JPH0465145B2 - - Google Patents

Info

Publication number
JPH0465145B2
JPH0465145B2 JP6933686A JP6933686A JPH0465145B2 JP H0465145 B2 JPH0465145 B2 JP H0465145B2 JP 6933686 A JP6933686 A JP 6933686A JP 6933686 A JP6933686 A JP 6933686A JP H0465145 B2 JPH0465145 B2 JP H0465145B2
Authority
JP
Japan
Prior art keywords
silicon carbide
gas
film
carbide film
microcrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6933686A
Other languages
Japanese (ja)
Other versions
JPS62224674A (en
Inventor
Yoshihisa Fujii
Akira Suzuki
Akitsugu Hatano
Masaru Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6933686A priority Critical patent/JPS62224674A/en
Publication of JPS62224674A publication Critical patent/JPS62224674A/en
Publication of JPH0465145B2 publication Critical patent/JPH0465145B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は電子材料あるいは基板材料として有用
な結晶構造と非晶質構造の混在する炭化珪素膜
(以下微結晶炭化珪素と称す)を得るための薄膜
作製技術に関するものである。
[Detailed Description of the Invention] <Technical Field> The present invention is directed to the production of a thin film for obtaining a silicon carbide film having a mixture of crystalline and amorphous structures (hereinafter referred to as microcrystalline silicon carbide) useful as an electronic material or substrate material. It's about technology.

<従来技術> 水素化非晶質珪素膜(以下a−Si:Hと記す)
の電気的性質を改善する即ち不純物添加によるド
ーピングの効果を高めるもしくはキャリアの移動
度を大きくするために結晶構造と非晶質構造の混
在する珪素膜(微結晶珪素膜)を利用することが
提唱され、すでに太陽電池あるいは薄膜トランジ
スタ等の電子デバイスへの応用が報告されてい
る。一方非晶質炭化珪素(a−SiC:H)はa−
Si:Hよりもバンドギヤツプの大きな材料として
注目を集めており、太陽電池の窓材料などに応用
されているが、一般にa−Si:Hに比べて電気的
性質の劣るものしか得られておらず、従って、a
−Si:Hにとって代わるデバイス材料として利用
する上で必要な素子特性の向上のためにはa−
SiC:Hの電気的性質を改善することが重要な課
題となる。このa−SiC:Hに関しても、微結晶
珪素膜と同様に微結晶化に伴なう電気的性質の向
上が期待されている。また炭化珪素材料の熱伝導
性が大きいことを利用してこの材料をLSI基板と
して用いることも期待されている。このような要
素を満たすためにはこの材料の結晶化技術の確立
が必要と考えられる。
<Prior art> Hydrogenated amorphous silicon film (hereinafter referred to as a-Si:H)
It has been proposed to use a silicon film (microcrystalline silicon film) with a mixture of crystalline and amorphous structures to improve the electrical properties of , that is, to enhance the doping effect by adding impurities or to increase carrier mobility. Applications to electronic devices such as solar cells and thin film transistors have already been reported. On the other hand, amorphous silicon carbide (a-SiC:H) is a-
It has attracted attention as a material with a larger band gap than Si:H, and has been applied to materials such as window materials for solar cells, but in general, only materials with inferior electrical properties compared to a-Si:H have been obtained. , therefore a
- In order to improve the device characteristics necessary for use as a device material to replace Si:H, a-
Improving the electrical properties of SiC:H is an important challenge. This a-SiC:H is also expected to improve its electrical properties as it becomes microcrystalline, as in the case of microcrystalline silicon films. It is also expected that silicon carbide material can be used as LSI substrates by taking advantage of its high thermal conductivity. In order to satisfy these factors, it is considered necessary to establish a crystallization technology for this material.

プラズマCVD法あるいはスパツタリング法に
よる微結晶炭化珪素膜製作に関する報告は数件あ
るが、いずれも基板温度が550℃以上の条件で微
結晶化することを報告しているものである。しか
しながら、実際の素子への応用を考えると、550
℃より低温で微結晶炭化珪素膜を得るための膜作
製技術を確立することが重要な課題として残され
ている。
There are several reports on the production of microcrystalline silicon carbide films using plasma CVD or sputtering methods, but all of them report that microcrystalization occurs when the substrate temperature is 550°C or higher. However, considering the application to actual devices, 550
Establishing a film fabrication technology to obtain microcrystalline silicon carbide films at temperatures lower than ℃ remains an important issue.

