JPH04349615A - Formation of polycrystalline silicon thin film - Google Patents

Formation of polycrystalline silicon thin film

Info

Publication number
JPH04349615A
JPH04349615A JP12331391A JP12331391A JPH04349615A JP H04349615 A JPH04349615 A JP H04349615A JP 12331391 A JP12331391 A JP 12331391A JP 12331391 A JP12331391 A JP 12331391A JP H04349615 A JPH04349615 A JP H04349615A
Authority
JP
Japan
Prior art keywords
thin film
film
polycrystalline silicon
crystal
silicon thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12331391A
Other languages
Japanese (ja)
Inventor
Tatsuro Nagahara
達郎 長原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP12331391A priority Critical patent/JPH04349615A/en
Publication of JPH04349615A publication Critical patent/JPH04349615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form on a substrate in a short time a polycrystalline silicon thin film, which has greater crystal grains and is excellent in crystal continuity, without exposing to high temperature conditions. CONSTITUTION:There is formed on a glass substrate 1 an amorphous silicon film involving fluorine atom and hydrogen atom mixed therein using mixture gas of a silane gas (SiH4) and silicon fluoride gas (SiF4). Then, the glass substrate 1 is inserted into a heating furnace where the glass substrate 1 is set to 580 deg.C and is left behind as it is for one hour to render the amorphous silicon film to solid phase growth for yielding of a porous silicon thin film 2. Thereupon, the crystal growth of silicon is promoted owing to the action of the fluoride atom and the hydrogen atom in the amorphous silicon film, so that a polycrystalline silicon thin film 3 can be formed which becomes a thin film under heating conditions in a short time (one hour) and has greater crystal grain and further which is excellent in crystal continuity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、薄膜トランジスタや太
陽電池等に利用可能な多結晶シリコン薄膜の形成方法に
係り、特に、薄膜でかつ結晶粒径が大きくしかも結晶の
連続性に優れた多結晶シリコン薄膜を高温条件に晒すこ
となく短時間で求められる多結晶シリコン薄膜の形成方
法の改良に関するものである。
[Industrial Application Field] The present invention relates to a method for forming polycrystalline silicon thin films that can be used for thin film transistors, solar cells, etc. The present invention relates to an improvement in a method for forming a polycrystalline silicon thin film in a short time without exposing the silicon thin film to high-temperature conditions.

【0002】0002

【従来の技術】多結晶シリコン薄膜は数百オングストロ
ーム〜数μmの結晶シリコンが多数集合して形成された
結晶シリコンの薄膜で、アモルファスシリコンと較べ電
子の移動度が1〜2桁程大きい優れた特性を有している
上、単結晶シリコンでは困難なガラス等の非晶質基板上
へ成膜可能な利点を有している。
[Prior Art] A polycrystalline silicon thin film is a crystalline silicon thin film formed by aggregating a large number of crystalline silicon particles of several hundred angstroms to several micrometers in size, and has an excellent electron mobility that is one to two orders of magnitude higher than that of amorphous silicon. In addition to these characteristics, it has the advantage that it can be formed into a film on an amorphous substrate such as glass, which is difficult to do with single-crystal silicon.

【0003】そして、この種の薄膜を形成する方法とし
て、従来、ガラス等の基板上に多結晶シリコンを直接成
膜して多結晶シリコン薄膜を求める熱CVDやプラズマ
CVD等の気相成長法、上記基板上にアモルファスシリ
コンを一旦成膜しこれを加熱炉内で長時間加熱し結晶成
長させて多結晶シリコン薄膜を求める固相成長法等が利
用されている。
Conventionally, methods for forming this type of thin film include vapor phase growth methods such as thermal CVD and plasma CVD, in which polycrystalline silicon is directly deposited on a substrate such as glass to obtain a polycrystalline silicon thin film; A solid phase growth method or the like is used in which amorphous silicon is once formed on the substrate and then heated in a heating furnace for a long time to grow crystals to obtain a polycrystalline silicon thin film.

