JPH0685264A - Polycrystalline silicon thin film and transistor employing the thin film - Google Patents

Polycrystalline silicon thin film and transistor employing the thin film

Info

Publication number
JPH0685264A
JPH0685264A JP3441091A JP3441091A JPH0685264A JP H0685264 A JPH0685264 A JP H0685264A JP 3441091 A JP3441091 A JP 3441091A JP 3441091 A JP3441091 A JP 3441091A JP H0685264 A JPH0685264 A JP H0685264A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
thin film
film
cerium oxide
silicon thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3441091A
Other languages
Japanese (ja)
Inventor
Tatsuro Nagahara
長原達郎
Hisashi Kakigi
寿 柿木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP3441091A priority Critical patent/JPH0685264A/en
Publication of JPH0685264A publication Critical patent/JPH0685264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To form a polycrystalline silicon thin film in which continuity of crystals can be maintained and an amorphous region is not formed on a glass substrate. CONSTITUTION:A cerium oxide film layer 2 is formed on a glass substrate 1 and a polycrystalline silicon thin film 3 is built up on it. The crystal growth of cerium oxide is easy and the lattice constant of the cerium oxide crystal is close to the lattice constant of silicon. Therefore, the polycrystalline silicon film 3 can be formed on the cerium oxide film layer 2 by hetero-epitaxial growth. As the polycrystalline silicon film 3 has good crystal continuity, if the polycrystalline silicon film 3 is applied to a transistor, the film thickness of the active region of the transistor can be reduced and the improvement of electrical characteristics such as reduction of a leakage current can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多結晶シリコン薄膜およ
び該薄膜を用いたトランジスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycrystalline silicon thin film and a transistor using the thin film.

【0002】[0002]

【従来の技術】多結晶シリコン薄膜は数百Å〜数十μm
の結晶シリコンが多数集合した状態であり、アモルファ
スシリコンに比して電子の移動度が1〜2桁程大きい優
れた特性を有しているうえ、単結晶シリコンでは困難な
アルミナやグラファイトなど結晶シリコン以外の材質の
基板上への形成が可能であり、ガラス基板に形成した薄
膜トランジスタの実用化が要望されている。
2. Description of the Related Art Polycrystalline silicon thin films have a thickness of several hundred Å to several tens μm
In the state where a large number of crystalline silicon of the above are gathered, the electron mobility is 1 to 2 orders of magnitude higher than that of amorphous silicon, and it is difficult to use crystalline silicon such as alumina and graphite. It is possible to form materials other than those described above on a substrate, and practical use of thin film transistors formed on a glass substrate is desired.

【0003】[0003]

【発明が解決しようとする課題】ところで、ガラス基板
の上に直接多結晶シリコン薄膜を形成すると、基板と多
結晶シリコンとの界面には結晶化しないアモルファス領
域が生じて結晶の連接性がなくなり、多結晶シリコンの
粒径を大きくすることが困難であった。
By the way, when a polycrystalline silicon thin film is formed directly on a glass substrate, an uncrystallized amorphous region is formed at the interface between the substrate and polycrystalline silicon, and the crystal connectivity is lost. It was difficult to increase the grain size of polycrystalline silicon.

【0004】界面にアモルファス領域が形成されると、
多結晶シリコンを薄くしていった時にアモルファス領域
の示す割合が多くなって多結晶シリコンとしての良好な
特性が維持されず、薄膜化が困難になってしまう。プロ
セス温度を高くして高温処理により多結晶シリコンを形
成すればこのようなアモルファス領域の発生をなくすこ
とが可能であるが、その場合には耐熱ガラスを使わなけ
ればならず、通常のガラス基板を使用することができな
い。
When an amorphous region is formed at the interface,
When the polycrystalline silicon is thinned, the proportion of the amorphous region increases, and good characteristics as polycrystalline silicon are not maintained, making it difficult to form a thin film. It is possible to eliminate the occurrence of such amorphous regions by increasing the process temperature and forming polycrystalline silicon by high-temperature treatment, but in that case heat-resistant glass must be used, and ordinary glass substrates should be used. Cannot be used.