<発明の目的> 本発明は上記現状に鑑み、プラズマCVD法に
よつて炭化珪素膜を作製する場合に、原料ガスを
水素ガスにより希釈することによつて微結晶炭化
珪素膜を例えば基板温度400℃以下の低温でも得
ることのできる微結晶炭化珪素膜の作製方法を提
供することを目的とするものである。
<Purpose of the Invention> In view of the above-mentioned current situation, the present invention has been developed to produce a microcrystalline silicon carbide film at a substrate temperature of, for example, 400°C by diluting the raw material gas with hydrogen gas when producing a silicon carbide film by the plasma CVD method. The object of the present invention is to provide a method for manufacturing a microcrystalline silicon carbide film that can be obtained even at a low temperature of .degree. C. or lower.

<実施例> 以下、プラズマCVD法により微結晶炭化珪素
膜を作製する場合について本発明の1実施例を説
明する。プラズマCVD法では原料ガスとして珪
化物気体、炭化物気体が用いられている。本実施
例ではシラン(SiH4)とメタン(CH4)を原料
ガスとして用いた場合の例を示す。
<Example> Hereinafter, an example of the present invention will be described with respect to a case where a microcrystalline silicon carbide film is manufactured by a plasma CVD method. In the plasma CVD method, silicide gas and carbide gas are used as raw material gases. This example shows an example in which silane (SiH 4 ) and methane (CH 4 ) are used as source gases.

反応容器内にシラン、メタン及び水素から成る
混合ガスを導入し、グロー放電分解することによ
り、混合ガスが相互に分解反応してガラス、石
英、ステンレス等の基板上に炭化珪素膜が成長す
る。シラン、メタン、水素の各ガスは各々流量制
御装置(マスフローコントローラー)を介して供
給される。これらの混合ガスは反応容器内へ供給
され、反応容器からロータリーポンプを介してあ
るいはこれにメカニカルブースターポンプや油拡
散ポンプを併用させて排気させる。
A mixed gas consisting of silane, methane, and hydrogen is introduced into a reaction vessel and decomposed by glow discharge, whereby the mixed gases mutually decompose and react to grow a silicon carbide film on a substrate such as glass, quartz, or stainless steel. Silane, methane, and hydrogen gases are each supplied via a flow rate controller (mass flow controller). These mixed gases are supplied into the reaction vessel and are exhausted from the reaction vessel via a rotary pump or by using a mechanical booster pump or an oil diffusion pump in combination with the rotary pump.

