.%, the specific resistance is increased and when the amount exceeds 30wt.%, the sparking voltage of the electrolyte is reduced and such amount can not be put to practical use. It is desirable that an addition amount of the polyvinyl alcohol is set in an extent of 0.1 to 20%. In such a way, a high-performance and highly reliable electrolytic capacitor can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電解コンデンザ駆動用電解液に関するもので、
同電解液の火花電圧を上昇させ、より高電圧の電解コン
デンザに適用でき、高温度下で信頼性の高い電解コンデ
ンサを提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrolytic solution for driving an electrolytic capacitor,
By increasing the spark voltage of the electrolyte, it can be applied to higher voltage electrolytic capacitors and provides an electrolytic capacitor that is highly reliable under high temperatures.

[従来の技術と問題点1 従来、特に高圧用のアルミニウム電解コンデンサ駆動用
電解液としては、所謂エチレングリコル/硼酸エステル
系の電解液が用いられている。
[Prior Art and Problem 1] Conventionally, a so-called ethylene glycol/boric acid ester electrolyte has been used as an electrolyte for driving an aluminum electrolytic capacitor, particularly for high voltage.

この種の電解液は、加熱によりエチレングリコルと硼酸
とのエステル化反応が進み、この際に生成水が生し、こ
の水が電解コンデンザ中のコンデンリ゛素子の材料であ
るアルミニウム箔と反応してこれを溶解し、かつ水素ガ
スを発生してコンデンサの内圧上昇をもたらすために、
この電解液を用いた電解コンデンサはより高渦度の目的
に対しては使用できなかった。また、上述の問題を解決
するために、同系でエステル化を促進して生成水を除去
した電解液も提案されているが、水との反応は抑制され
るものの、電解液の粘度が増大し、比抵抗が著しく高く
なり、この電解液を用いた電解コンデンサでは損失角の
正接および高周波でのインピーダンスが著しく増大し、
高特性の要求には応えられないものであった。このよう
な理由から、高温度用の電解コンデンサにはエヂレング
リコール/硼酸エステル系の電解液は用いられず、比較
的分子量の大きい有機酸あるいはその塩を溶質とする有
機酸系電解液が使用および検討されているが、未だ火花
電圧を高くすることはできず、定格電圧450V以上の
高電圧用の電解コンデンサには適用できないものであっ
た。
When this type of electrolytic solution is heated, the esterification reaction between ethylene glycol and boric acid progresses, and water is produced at this time, and this water reacts with the aluminum foil that is the material of the condenser element in the electrolytic condenser. In order to dissolve this and generate hydrogen gas to increase the internal pressure of the condenser,
Electrolytic capacitors using this electrolyte could not be used for higher vorticity purposes. In addition, in order to solve the above-mentioned problem, an electrolytic solution of the same type that promotes esterification and removes the produced water has been proposed, but although the reaction with water is suppressed, the viscosity of the electrolytic solution increases. , the specific resistance increases significantly, and in electrolytic capacitors using this electrolyte, the loss angle tangent and impedance at high frequencies increase significantly,
It was not possible to meet the demands for high characteristics. For this reason, electrolytic capacitors for high temperatures do not use ethylene glycol/boric acid ester electrolytes, but instead use organic acid electrolytes that contain relatively large molecular weight organic acids or their salts as solutes. However, it has not yet been possible to increase the spark voltage, and it has not been possible to apply this method to high-voltage electrolytic capacitors with a rated voltage of 450 V or higher.

[発明の改良点と概要] しかるに、本発明は電解液の主溶質に総炭素数が12乃
至22で側鎖にビニル基を有する二塩基性酸の中の1種
または2f!以上を用いると共にポノビニルアルコール
を添加することによりL述のような欠点を除去すること
ができ、さらに電解液の比抵抗を下げで、損失角の正接
や等価直列抵抗を小さくすること45よび火花電圧を上
昇させることにより高性能で信頼性の高い電解コンデン
サを提供するものである。
[Improvements and Summary of the Invention] However, the present invention uses one type of dibasic acid having a total carbon number of 12 to 22 and a vinyl group in the side chain or 2f! as the main solute of the electrolyte. By using the above and adding ponovinyl alcohol, the drawbacks mentioned in L can be removed, and the specific resistance of the electrolyte can be lowered to reduce the tangent of the loss angle and the equivalent series resistance45. By increasing the spark voltage, a high-performance and highly reliable electrolytic capacitor is provided.