【0005】本発明は上記課題を解決するためのもの
で、結晶の連接性が保たれ、アモルファス領域が生じな
いガラス基板上に形成された多結晶シリコン薄膜及び該
薄膜を用いたトランジスタを提供することを目的とす
る。
The present invention is intended to solve the above problems, and provides a polycrystalline silicon thin film formed on a glass substrate in which crystal connectivity is maintained and an amorphous region does not occur, and a transistor using the thin film. The purpose is to

【0006】[0006]

【課題を解決するための手段】本発明は、ガラス基板上
に酸化セリウム膜層、多結晶シリコン薄膜が順次積層さ
れていることを特徴とする多結晶シリコン薄膜、及びガ
ラス基板上に酸化セリウム膜層を介在させて形成された
多結晶シリコン薄膜にソース電極、ドレイン電極が形成
され、多結晶シリコン薄膜上にゲート絶縁膜を介してゲ
ート電極が形成された多シリコン薄膜トランジスタを特
徴とする。
According to the present invention, a cerium oxide film layer and a polycrystalline silicon thin film are sequentially laminated on a glass substrate, and a cerium oxide film on a glass substrate. A polycrystalline silicon thin film transistor in which a source electrode and a drain electrode are formed on a polycrystalline silicon thin film formed with a layer interposed, and a gate electrode is formed on the polycrystalline silicon thin film via a gate insulating film is characterized.

【0007】[0007]

【作用】本発明はガラス基板上に酸化セリウム膜層を形
成し、その上に多結晶シリコン薄膜を成長させるように
したものであり、酸化セリウムは結晶成長し易いととも
に、結晶の格子定数がシリコンの格子定数に近いため、
酸化セリウム膜層上にシリコンをヘテロエピタキシャル
成長させて多結晶シリコン膜を形成することができる。
この多結晶シリコン膜は結晶の連続性が良いので、トラ
ンジスタに応用した場合に活性領域の薄膜化を図ること
ができ、漏れ電流の低減化等電気特性を向上させること
ができる。
In the present invention, a cerium oxide film layer is formed on a glass substrate, and a polycrystalline silicon thin film is grown on the cerium oxide film layer. Cerium oxide easily grows in crystals and has a crystal lattice constant of silicon. Is close to the lattice constant of
Silicon can be heteroepitaxially grown on the cerium oxide film layer to form a polycrystalline silicon film.
Since this polycrystalline silicon film has good crystal continuity, the active region can be thinned when applied to a transistor, and electrical characteristics such as reduction of leakage current can be improved.

【0008】[0008]

【実施例】図1は本発明の多結晶シリコン薄膜の構成を
示す図である。本発明の多結晶シリコン薄膜はガラス基
板1上に結晶成長し易くかつ結晶の格子定数がシリコン
の格子定数に近い酸化セリウム(CeO2 )膜層2を堆
積し、この上にポリシリコン3をヘテロエピタキシャル
成長させるようにしたものである。CeO2 膜層2は真
空蒸着法やスパッタリング法により20Å〜1μm、好
ましくは50〜1000Å形成される。
1 is a diagram showing the structure of a polycrystalline silicon thin film of the present invention. In the polycrystalline silicon thin film of the present invention, a cerium oxide (CeO 2 ) film layer 2 is deposited on a glass substrate 1 which facilitates crystal growth and has a crystal lattice constant close to that of silicon. It is made to grow epitaxially. The CeO 2 film layer 2 is formed in a volume of 20 Å to 1 μm, preferably 50 to 1000 Å by a vacuum deposition method or a sputtering method.

【0009】図2は真空蒸着法の例を示し、真空チャン
バ20内にCeO2 原料24を容器23に入れ、ヒータ
22で加熱することにより、ヒータ21で加熱されたガ
ラス基板1上にCeO2 が堆積される。CeO2 は格子
定数がシリコンの格子定数に近いイオン性の化合物であ
り、極めて結晶化し易く、容易に多結晶膜を形成するこ
とができる。この場合堆積条件、例えば基板の温度等を
選択することにより、実質的に(111)または(00
1)方向に単一配向させることができる。
FIG. 2 shows an example of a vacuum vapor deposition method, in which a CeO 2 raw material 24 is placed in a container 23 in a vacuum chamber 20 and heated by a heater 22, so that the CeO 2 is heated on the glass substrate 1 by the heater 21. Are deposited. CeO 2 is an ionic compound having a lattice constant close to that of silicon, and is extremely easily crystallized, so that a polycrystalline film can be easily formed. In this case, by selecting the deposition condition, for example, the temperature of the substrate or the like, substantially (111) or (00
1) A single orientation can be achieved in the direction.