プラズマCVD法により炭化珪素膜を作製する
場合のパラメータには基板温度、ガス流量、ガス
圧、投入高周波電力等がある。ここで、膜質の水
素希釈率(水素ガスに対する原料ガスの割合)依
存性を調べるため、以下の例ではガス圧、投入高
周波電力を各々2Torr、0.3W/cm2の値に一定と
した。基板温度は350℃から600℃まで変化させ各
基板温度に対し、原料ガスと水素ガスの流量を
各々変化させて水素ガスに対する原料ガスの割合
を2から0.002まで変化させた。90〜120分間の成
長により約2000〜5000Åの厚さの膜を得た。得ら
れた膜の炭素組成比(膜内の炭素原子数/膜内の
炭素と珪素の原子数の和)はオージエ電子分光法
により測定した。その結果いずれの膜も測定値は
ほぼ0.5であった。また得られた膜の結晶性評価
は反射電子線回折法(RHEED)により行なっ
た。添附図面は微結晶炭化珪素膜が成長するため
の生成条件を示す説明図である。ここで微結晶炭
化珪素膜とは立方晶炭化珪素の(111)(220)
(311)各面からの電子線回折が得られたものであ
る。基板温度が600℃の条件では水素ガスに対す
る原料ガスの割合に関係なく微結晶炭化珪素膜が
得られた。基板温度500℃の条件では水素ガスに
対する原料ガスの割合が2から0.1の範囲では得
られた膜は非晶質炭化珪素膜であつた。それに対
し水素ガスに対する原料ガスの割合が0.05以下の
条件では微結晶炭化珪素膜が得られた。さらに基
板温度が350℃の条件でも水素ガスに対する原料
ガスの割合を0.01以下とすることによつて微結晶
炭化珪素膜が得られることが判明した。
Parameters for producing a silicon carbide film by plasma CVD include substrate temperature, gas flow rate, gas pressure, and input high-frequency power. Here, in order to investigate the dependence of the film quality on the hydrogen dilution ratio (ratio of raw material gas to hydrogen gas), in the following example, the gas pressure and input high frequency power were kept constant at values of 2 Torr and 0.3 W/cm 2 , respectively. The substrate temperature was varied from 350°C to 600°C, and for each substrate temperature, the flow rates of the raw material gas and hydrogen gas were varied, and the ratio of the raw material gas to hydrogen gas was varied from 2 to 0.002. Growth for 90-120 minutes resulted in films approximately 2000-5000 Å thick. The carbon composition ratio (number of carbon atoms in the film/sum of the number of carbon and silicon atoms in the film) of the obtained film was measured by Auger electron spectroscopy. As a result, the measured value for both films was approximately 0.5. The crystallinity of the obtained film was evaluated by reflection electron diffraction (RHEED). The accompanying drawings are explanatory diagrams showing conditions for growing a microcrystalline silicon carbide film. Here, microcrystalline silicon carbide film is cubic silicon carbide (111) (220)
(311) Electron diffraction from each plane was obtained. At a substrate temperature of 600°C, a microcrystalline silicon carbide film was obtained regardless of the ratio of source gas to hydrogen gas. At a substrate temperature of 500° C., the film obtained was an amorphous silicon carbide film when the ratio of source gas to hydrogen gas was in the range of 2 to 0.1. On the other hand, a microcrystalline silicon carbide film was obtained under conditions where the ratio of source gas to hydrogen gas was 0.05 or less. Furthermore, it has been found that a microcrystalline silicon carbide film can be obtained even at a substrate temperature of 350° C. by controlling the ratio of raw material gas to hydrogen gas to 0.01 or less.

このような水素ガスに対する原料ガスの割合を
下げることによる微結晶炭化珪素膜成長の原因と
しては、水素原子の動きにより炭素原子が周囲の
原子と四配位結合で膜構造に含まれ易くなり、そ
の結果炭素及び珪素原子が結晶構造をとりながら
配列するのに必要なエネルギーが低下したことが
考えられる。
The cause of microcrystalline silicon carbide film growth due to lowering the ratio of raw material gas to hydrogen gas is that carbon atoms are more likely to be included in the film structure through four-coordinate bonds with surrounding atoms due to the movement of hydrogen atoms. As a result, it is thought that the energy required for carbon and silicon atoms to align while forming a crystal structure was reduced.

なお、反応に供するガスは種々のシラン系ガス
と炭化水素系ガスが実施に供される。
Note that various silane-based gases and hydrocarbon-based gases are used for the reaction.

<発明の効果> 以上詳説した如く、本発明によれば微結晶炭化
珪素膜を基板温度400℃以下の比較的低温で得る
ことができ電子材料あるいは基板材料としての基
礎素材とすることができる。
<Effects of the Invention> As detailed above, according to the present invention, a microcrystalline silicon carbide film can be obtained at a relatively low substrate temperature of 400° C. or less, and can be used as a basic material for electronic materials or substrate materials.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は水素ガスに対する原料ガスの割合及
び基板温度を変えた場合の微結晶炭化珪素膜成長
条件を示す説明図である。○印および×印は得ら
れた膜がそれぞれ微結晶炭化珪素膜および非晶質
炭化珪素膜であつたことを示す。
The attached drawing is an explanatory diagram showing conditions for growing a microcrystalline silicon carbide film when the ratio of raw material gas to hydrogen gas and the substrate temperature are changed. ○ marks and × marks indicate that the obtained films were a microcrystalline silicon carbide film and an amorphous silicon carbide film, respectively.

