JPS63224212A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPS63224212A
JPS63224212A JP5749587A JP5749587A JPS63224212A JP S63224212 A JPS63224212 A JP S63224212A JP 5749587 A JP5749587 A JP 5749587A JP 5749587 A JP5749587 A JP 5749587A JP S63224212 A JPS63224212 A JP S63224212A
Authority
JP
Japan
Prior art keywords
quaternary ammonium
electrolytic capacitor
ammonium salt
acid
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5749587A
Other languages
Japanese (ja)
Inventor
英夫 清水
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Elna Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5749587A priority Critical patent/JPS63224212A/en
Publication of JPS63224212A publication Critical patent/JPS63224212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は電解コンデンサ、詳しくは新規な駆動用電解液
を使用した電解コンデンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolytic capacitor, and more particularly to an electrolytic capacitor using a novel driving electrolyte.

[従来の技術] アルミニウムなどの弁作用金属からなる陽極箔および陰
極箔をセパレータとともに巻回してコンデンサ素子とし
た電解コンデンサは、一般にコンデンサ素fに駆動用電
解液を含浸し、アルミニウムなどの金属ケースや合成樹
脂製のケースにコンデンサ素子を収納し、密閉した構造
を有する。
[Prior Art] Electrolytic capacitors are made by winding an anode foil and a cathode foil made of a valve metal such as aluminum together with a separator to form a capacitor element.Generally, the capacitor element f is impregnated with a driving electrolyte, and the capacitor element f is impregnated with a driving electrolyte, and the capacitor element is made of a metal case made of aluminum or the like. The capacitor element is housed in a synthetic resin case and has a sealed structure.

このような電解コンデンサの駆動用電解液としては、従
来エチレングリコールなどの極性有機溶媒を主溶媒とし
、これに飽和有機酸のアンモニウム塩のように、金属か
らなる電極を侵食しない塩を溶解した電解液が一般に使
用されている(特公昭58−13019号公報)。また
、電解液の溶媒としてγ−ブチロラクトンとエチレング
リコ−・〜ルの混合溶媒を使用することも知られている
(特開明54−7564号公報)。
Conventionally, the electrolytic solution for driving such electrolytic capacitors uses a polar organic solvent such as ethylene glycol as the main solvent, and an electrolytic solution in which a salt such as an ammonium salt of a saturated organic acid that does not corrode the metal electrodes is dissolved. A liquid is generally used (Japanese Patent Publication No. 58-13019). It is also known to use a mixed solvent of γ-butyrolactone and ethylene glycol as a solvent for the electrolytic solution (Japanese Unexamined Patent Publication No. 54-7564).

[発明が解決しようとする問題点] しかしながら、特公昭58−13019号に開示された
電解液においては、電気抵抗値の指標である損失角の正
接(tanδ)を下げるために1〜30重量%の永を含
有させることが行われているが、この場合には陰極箔の
侵食や解離したアンモニア(sHffi )の蒸散のた
め高温度におけるコンデンサの特性劣化、特に損失角の
正接(tanδ)の変化が大きいという問題点があった
。また、電専度が高く(電気抵抗が低く)、かつ高温で
安定な電解液として飽和鎖状ジカルボン酸の第四アンモ
ニウム塩を極性有機溶媒に溶解した電解液の使用が特開
昭59−78522号公報に開示されている。しかしな
がら、同公報中の実施例によれば、この電解液の電導度
はせいぜい9.4mS / c mで、現在要求されて
いる水準(12〜25 m S / c m )から見
れば不充分であるという問題点がありたつさらに、混合
溶媒として上述の特開昭54−7564号にみられるよ
うなγ−ブチロラクトンとエチレングリコールを使用し
た場合には、低温においてエチレングリコールの粘度が
増加するためにコンデンサの低温特性の改み効果が小さ
いという問題点があった。
[Problems to be Solved by the Invention] However, in the electrolytic solution disclosed in Japanese Patent Publication No. 58-13019, 1 to 30% by weight is added in order to lower the tangent of loss angle (tan δ), which is an index of electrical resistance. However, in this case, the characteristics of the capacitor deteriorate at high temperatures due to corrosion of the cathode foil and transpiration of dissociated ammonia (sHffi), especially changes in the tangent of the loss angle (tanδ). The problem was that it was large. In addition, as an electrolytic solution that has high electric strength (low electrical resistance) and is stable at high temperatures, the use of an electrolytic solution in which a quaternary ammonium salt of a saturated chain dicarboxylic acid is dissolved in a polar organic solvent has been disclosed in JP-A-59-78522. It is disclosed in the publication No. However, according to the examples in the same publication, the conductivity of this electrolyte is at most 9.4 mS/cm, which is insufficient compared to the currently required level (12 to 25 mS/cm). Furthermore, when γ-butyrolactone and ethylene glycol are used as a mixed solvent as seen in JP-A-54-7564, the viscosity of ethylene glycol increases at low temperatures. There was a problem in that the effect of improving the low-temperature characteristics of the capacitor was small.