【0010】CeO2 結晶性膜を形成したガラス基板上
への多結晶シリコン層の形成は、例えば固相成長法を用
いることができる。図3は固相成長法で併用されるプラ
ズマCVD法を説明するものである。図中、11は真空
チャンバ、12は電極、13は電極及びヒータ、15は
高周波電源、16はシランガス、17はポンプである。
For forming the polycrystalline silicon layer on the glass substrate on which the CeO 2 crystalline film is formed, for example, a solid phase growth method can be used. FIG. 3 illustrates a plasma CVD method used in combination with the solid phase growth method. In the figure, 11 is a vacuum chamber, 12 is an electrode, 13 is an electrode and a heater, 15 is a high frequency power supply, 16 is a silane gas, and 17 is a pump.

【0011】ポンプ17で排気した真空チャンバ11中
へシラン(SiH4 )ガス16を導入し、高周波電源1
5により電極12,13間でプラズマ放電を生じさせ、
シランガスを分解してヒータ13で加熱した基板1上に
アモルファスシリコン層を500〜20000Å程度積
層する。このプラズマCVDは200〜300℃で行わ
れる。こうしてアモルファスシリコン層を形成したガラ
ス基板をほぼ580℃の炉の中で10時間程放置する
と、アモルファスシリコンが結晶化して多結晶シリコン
層となり、結晶性の高い多結晶シリコン膜を得ることが
できる。前述したようにCeO2 の格子定数はシリコン
の格子定数に近いので、形成される多結晶シリコン膜に
は格子欠陥等が生じない。
The silane (SiH 4 ) gas 16 is introduced into the vacuum chamber 11 evacuated by the pump 17, and the high frequency power source 1
5 causes a plasma discharge between the electrodes 12 and 13,
An amorphous silicon layer is laminated on the substrate 1 heated by the heater 13 by decomposing silane gas to a thickness of about 500 to 20000Å. This plasma CVD is performed at 200 to 300 ° C. When the glass substrate on which the amorphous silicon layer is thus formed is left in a furnace at about 580 ° C. for about 10 hours, the amorphous silicon is crystallized into a polycrystalline silicon layer, and a polycrystalline silicon film having high crystallinity can be obtained. As described above, since the lattice constant of CeO 2 is close to the lattice constant of silicon, lattice defects and the like do not occur in the formed polycrystalline silicon film.

【0012】多結晶シリコン膜の形成は固相成長法に限
らず、例えばMBE法を用いても低温プロセスで行うこ
とができ、通常のガラス基板上への形成が可能となる。
また、下地CeO2 膜が一定の方位に優先配向している
場合には、エピタキシャル成長させた多結晶シリコンも
同じ配向を持ち、そのため電気特性の向上を図ることが
でき、特に(001)配向とした場合、トランジスタに
適用したときのON電流/OFF電流比(ゲート電圧を
変化したときのON電流とOFF電流の比)が大きくと
れ、またCeO2 は1015Ω・cm以上の高い絶縁性を
示すため、この多結晶シリコン膜を電子素子に応用する
際に妨げとはならない。
The polycrystalline silicon film can be formed not only by the solid phase growth method but also by the MBE method in a low temperature process and can be formed on an ordinary glass substrate.
In addition, when the underlying CeO 2 film is preferentially oriented in a certain direction, the epitaxially grown polycrystalline silicon also has the same orientation, so that the electrical characteristics can be improved, and particularly the (001) orientation is adopted. In this case, a large ON current / OFF current ratio (ratio of ON current and OFF current when the gate voltage is changed) when applied to a transistor can be obtained, and CeO 2 exhibits high insulation of 10 15 Ω · cm or more. Therefore, it does not hinder the application of this polycrystalline silicon film to electronic devices.