【0004】しかし、上記気相成長法により多結晶シリ
コン薄膜を求めた場合、この成膜法では図3に示すよう
にシリコンの結晶成長が基板aとの界面部位から開始す
るため成膜された多結晶シリコン薄膜bの上記基板aと
の界面部位に結晶成長の不十分な未成長領域cが形成さ
れ易く、結晶の連続性がなくなって電子移動度等の電気
的特性が劣化する欠点があった。
However, when a polycrystalline silicon thin film is obtained by the above-mentioned vapor phase growth method, as shown in FIG. There is a drawback that an ungrown region c with insufficient crystal growth is likely to be formed at the interface between the polycrystalline silicon thin film b and the substrate a, and the continuity of the crystal is lost, resulting in deterioration of electrical properties such as electron mobility. Ta.

【0005】そして、上記基板上に形成する多結晶シリ
コン薄膜の膜厚を薄く設定しようとすると膜中に含まれ
る未成長領域の割合が相対的に多くなるため、この気相
成長法では薄膜でかつ結晶粒径が大きくしかも結晶の連
続性に優れた多結晶シリコン薄膜を求めることが困難な
欠点があった。
[0005] When attempting to reduce the thickness of the polycrystalline silicon thin film formed on the substrate, the proportion of ungrown regions included in the film becomes relatively large. Another disadvantage is that it is difficult to obtain a polycrystalline silicon thin film with large crystal grain size and excellent crystal continuity.

【0006】このため、上述したような欠点のない固相
成長法が主に利用されている。
[0006] For this reason, the solid phase growth method, which does not have the above-mentioned drawbacks, is mainly used.

【0007】[0007]

【発明が解決しようとする課題】ところで、この固相成
長法にて多結晶シリコン薄膜を形成する場合、ガラス等
の基板a上にプラズマCVD等の着膜手段によりアモル
ファスシリコン膜を一旦成膜し、かつ、これを加熱して
アモルファスシリコン膜内にシリコンの結晶核を発生さ
せると共に、このシリコンの結晶核を固相成長させて図
4に示すような多結晶シリコン薄膜bを求める方法であ
った。
[Problems to be Solved by the Invention] When forming a polycrystalline silicon thin film using this solid phase growth method, an amorphous silicon film is first formed on a substrate a such as glass by a film deposition method such as plasma CVD. , and this was heated to generate silicon crystal nuclei within the amorphous silicon film, and the silicon crystal nuclei were grown in a solid phase to obtain a polycrystalline silicon thin film b as shown in FIG. .

【0008】そして、上記シリコン結晶核の発生速度は
約580℃以下の温度条件では結晶核の固相成長速度に
較べて極端に遅く(約2桁程度遅い)、この温度条件下
で多結晶シリコン薄膜を求めようとするとその膜厚にも
よるが10時間以上の結晶化アニール時間を要する問題
点があった。
The generation rate of silicon crystal nuclei is extremely slow (approximately two orders of magnitude slower) than the solid phase growth rate of crystal nuclei under temperature conditions below about 580°C. When trying to obtain a thin film, there was a problem in that it required crystallization annealing time of 10 hours or more, depending on the film thickness.

【0009】一方、結晶化アニール時間の短縮を図る目
的で結晶化アニール温度を600℃以上の高温に設定す
ると、結晶核の発生速度が速すぎるため図5(A)に示
すように結晶核dの核密度が低温設定の場合(図5B参
照)に較べて高くなり得られた多結晶シリコンの結晶粒
径が小さくなってしまう問題点があり、かつ、適用でき
る基板が高価な耐熱基板に限定されてしまう問題点があ
った。
On the other hand, if the crystallization annealing temperature is set to a high temperature of 600° C. or higher for the purpose of shortening the crystallization annealing time, the rate of generation of crystal nuclei is too fast, and as shown in FIG. There is a problem that the nucleus density of the polycrystalline silicon is higher than that when the temperature is set at a low temperature (see Fig. 5B), and the crystal grain size of the obtained polycrystalline silicon becomes smaller, and the applicable substrate is limited to expensive heat-resistant substrates. There was a problem with this.