本発明はこのような問題点を解決して、電気抵抗が低く
(i′l1t4度が高く)、低温特性が優れ、かつ高温
安定性の優れた駆動用電解液を使用した電解コンデンサ
を提供することを目的とする。
The present invention solves these problems and provides an electrolytic capacitor that uses a driving electrolyte that has low electrical resistance (high i′l1t4 degrees), excellent low-temperature characteristics, and excellent high-temperature stability. The purpose is to

[問題点を解決するための手段] 本発明は、前記問題点を解決するために極性有機溶媒に
γ−レゾルシル酸の第四アンモニウム塩を溶解してなる
駆動用電解液を使用したことを特徴とする電解コンデン
サを提供するものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention is characterized by using a driving electrolyte prepared by dissolving a quaternary ammonium salt of γ-resorcylic acid in a polar organic solvent. The present invention provides an electrolytic capacitor that has the following characteristics.

本発明において用いられるγ−レゾルシル酸の第四アン
モニウム塩としては、一般式R,N“で示される第四ア
ンモニウムのアルキル&(R)の炭素数が1〜10個の
もの、特に1〜4個のものを好適に使用することができ
、例えばγ−レゾルシル酸テトラメチルアンモニウム、
γ−レゾルシル酸テトラエチルアンモニウム、γ−レゾ
ルシル酸テトラプロピルアンモニウム、γ−レゾルシル
浚テトラブチルアンモニウムなどを挙げることができる
As the quaternary ammonium salt of γ-resorsilic acid used in the present invention, quaternary ammonium salts represented by the general formula R,N'' in which alkyl & (R) have 1 to 10 carbon atoms, particularly 1 to 4 For example, tetramethylammonium γ-resorcylate,
Examples include tetraethylammonium γ-resorcylate, tetrapropylammonium γ-resorcylate, and tetrabutylammonium γ-resorcylate.

本発明において、γ−レゾルシル酸の第四アンモニウム
塩を使用するのは、Y−レゾルシル酸が他のアミン塩な
どの場合には、電解液の電導度が低く、製品のtanδ
が大きくなってしまい、好ましくないからである。
In the present invention, the reason for using the quaternary ammonium salt of γ-resorsilic acid is that when Y-resorsilic acid is other amine salt, the conductivity of the electrolyte is low, and the tan δ of the product is
This is because it becomes large, which is not desirable.

本発明で用いられるγ−レゾルシル酸の第四アンモニウ
ム塩の電解液組成中における含有量(濃度)は適宜選ぶ
ことができるが、飽和溶液の状態のときに比抵抗が最も
小さいことを考慮すると1〜50重量%が適当であり、
なかでも良好な高温安定性を得るためには5〜40重看
%が好適である。本発明で用いる極性有機溶媒としては
前記の問題点を解決するために少なくともγ−ブチロラ
クトンと3−アルキル−1,3−オキサゾリジン−2−
オン(以下、A、0.と称す)を含有する。ここで、ア
ルキル基としてはメチル、エチル、プロピル・・・など
があるが、そのうちでも低温特性の改善上、メチルおよ
びエチルが好ましい。
The content (concentration) of the quaternary ammonium salt of γ-resorcylic acid used in the present invention in the electrolyte composition can be selected as appropriate, but considering that the specific resistance is the lowest in the state of a saturated solution, 1 ~50% by weight is suitable;
Among these, in order to obtain good high temperature stability, 5 to 40% by weight is suitable. In order to solve the above problems, the polar organic solvent used in the present invention includes at least γ-butyrolactone and 3-alkyl-1,3-oxazolidine-2-
(hereinafter referred to as A, 0.). Here, examples of the alkyl group include methyl, ethyl, propyl, etc. Among them, methyl and ethyl are preferred from the viewpoint of improving low-temperature properties.