Claims (1)

【特許請求の範囲】 1 水素ガスによる原料ガスの希釈率が0.05以下
の値となるように原料ガスの割合を薄く設定して
前記希釈率によって定まる500℃以下の温度に設
定された基板上に結晶質構造と非晶質構造の混在
した炭化珪素膜をプラズマCVD法により堆積さ
せることを特徴とする微結晶炭化珪素膜の製造方
法。 2 水素ガスによる原料ガスの希釈率を0.01以下
とし、基板温度を350℃前後に設定した特許請求
の範囲第1項記載の微結晶炭化珪素膜の製造方
法。
[Claims] 1. The proportion of the raw material gas is set thin so that the dilution ratio of the raw material gas with hydrogen gas is 0.05 or less, and the substrate is heated to a temperature of 500° C. or less determined by the dilution ratio. A method for producing a microcrystalline silicon carbide film, characterized by depositing a silicon carbide film containing a mixture of crystalline and amorphous structures by plasma CVD. 2. The method for producing a microcrystalline silicon carbide film according to claim 1, wherein the dilution rate of the source gas with hydrogen gas is 0.01 or less, and the substrate temperature is set at around 350°C.
JP6933686A 1986-03-26 1986-03-26 Manufacture of microcrystalline silicon carbide film Granted JPS62224674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6933686A JPS62224674A (en) 1986-03-26 1986-03-26 Manufacture of microcrystalline silicon carbide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6933686A JPS62224674A (en) 1986-03-26 1986-03-26 Manufacture of microcrystalline silicon carbide film

Publications (2)

Publication Number Publication Date
JPS62224674A JPS62224674A (en) 1987-10-02
JPH0465145B2 true JPH0465145B2 (en) 1992-10-19

Family

ID=13399606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6933686A Granted JPS62224674A (en) 1986-03-26 1986-03-26 Manufacture of microcrystalline silicon carbide film

Country Status (1)

Country Link
JP (1) JPS62224674A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692091B2 (en) * 1987-10-31 1997-12-17 株式会社日本自動車部品総合研究所 Silicon carbide semiconductor film and method for manufacturing the same
US5465680A (en) * 1993-07-01 1995-11-14 Dow Corning Corporation Method of forming crystalline silicon carbide coatings

Also Published As

Publication number Publication date
JPS62224674A (en) 1987-10-02

Similar Documents

Publication Publication Date Title
EP0322615B1 (en) Method of growing a single crystalline beta-silicon carbide layer on a silicon substrate
EP0417942B1 (en) Manufacture of polycrystalline silicon thin films and of transistors therefrom
JPH0513342A (en) Semiconductur diamond
JPS6270295A (en) Production of n-type semiconductive diamond film
JP2003209059A (en) Epitaxial silicon single crystal wafer and method of manufacturing the same
JPH0465145B2 (en)
CN115074825A (en) Silicon carbide epitaxial structure, pulse type growth method and application thereof
US5427054A (en) Method of making a diamond film
MOHRI et al. Effect of SiF 4/SiH 4/H 2 Flow Rates on Film Properties of Low-Temperature Polycrystalline Silicon Films Prepared by Plasma Enhanced Chemical Vapor Deposition
JPH07221026A (en) Method for forming quality semiconductor thin film
JPH04298023A (en) Manufacture of single crystal silicon thin film
JPH0554692B2 (en)
JPS6254424A (en) Vapor growing process of gaas thin film
JPH04318921A (en) Manufacture of polycrystalline silicon film
JPH06168883A (en) Formation of polycrystal silicon thin film
JPH01172295A (en) Production of silicon crystalline thin film by epitaxial growth
JPH06168882A (en) Formation of polycrystal silicon thin film
JPH04175295A (en) Production of semiconductive diamond
JPS63196082A (en) Manufacture of solar cell
JPH0277116A (en) Manufacture of silicon crystal thin film
JPS62154621A (en) Manufacture of amorphous silicon carbide film
CN116988148A (en) Preparation method of two-dimensional beta-gallium oxide crystal film
JPS63222096A (en) Production of single crystal thin film
JPS63157872A (en) Production of thin semiconductor film
JPH03101123A (en) Manufacture of amorphous semiconductor film