【0010】尚、アモルファスシリコン膜中にボロン(
B)、リン(P)、ひ素(As)等特定の不純物を混入
させることによりシリコンの結晶成長速度を速める方法
も開発されている(産業図書発行『SOI構造形成技術
』参照)が、この方法で求められた多結晶シリコン膜中
には電気的に活性なボロン(B)等の不純物が含まれて
いるため、例えば、薄膜トランジスタのチャネル用には
適用困難な欠点があり応用範囲の狭い方法に過ぎなかっ
た。
[0010] Note that boron (
A method has also been developed to accelerate the crystal growth rate of silicon by incorporating specific impurities such as B), phosphorus (P), and arsenic (As) (see "SOI Structure Formation Technology" published by Sangyo Tosho), but this method Since the polycrystalline silicon film obtained in 1. contains impurities such as electrically active boron (B), it has the drawback that it is difficult to apply it to the channel of a thin film transistor, for example, and the method has a narrow range of application. It wasn't too much.

【0011】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、薄膜でかつ結晶粒
径が大きくしかも結晶の連続性に優れた多結晶シリコン
薄膜を高温条件に晒すことなく短時間で求められる多結
晶シリコン薄膜の形成方法を提供することにある。
The present invention has been made in view of these problems, and its object is to develop a polycrystalline silicon thin film, which is thin, has a large crystal grain size, and has excellent crystal continuity, under high temperature conditions. It is an object of the present invention to provide a method for forming a polycrystalline silicon thin film in a short time without exposing it to heat.

【0012】0012

【課題を解決するための手段】すなわち本発明は、基板
上へ若しくはこの基板に設けられた絶縁膜上へ多結晶シ
リコンの薄膜を形成する方法を前提とし、上記基板若し
くは絶縁膜上へフッ素原子と水素原子が混入されたアモ
ルファスシリコン膜を形成し、かつ、これを加熱して多
結晶シリコン膜にすることを特徴とするものである。
[Means for Solving the Problems] That is, the present invention is based on a method of forming a thin film of polycrystalline silicon on a substrate or on an insulating film provided on this substrate, and fluorine atoms are formed on the substrate or on the insulating film. The method is characterized by forming an amorphous silicon film into which hydrogen atoms are mixed, and heating the film to form a polycrystalline silicon film.

【0013】このような技術的手段において、ガラス、
セラミックス等の基板上若しくはこの基板に形成された
SiOX 、SiNX 等の絶縁膜上へフッ素原子と水
素原子が混入されたアモルファスシリコン膜を形成する
手段としては、SiH4 、Si2 H6 、Si3 
H8 等の水素化珪素とSiHm F4−m (但し、
mは1〜3)で示されるフッ化シラン及び/又はSiF
4 、Si2 F6 等のフッ化珪素との混合ガスを用
いた熱CVDやプラズマCVD法等によりフッ素原子が
混入されたアモルファスシリコン膜を直接成膜する方法
、又は、SiH4 、Si2 H6、Si3 H8 等
の水素化珪素を用いた熱CVDやプラズマCVD法等に
て一旦アモルファスシリコン膜を形成しその後この膜中
にイオン注入法にてフッ素原子を導入する方法等が適用
できる。
[0013] In such technical means, glass,
Examples of means for forming an amorphous silicon film in which fluorine atoms and hydrogen atoms are mixed on a substrate such as ceramics or an insulating film such as SiOX or SiNX formed on this substrate include SiH4, Si2 H6, Si3.
Silicon hydride such as H8 and SiHm F4-m (however,
m is fluorinated silane and/or SiF represented by 1 to 3)
4. Directly forming an amorphous silicon film mixed with fluorine atoms by thermal CVD or plasma CVD using a mixed gas with silicon fluoride such as Si2 F6, or SiH4, Si2 H6, Si3 H8, etc. A method can be applied in which an amorphous silicon film is once formed by thermal CVD or plasma CVD using silicon hydride, and then fluorine atoms are introduced into this film by ion implantation.

【0014】一例として、SiH4 とSiF4 の混
合ガスを用いたプラズマCVD法による成膜法について
その条件を説明すると、基板温度については150〜4
00℃、高周波電力については5〜20Wに設定する。 尚、放電は高周波放電、直流放電又はマイクロ波放電の
いずれであってもよい。
As an example, the conditions for film formation by plasma CVD using a mixed gas of SiH4 and SiF4 are as follows: The substrate temperature is 150 to 4
00° C., and the high frequency power is set to 5 to 20 W. Note that the discharge may be a high frequency discharge, a direct current discharge, or a microwave discharge.