さらに混合する溶媒としては電解コンデンサに通常使用
されている極性有機溶媒であればいずれも使用でき、ア
ミド類、ラクトン類、グリコール類、fL黄化合物類ま
たは炭素塩類が好適に使用できる。混合可能な好ましい
溶媒の具体的な例としては、N、N−ジメチルホルムア
ミド、N−メチルホルムアミド、β−ブチロラクトン、
γ−バレロラクトン、N−メチルピロリドン、エチレン
グリコール、エチレングリコール・モノアルキルエーテ
ル、エチレングリコール・ジアルキルエーテル、ジメチ
ルスルホキシド、炭酸プロピレン、エチレンシアノピド
リンなどを挙げることができ、これら溶媒は爪独で、あ
るいは複数の組合せで適宜混合して使用される。
Further, as the solvent to be mixed, any polar organic solvent commonly used in electrolytic capacitors can be used, and amides, lactones, glycols, fL yellow compounds, or carbon salts are preferably used. Specific examples of preferred miscible solvents include N,N-dimethylformamide, N-methylformamide, β-butyrolactone,
Examples of these solvents include γ-valerolactone, N-methylpyrrolidone, ethylene glycol, ethylene glycol monoalkyl ether, ethylene glycol dialkyl ether, dimethyl sulfoxide, propylene carbonate, and ethylene cyanopidrine. Alternatively, a plurality of combinations may be appropriately mixed and used.

本発明において、γ−レゾルシル酸の第四アンモニウム
塩を含有する駆動用電解液を得るにはこの第四アンモニ
ウム塩を極性有機溶媒に添加してもよいが、溶媒中でY
−レゾルシル酸の第四アンモニウム塩を生成可能な物質
を反応させることによって、この第四アンモニウム塩を
生成させてもよい。
In the present invention, in order to obtain a driving electrolyte containing a quaternary ammonium salt of γ-resorsilic acid, this quaternary ammonium salt may be added to a polar organic solvent.
- The quaternary ammonium salt of resorcilic acid may be produced by reacting a substance capable of producing the quaternary ammonium salt.

本発明では電解液中に水を含有させることは必ずしも必
要ではないが、比抵抗を下げるためには水の含有は効果
的である。ただし、ある限度風−ヒに水の含有量を多く
すると、内部ガスの発生に伴う電解コンデンサのケース
膨れや電極箔の侵食を増大させる要因になるので高温度
で長時間使用する目的のためには、水の含有量はなるべ
く少ない方が好ましい。したがって、′電解コンデンサ
の使用目的に対応して、水の含有量は電解液組成中0.
1〜20重量%の範囲が好ましく、0.5〜15重量%
の範囲がさらに好ましい。
In the present invention, it is not necessary to include water in the electrolytic solution, but it is effective to lower the specific resistance. However, if the water content is increased to a certain limit, the electrolytic capacitor's case will swell due to the generation of internal gas and the electrode foil will be eroded. It is preferable that the water content be as small as possible. Therefore, depending on the purpose of use of the electrolytic capacitor, the water content in the electrolyte composition should be 0.
The range is preferably 1 to 20% by weight, and 0.5 to 15% by weight.
The range of is more preferable.

本発明の電解コンデンサには1種々の態様のコンデンサ
が包含される。典型的な態様としては、紙などの適宜の
セパレータで分離したアルミニウム箔陽極とアルミニウ
ム箔陰極とを使用し、これらを円筒状に巻いたものをコ
ンデンサ素子とし、この素子に駆動用電解液を含浸させ
る。電解液の含α量としてはセパレータに対して、好ま
しくは50〜300j’l1%とされる。電解液が含浸
された素子は、耐食性を有する金属や合成樹脂などのケ
ースに収納し、密封した構造にされる。
The electrolytic capacitor of the present invention includes capacitors of various embodiments. In a typical embodiment, an aluminum foil anode and an aluminum foil cathode are separated by a suitable separator such as paper, and these are wound into a cylindrical shape to form a capacitor element, and this element is impregnated with a driving electrolyte. let The α content of the electrolytic solution is preferably 50 to 300j'l1% relative to the separator. The element impregnated with the electrolyte is housed in a case made of corrosion-resistant metal, synthetic resin, or the like, and has a sealed structure.