総炭素数が12乃至22で側鎖にビニル基を有する二塩
基性酸の構造式を示すと、次のとおりである。
The structural formula of a dibasic acid having a total carbon number of 12 to 22 and a vinyl group in the side chain is as follows.

?OOC−(CI■)5・CH(CH2).・COOI
+  −−→ヒ合物lCH=CH2 ? H = C I1■ ? 0 0 C・FCI12170H(cH2) ,■
・C 0 0 H■化合物3C H = C H2 1100CiC11■+2CI・CH2−CH=CHi
CH212cOOH  −化合物4 C H = C H2 これらの化合物(1)〜(4)は単体で使用してもよく
、または混合して使用してもよい。
? OOC-(CI■)5・CH(CH2).・COOI
+ ---→Hymonium compound lCH=CH2 ? H=CI1■? 0 0 C・FCI12170H (cH2) , ■
・C 0 0 H ■ Compound 3C H = C H2 1100CiC11 ■ +2CI・CH2-CH=CHi
CH212cOOH - Compound 4 C H = C H2 These compounds (1) to (4) may be used alone or in combination.

[実施例] 本発明に係る電解液の実施例を従来例と共に第1表に示
す。電解液組成はwt%、電導度( m S / t:
 u+ ) LJ. ?iW IAa 4 D ”(:
のちのである,,また、火花電庄は85゜Cのものであ
る。
[Example] Examples of the electrolytic solution according to the present invention are shown in Table 1 together with conventional examples. Electrolyte composition is wt%, conductivity (mS/t:
u+) LJ. ? iW IAa 4D” (:
Later, the spark electricity is at 85°C.

第 J 表 電解液組成例 次に、第1表に示した電解液のうち,従来例1、実施例
2の電解液を使用した電解コンデンサ(定格450V・
220μFN (1)各20個にツイての温度105℃
、定格電圧印加1 000時間の高温負荷試験の結果を
第2表に示す。また、電解コンデンサ(定格450■・
220μF)の各20個についての高温無負荷試験(1
05℃、1000時間)の結果を第3表に示す。初期お
よび試験後の特性の各個は電解コンデンザ各20個の平
均値である。
Table J Example of Electrolyte Composition Next, among the electrolytes shown in Table 1, electrolytic capacitors (rated at 450 V and using the electrolytes of Conventional Example 1 and Example 2)
220μFN (1) Temperature 105℃ for each 20 pieces
Table 2 shows the results of a high temperature load test in which the rated voltage was applied for 1,000 hours. In addition, electrolytic capacitors (rated 450■
High temperature no-load test (1
The results are shown in Table 3. Each initial and post-test characteristic is an average value of 20 electrolytic capacitors.

第2表 高温負荷特性比較 (450V・220uF) 第3表 高温無負荷特性比較 (450■・220uF) [発明の効果] 第2表および第3表がら分がるように実施例2では、初
期の損失角の正接が従来例1に対して約80%ほど低く
、さらに試験後においてもその変化は小さい。また、第
3表から分かるように従来例1 i:i漏れ電流が7倍
以−ヒにもなっている。
Table 2 Comparison of high temperature load characteristics (450V/220uF) Table 3 Comparison of high temperature no load characteristics (450V/220uF) [Effects of the invention] As can be seen from Tables 2 and 3, in Example 2, the initial The tangent of the loss angle is approximately 80% lower than that of Conventional Example 1, and the change is small even after the test. Further, as can be seen from Table 3, the i:i leakage current of Conventional Example 1 is more than 7 times higher.

力、本発明は総炭素数が12乃至22で側鎖にビニル7
I(を有ずる二塩基−Ill:酸あるいはその塩を溶質
に用い、かつポリビニルアルコールを添加することによ
り、比抵抗を下げることができ、損失角の正接な抑える
ことができ、さらに火花電圧を卜昇させることによって
、高渦無負荷試験後の漏れ電流増加を抑えることができ
る。
In the present invention, the total number of carbon atoms is 12 to 22 and vinyl 7 is added to the side chain.
By using an acid or its salt as a solute and adding polyvinyl alcohol, the specific resistance can be lowered, the loss angle can be tangentially suppressed, and the spark voltage can be further reduced. By raising the temperature, it is possible to suppress an increase in leakage current after a high eddy no-load test.

よって、本発明に係る駆動用電解液を用いることによっ
て、より高・け能で信頼性の高い電解コンデンザを提供
することができる。
Therefore, by using the driving electrolyte according to the present invention, it is possible to provide an electrolytic capacitor with higher performance and reliability.