【0015】また、アモルファスシリコン膜中における
フッ素原子と水素原子の混入割合については任意であり
、例えば、フッ素原子については1018〜1021個
/cm3 程度、水素原子については1018〜2×1
022個/cm3 程度に設定する。
[0015] Furthermore, the mixing ratio of fluorine atoms and hydrogen atoms in the amorphous silicon film is arbitrary; for example, for fluorine atoms, it is about 1018 to 1021 atoms/cm3, and for hydrogen atoms, it is about 1018 to 2×1 atoms/cm3.
Set to about 0.022 pieces/cm3.

【0016】[0016]

【作用】このような技術的手段によれば、成膜されたア
モルファスシリコン膜中にフッ素原子と水素原子が含ま
れこれ等フッ素原子と水素原子の作用によりシリコンの
結晶成長が助長されるため、低温、短時間の加熱条件で
多結晶シリコン薄膜を形成することが可能となる。
[Operation] According to such technical means, fluorine atoms and hydrogen atoms are contained in the amorphous silicon film formed, and the crystal growth of silicon is promoted by the action of these fluorine atoms and hydrogen atoms. It becomes possible to form a polycrystalline silicon thin film under low temperature and short heating conditions.

【0017】尚、上記アモルファスシリコン膜中のフッ
素原子と水素原子がシリコンの結晶成長を助長する作用
について本発明者は以下のように推察している。
The inventor of the present invention conjectures that the fluorine atoms and hydrogen atoms in the amorphous silicon film promote silicon crystal growth as follows.

【0018】すなわち、アモルファスシリコン膜中のフ
ッ素原子と水素原子とが結晶化アニール中に結合してフ
ッ化水素(HF)となりこのフッ化水素の分子がアモル
ファスシリコン膜から脱離する。このとき生じたシリコ
ンのダングリングボンドはポテンシャルエネルギを下げ
るため結晶格子を組むようダングリングボンド同士の再
結合が起こり、上記フッ化水素の分子の脱離とダングリ
ングボンドの再結合の繰返しにより結晶核の発生と固相
成長が促進されるためであると思われる。
That is, fluorine atoms and hydrogen atoms in the amorphous silicon film combine to form hydrogen fluoride (HF) during crystallization annealing, and molecules of this hydrogen fluoride are released from the amorphous silicon film. The silicon dangling bonds generated at this time recombine to form a crystal lattice to lower the potential energy, and the repetition of the detachment of the hydrogen fluoride molecules and the recombination of the dangling bonds results in crystallization. This seems to be due to the promotion of nucleus generation and solid phase growth.

【0019】[0019]

【実施例】以下、本発明の実施例について図面を参照し
て詳細に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0020】まず、図2に示すようなプラズマCVD装
置を用いてガラス基板1上に多量のフッ素原子と水素原
子が混入された厚さ1000オングストロームのアモル
ファスシリコン膜を形成した。すなわち、ポンプ17で
排気した真空チャンバ11内へシランガス(SiH4 
)とフッ化珪素ガス(SiF4 )16を導入し、かつ
、高周波電源15により電極12、13間でプラズマ放
電を生じさせてシランガスとフッ化珪素ガス16を分解
させると共に、これ等混合ガスを電極13内のヒータに
て200〜300℃程度に加熱されたガラス基板1上へ
成膜させて上述したような厚さ1000オングストロー
ムのアモルファスシリコン膜を形成した。
First, an amorphous silicon film having a thickness of 1000 angstroms and containing a large amount of fluorine atoms and hydrogen atoms was formed on a glass substrate 1 using a plasma CVD apparatus as shown in FIG. That is, silane gas (SiH4
) and silicon fluoride gas (SiF4) 16 are introduced, and plasma discharge is generated between the electrodes 12 and 13 by the high frequency power source 15 to decompose the silane gas and the silicon fluoride gas 16, and these mixed gases are transferred to the electrodes. The amorphous silicon film having a thickness of 1000 angstroms as described above was formed by forming a film on the glass substrate 1 which was heated to about 200 to 300° C. using a heater in the device 13.

【0021】尚、成膜された上記アモルファスシリコン
膜中のフッ素原子の濃度は1019個/cm3 であり
、水素原子の濃度は2.5×1021個/cm3 であ
った。
The concentration of fluorine atoms in the amorphous silicon film thus formed was 1019 atoms/cm3, and the concentration of hydrogen atoms was 2.5×1021 atoms/cm3.