[実施例] 以下、本発明を実施例および比較例にもとづいて具体的
に説明する。
[Examples] The present invention will be specifically described below based on Examples and Comparative Examples.

水酸化テトラアルキルアンモニウム(アルキル基の炭素
数1〜3)の10%水溶液とγ−レゾルシル酸とを等モ
ル数になるように混合してγ−レゾルシル酸を溶解させ
た後、エバポレータにより水を除去してγ−レゾルシル
酸の第四アンモニウム塩を生成させ、これらを溶質とし
て所定量を極性有機溶媒に溶解させて実施例1〜8の電
解液とした。電解液のpHは5〜7になるように調整し
た。
After mixing a 10% aqueous solution of tetraalkylammonium hydroxide (alkyl group has 1 to 3 carbon atoms) and γ-resorcylic acid to have an equimolar number and dissolving the γ-resorcylic acid, water is removed using an evaporator. This was removed to produce a quaternary ammonium salt of γ-resorsilic acid, which was used as a solute and a predetermined amount was dissolved in a polar organic solvent to obtain the electrolytes of Examples 1 to 8. The pH of the electrolytic solution was adjusted to 5-7.

これらの電解液を使用してアルミニウムを電極とする電
解コンデンサ(定格10v、470μF)を製作し、高
温負荷試験(定格電圧印加、125℃、1000時間)
を行なって、損失角の正接(tanδ)の変化を測定し
、その結果を第1表に丞した。また、γ−レゾルシル酸
の第四アンモニウム塩以外の′a質を使用した場合を比
較例1〜4とし、実施例と同様にして電解コンデンサを
製作し、実施例と同じ条件で高温負荷試験を行ない、そ
の結果を第1表に示した。
Using these electrolytes, we manufactured an electrolytic capacitor (rated 10V, 470μF) with aluminum electrodes and conducted a high temperature load test (rated voltage applied, 125℃, 1000 hours).
The changes in the tangent of the loss angle (tan δ) were measured, and the results are shown in Table 1. In addition, Comparative Examples 1 to 4 are cases in which a substance other than the quaternary ammonium salt of γ-resorsilic acid is used, and electrolytic capacitors were manufactured in the same manner as in the example, and a high temperature load test was conducted under the same conditions as in the example. The results are shown in Table 1.

第1表中、M、O,およびE、0.は前述のA、0.の
アルキル基がメチルのものおよびエチルのものをそれぞ
れ表わす。
In Table 1, M, O, and E, 0. is the above-mentioned A, 0. represents methyl and ethyl alkyl groups, respectively.

第1表電解液組成例と高温負荷試験 次に、第2表に電解コンデンサの低温特性を示す。電解
コンデンサは上述したものと同一であり、試料個数は各
10個である。測定周波数は120Hzである。表中の
八C/C20℃は20℃に対する容量変化率、Z/Z 
20℃は20℃に対するインピーダンス比をそれぞれ示
す。
Table 1 Example of electrolyte composition and high temperature load test Next, Table 2 shows the low temperature characteristics of the electrolytic capacitor. The electrolytic capacitors were the same as those described above, and the number of samples was 10 each. The measurement frequency is 120Hz. 8C/C20℃ in the table is the capacity change rate at 20℃, Z/Z
20°C indicates the impedance ratio with respect to 20°C.

n=10の平均値 ’J1表から分るように、比較例は高温負荷試験におい
て、旧失角の正接の変化が大きいのに対し゛〔、実施例
ではこの変化を小さいものとすることができる。
Average value of n = 10 As can be seen from the table J1, in the comparative example, the change in the tangent of the prior lost angle was large in the high temperature load test, whereas in the example, this change could be made small. can.

また、第2表から分るように、比較例は低温特性におい
て△C/C20℃およびZ/Z 20℃の変1ヒ率が大
きいのに対して、実施例ではこの変化率の低減を図るこ
とができるものである。
In addition, as can be seen from Table 2, the comparative example has a large change rate of △C/C 20℃ and Z/Z 20℃ in low temperature characteristics, whereas the example aims to reduce this change rate. It is something that can be done.