[発明の実用化の範囲] なお、本発明に係る電解液の成分中、総炭素数がl2乃
至22て側鎖番、ニビニル基を有する二.塩基性酸の容
質の量は5〜30wt%の範囲が好ましく、5wt%未
渦になると比抵抗が大きくなり、逆に3 0 w t%
を越えると電解液の火花電圧が下がるためにいずれも実
用化に供しえない。また、ポリビニルアルコールの添加
量は0.1〜20%の範囲が好ましく、0.1wt%未
満では添加効果が少なく、20wt%を越えると電解液
の電導度が下がるためにいずれも実用化に供しえない。
[Scope of Practical Application of the Invention] Among the components of the electrolytic solution according to the present invention, there are 2. The amount of basic acid is preferably in the range of 5 to 30 wt%, and when it is 5 wt% unvortexed, the specific resistance increases, and conversely when it is 30 wt%
If the value exceeds this value, the spark voltage of the electrolyte decreases, making it impossible to put any of them into practical use. Further, the amount of polyvinyl alcohol added is preferably in the range of 0.1 to 20%; if it is less than 0.1 wt%, the effect of addition is small, and if it exceeds 20 wt%, the conductivity of the electrolyte decreases, so that neither can be put to practical use. No.

さらに、ポリビニルアルコールの平均分了量はlOO〜
1 000が好適である。
Furthermore, the average dispensing amount of polyvinyl alcohol is lOO ~
1000 is preferred.

Claims (1)

【特許請求の範囲】[Claims] (1)総炭素数が12乃至22で側鎖にビニル基を有す
る二塩基性酸またはその塩の中の1種または2種以上を
主溶質とし、ポリビニルアルコールを添加したことを特
徴とする電解コンデンサ駆動用電解液。
(1) Electrolysis characterized in that the main solute is one or more dibasic acids or salts thereof having a total carbon number of 12 to 22 and a vinyl group in the side chain, and polyvinyl alcohol is added. Electrolyte for driving capacitors.
JP30262889A 1989-11-21 1989-11-21 Electrolyte for driving electrolytic capacitor Pending JPH03161917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30262889A JPH03161917A (en) 1989-11-21 1989-11-21 Electrolyte for driving electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30262889A JPH03161917A (en) 1989-11-21 1989-11-21 Electrolyte for driving electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03161917A true JPH03161917A (en) 1991-07-11

Family

ID=17911272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30262889A Pending JPH03161917A (en) 1989-11-21 1989-11-21 Electrolyte for driving electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03161917A (en)

Similar Documents

Publication Publication Date Title
CN101866751A (en) Temperature-resistant electrolyte for aluminum electrolysis and application thereof
CN108257786B (en) A kind of resistance to big ripple electrolyte for capacitor of contracting body
CN107527742A (en) Electrolyte for low-corrosivity electrolytic capacitor and manufacturing method thereof
JPH03161917A (en) Electrolyte for driving electrolytic capacitor
DE69203360T2 (en) Electrolyte for an electrolytic capacitor and electrolytic capacitor using this electrolyte.
JP2532457B2 (en) Electrolytic solution for driving electrolytic capacitors
JP3038001B2 (en) Electrolyte for driving electrolytic capacitors
JP3103369B2 (en) Electrolyte for driving electrolytic capacitors
JPH0412512A (en) Driving electrolyte of aluminum electrolytic capacitor
JP3078171B2 (en) Electrolyte for driving electrolytic capacitors
JPH01137616A (en) Electrolytic capacitor driving electrolyte
JPH03235318A (en) Electrolyte for driving electrolytic capacitor
JP3283927B2 (en) Electrolyte for electrolytic capacitors
JPH01137618A (en) Electrolytic capacitor driving electrolyte
JPH0410514A (en) Electrolyte for electrolytic capacitor
JPH0318008A (en) Electrolyte for driving electrolytic-capacitor
JPH01152614A (en) Electrolyte for electrolytic capacitor
JPH01137617A (en) Electrolytic capacitor driving electrolyte
CN116364437A (en) Working electrolyte for medium-high voltage aluminum electrolytic capacitor and preparation method thereof
JP3376750B2 (en) Electrolyte for driving electrolytic capacitors
CN112885606A (en) Electrolyte additive, high-voltage high-conductivity electrolyte and preparation method thereof, and aluminum electrolytic capacitor and preparation method thereof
JPH031819B2 (en)
JPH0410512A (en) Electrolyte for electrolytic capacitor
KR20020081746A (en) Electrolyte of a aluminum condenser
JPH03228304A (en) Electrolyte for electrolytic capacitor