【0022】次に、上記アモルファスシリコン膜が形成
されたガラス基板1を580℃に設定された加熱炉内に
投入し、かつ、1時間放置してアモルファスシリコン膜
を固相成長させ図1に示すような多結晶シリコン薄膜2
を求めた。
Next, the glass substrate 1 on which the amorphous silicon film was formed was placed in a heating furnace set at 580° C. and left for one hour to grow an amorphous silicon film in a solid phase as shown in FIG. Polycrystalline silicon thin film 2
I asked for

【0023】このとき、アモルファスシリコン膜中のフ
ッ素原子と水素原子の作用によりシリコンの結晶成長が
助長されるため、上述したような短時間(1時間)の条
件で薄膜かつ結晶粒径が大きくしかも結晶の連続性に優
れた多結晶シリコン薄膜3の形成が可能となった。
At this time, silicon crystal growth is promoted by the action of fluorine atoms and hydrogen atoms in the amorphous silicon film, so that a thin film with a large crystal grain size can be formed under the above-mentioned short time (1 hour) conditions. It became possible to form a polycrystalline silicon thin film 3 with excellent crystal continuity.

【0024】尚、比較例として上記シランガス(SiH
4 )のみを用いて成膜したアモルファスシリコン膜(
膜中にフッ素原子を含まないもの)を同一温度条件で固
相成長させたところその結晶化アニール時間は15時間
を要するものであった。
As a comparative example, the above silane gas (SiH
4) Amorphous silicon film formed using only
When a film containing no fluorine atoms was grown in a solid phase under the same temperature conditions, the crystallization annealing time required 15 hours.

【0025】また、上記フッ素原子と水素原子が混入さ
れたアモルファスシリコン膜について加熱炉の温度を5
40℃に設定して同様の固相成長処理を行ったところ必
要とする結晶化アニール時間は5時間であった。
[0025] Also, for the amorphous silicon film mixed with fluorine atoms and hydrogen atoms, the temperature of the heating furnace was set to 5.
When a similar solid-phase growth process was performed at a temperature of 40° C., the required crystallization annealing time was 5 hours.

【0026】これに対し、比較例としてフッ素原子を含
まないアモルファスシリコン膜を同一温度条件(540
℃)で固相成長させたところその結晶化アニール時間は
50時間を必要とした。
On the other hand, as a comparative example, an amorphous silicon film containing no fluorine atoms was prepared under the same temperature conditions (540
℃), the crystallization annealing time required 50 hours.

【0027】[0027]

【発明の効果】本発明によれば、アモルファスシリコン
膜中のフッ素原子と水素原子の作用によりシリコンの結
晶成長が助長されるため、低温、短時間の加熱条件で多
結晶シリコン薄膜を形成できる効果を有している。
Effects of the Invention According to the present invention, crystal growth of silicon is promoted by the action of fluorine atoms and hydrogen atoms in the amorphous silicon film, so that a polycrystalline silicon thin film can be formed under low temperature and short heating conditions. have.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例に係る多結晶シリコン薄膜の断面図。FIG. 1 is a cross-sectional view of a polycrystalline silicon thin film according to an example.

【図2】実施例において適用したプラズマCVD装置の
構成説明図。
FIG. 2 is an explanatory diagram of a configuration of a plasma CVD apparatus applied in an example.

【図3】従来の気相成長法により形成された多結晶シリ
コン薄膜の断面図。
FIG. 3 is a cross-sectional view of a polycrystalline silicon thin film formed by a conventional vapor phase growth method.

【図4】従来の固相成長法により形成された多結晶シリ
コン薄膜の断面図。
FIG. 4 is a cross-sectional view of a polycrystalline silicon thin film formed by a conventional solid phase growth method.

【図5】(A)と(B)は従来の固相成長法の原理説明
図。
FIGS. 5A and 5B are diagrams explaining the principle of conventional solid phase growth.