[発明の効果] 以上にて説明したように本発明によれば、低温特性が優
れ、かつ高温条件下での損失角の正接(tanδ)の変
化が小さい高温安定性の優れた電解コンデンサを提供す
ることかできる。
[Effects of the Invention] As explained above, the present invention provides an electrolytic capacitor with excellent low-temperature characteristics and excellent high-temperature stability with small change in tangent of loss angle (tan δ) under high-temperature conditions. I can do something.

Claims (4)

【特許請求の範囲】[Claims] (1)極性有機溶媒にγ−レゾルシル酸の第四アンモニ
ウム塩を溶解してなる駆動用電解液を使用したことを特
徴とする電解コンデンサ。
(1) An electrolytic capacitor characterized by using a driving electrolytic solution prepared by dissolving a quaternary ammonium salt of γ-resorsilic acid in a polar organic solvent.
(2)γ−ブチロラクトンと3−アルキル−1、3−オ
キサゾリジン−2−オンとからなる極性有機溶媒にγ−
レゾルシル酸の第四アンモニウム塩を溶解してなる駆動
用電解液を使用したことを特徴とする特許請求の範囲第
1項記載の電解コンデンサ。
(2) In a polar organic solvent consisting of γ-butyrolactone and 3-alkyl-1,3-oxazolidin-2-one, γ-
2. The electrolytic capacitor according to claim 1, characterized in that a driving electrolyte prepared by dissolving a quaternary ammonium salt of resorlic acid is used.
(3)駆動用電解液中のγ−レゾルシル酸の第四アンモ
ニウム塩の含有量が1〜50重量%であることを特徴と
した特許請求の範囲第1項記載の電解コンデンサ。
(3) The electrolytic capacitor according to claim 1, wherein the content of the quaternary ammonium salt of γ-resorsilic acid in the driving electrolyte is 1 to 50% by weight.
(4)一般式R_4N^+で表される第四アンモニウム
のアルキル基(R)の炭素数が1〜10個であることを
特徴とした特許請求の範囲第1項または第2項記載の電
解コンデンサ。
(4) The electrolysis according to claim 1 or 2, wherein the alkyl group (R) of the quaternary ammonium represented by the general formula R_4N^+ has 1 to 10 carbon atoms. capacitor.
JP5749587A 1987-03-12 1987-03-12 Electrolytic capacitor Pending JPS63224212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5749587A JPS63224212A (en) 1987-03-12 1987-03-12 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5749587A JPS63224212A (en) 1987-03-12 1987-03-12 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63224212A true JPS63224212A (en) 1988-09-19

Family

ID=13057305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5749587A Pending JPS63224212A (en) 1987-03-12 1987-03-12 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63224212A (en)

Similar Documents

Publication Publication Date Title
EP0263182A1 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor prepared by using it
GB2337996A (en) Method and electrolyte for anodizing valve metals
JPS63224212A (en) Electrolytic capacitor
JPS63232410A (en) Electrolytic capacitor
JPS63221608A (en) Electrolytic capacitor
JPS63228709A (en) Electrolytic capacitor
JPS63228708A (en) Electrolytic capacitor
JPS63219119A (en) Electrolytic capacitor
JPS63221609A (en) Electrolytic capacitor
JPS63219118A (en) Electrolytic capacitor
JPS63232409A (en) Electrolytic capacitor
JPS62264615A (en) Electrolytic capacitor
JPS63237406A (en) Electrolytic capacitor
JPS63239913A (en) Electrolytic capacitor
JPS62219508A (en) Electrolyte for electrolytic capacitor
JPS6369211A (en) Electrolytic capacitor
JPS6369213A (en) Electrolytic capacitor
JPH02198126A (en) Electrolytic capacitor
JPH0254511A (en) Electrolyte solution for electrolytic capacitor
JPS6369212A (en) Electrolytic capacitor
JP3487911B2 (en) Electrolyte for driving electrolytic capacitors
JP2774525B2 (en) Electrolyte for electrolytic capacitors
JPS6369215A (en) New electrolytic capacitor
JPH0351285B2 (en)
JPS63248113A (en) Electrolytic capacitor