【符号の説明】[Explanation of symbols]

1    ガラス基板 2    多結晶シリコン薄膜 1 Glass substrate 2 Polycrystalline silicon thin film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  基板上へ若しくはこの基板に設けられ
た絶縁膜上へ多結晶シリコンの薄膜を形成する方法にお
いて、上記基板若しくは絶縁膜上へフッ素原子と水素原
子が混入されたアモルファスシリコン膜を形成し、かつ
、これを加熱して多結晶シリコン膜にすることを特徴と
する多結晶シリコン薄膜の形成方法。
1. A method for forming a thin film of polycrystalline silicon on a substrate or on an insulating film provided on the substrate, wherein an amorphous silicon film mixed with fluorine atoms and hydrogen atoms is formed on the substrate or the insulating film. 1. A method for forming a polycrystalline silicon thin film, the method comprising: forming a polycrystalline silicon thin film, and heating the polycrystalline silicon film to form a polycrystalline silicon film.
JP12331391A 1991-05-28 1991-05-28 Formation of polycrystalline silicon thin film Pending JPH04349615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12331391A JPH04349615A (en) 1991-05-28 1991-05-28 Formation of polycrystalline silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12331391A JPH04349615A (en) 1991-05-28 1991-05-28 Formation of polycrystalline silicon thin film

Publications (1)

Publication Number Publication Date
JPH04349615A true JPH04349615A (en) 1992-12-04

Family

ID=14857463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12331391A Pending JPH04349615A (en) 1991-05-28 1991-05-28 Formation of polycrystalline silicon thin film

Country Status (1)

Country Link
JP (1) JPH04349615A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633604A1 (en) * 1993-07-06 1995-01-11 Corning Incorporated Method of crystallizing amorphous silicon and device obtained by using this method
US5677235A (en) * 1993-09-16 1997-10-14 Tokyo Electron Limited Method for forming silicon film
US5753541A (en) * 1995-04-27 1998-05-19 Nec Corporation Method of fabricating polycrystalline silicon-germanium thin film transistor
JP2009117405A (en) * 2007-11-01 2009-05-28 Semiconductor Energy Lab Co Ltd Semiconductor layer and method of manufacturing semiconductor apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633604A1 (en) * 1993-07-06 1995-01-11 Corning Incorporated Method of crystallizing amorphous silicon and device obtained by using this method
US5677235A (en) * 1993-09-16 1997-10-14 Tokyo Electron Limited Method for forming silicon film
US5753541A (en) * 1995-04-27 1998-05-19 Nec Corporation Method of fabricating polycrystalline silicon-germanium thin film transistor
JP2009117405A (en) * 2007-11-01 2009-05-28 Semiconductor Energy Lab Co Ltd Semiconductor layer and method of manufacturing semiconductor apparatus

Similar Documents

Publication Publication Date Title
JP2965094B2 (en) Deposition film formation method
EP0417942B1 (en) Manufacture of polycrystalline silicon thin films and of transistors therefrom
JP2005159312A (en) Base material of polycrystalline silicon substrate for solar battery, and the polycrystalline silicon substrate for solar battery
JPH04174517A (en) Manufacture of diamond semiconductor
JPH04349615A (en) Formation of polycrystalline silicon thin film
JPH05144741A (en) Formation of amorphous silicon film
JPH07106611A (en) Fabrication of bsf solar cell
JP3116403B2 (en) Method for manufacturing thin film transistor
JPH07221026A (en) Method for forming quality semiconductor thin film
JPH08250421A (en) Manufacture of semiconductor substrate and semiconductor substrate
JPH04298023A (en) Manufacture of single crystal silicon thin film
JP2675174B2 (en) Solar cell manufacturing method
JP3295133B2 (en) Manufacturing method of amorphous semiconductor
JPH02260521A (en) Article having polycrystalline si semiconductor thin film and manufacture thereof
JP2000058460A (en) Silicon thin-film manufacturing method
JPH01128515A (en) Formation of polycrystalline silicon film
JPH0685264A (en) Polycrystalline silicon thin film and transistor employing the thin film
JPS63157872A (en) Production of thin semiconductor film
JPH0465145B2 (en)
JP2771667B2 (en) Method for manufacturing semiconductor device
JPH03146673A (en) Method and device for depositing thin film
JPH04298022A (en) Manufacture of single crystal silicon thin film
JPS63222096A (en) Production of single crystal thin film
Johnson et al. Deposition of a-Si: H Films with a Remote Hydrogen Plasma
JPH1126385A (en) Manufacture of polycrystalline silicon thin film