【0013】図4は本発明の多結晶シリコン薄膜を用い
たトランジスタの構成を示す図である。前述したように
形成された多結晶シリコン膜にソース電極5、ドレイン
電極6を形成し、さらに多結晶シリコン膜上にスパッタ
リング法、プラズマCVD法等によりSiO2 膜、ある
いはSiNx膜のようなゲート絶縁膜4を1000〜2
000Åの厚みで形成し、さらに絶縁膜上にゲート電極
を形成することによりトランジスタが形成される。Si
2 膜、あるいはSiNx膜の形成は、スパッタリング
法によれば150℃程度、プラズマCVD法によれば3
00〜350℃程度で形成することができる。このよう
に構成したトランジスタにおいては、酸化セリウム膜層
2の存在ために多結晶シリコン薄膜3は結晶の連続性が
保たれ、アモルファス領域が生じないために充分薄膜化
することができ、そのためOFF電流(漏れ電流)を充
分低減化させ、またON電流/OFF電流比が大きくな
るなど電気特性の向上を図ることができる。
FIG. 4 is a diagram showing the structure of a transistor using the polycrystalline silicon thin film of the present invention. A source electrode 5 and a drain electrode 6 are formed on the polycrystalline silicon film formed as described above, and a gate insulation such as a SiO 2 film or a SiNx film is formed on the polycrystalline silicon film by a sputtering method, a plasma CVD method, or the like. Membrane 4 1000-2
The transistor is formed by forming the gate electrode on the insulating film with a thickness of 000Å. Si
The O 2 film or the SiNx film is formed by the sputtering method at about 150 ° C. and by the plasma CVD method at 3 ° C.
It can be formed at about 00 to 350 ° C. In the transistor configured as described above, the polycrystalline silicon thin film 3 maintains crystal continuity due to the presence of the cerium oxide film layer 2 and can be sufficiently thinned because an amorphous region does not occur. (Leakage current) can be sufficiently reduced, and the electrical characteristics can be improved by increasing the ON current / OFF current ratio.

【0014】[0014]

【発明の効果】以上のように本発明によれば、結晶の格
子定数がシリコンの格子定数に近い酸化セリウム層を介
在させることにより、結晶の連続性のよい多結晶シリコ
ン膜が得られ、その結果、薄膜トランジスタに適用した
場合、多結晶シリコン膜を充分薄膜化することができ活
性領域の薄膜効果により電気特性を飛躍的に改善するこ
とが可能となる。
As described above, according to the present invention, a polycrystalline silicon film having good crystal continuity can be obtained by interposing a cerium oxide layer having a crystal lattice constant close to that of silicon. As a result, when applied to a thin film transistor, the polycrystalline silicon film can be sufficiently thinned and the electrical characteristics can be dramatically improved by the thin film effect of the active region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多結晶シリコン薄膜の構成を示す図で
ある。
FIG. 1 is a diagram showing a structure of a polycrystalline silicon thin film of the present invention.

【図2】真空蒸着法を説明する図である。FIG. 2 is a diagram illustrating a vacuum vapor deposition method.

【図3】プラズマCVD法を説明する図である。FIG. 3 is a diagram illustrating a plasma CVD method.

【図4】本発明のトランジスタを説明する図である。FIG. 4 is a diagram illustrating a transistor of the present invention.

【符号の説明】[Explanation of symbols]

1…ガラス基板、2…酸化セリウム膜層、3…多結晶シ
リコン膜。
1 ... Glass substrate, 2 ... Cerium oxide film layer, 3 ... Polycrystalline silicon film.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板上に酸化セリウム膜層、多結
晶シリコン薄膜が順次積層されていることを特徴とする
多結晶シリコン薄膜。
1. A polycrystalline silicon thin film comprising a cerium oxide film layer and a polycrystalline silicon thin film sequentially laminated on a glass substrate.
【請求項2】 ガラス基板上に酸化セリウム膜層を介在
させて形成された多結晶シリコン薄膜にソース電極、ド
レイン電極が形成され、多結晶シリコン薄膜上にゲート
絶縁膜を介してゲート電極が形成された多結晶シリコン
薄膜トランジスタ。
2. A source electrode and a drain electrode are formed on a polycrystalline silicon thin film formed on a glass substrate with a cerium oxide film layer interposed, and a gate electrode is formed on the polycrystalline silicon thin film via a gate insulating film. Polycrystalline silicon thin film transistor.
JP3441091A 1991-02-28 1991-02-28 Polycrystalline silicon thin film and transistor employing the thin film Pending JPH0685264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3441091A JPH0685264A (en) 1991-02-28 1991-02-28 Polycrystalline silicon thin film and transistor employing the thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3441091A JPH0685264A (en) 1991-02-28 1991-02-28 Polycrystalline silicon thin film and transistor employing the thin film

Publications (1)

Publication Number Publication Date
JPH0685264A true JPH0685264A (en) 1994-03-25

Family

ID=12413422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3441091A Pending JPH0685264A (en) 1991-02-28 1991-02-28 Polycrystalline silicon thin film and transistor employing the thin film

Country Status (1)

Country Link
JP (1) JPH0685264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828080A (en) * 1994-08-17 1998-10-27 Tdk Corporation Oxide thin film, electronic device substrate and electronic device
US6765742B2 (en) 2000-03-23 2004-07-20 Kabushiki Kaisha Toshiba Disk storage apparatus and head load control method
JP2008160086A (en) * 2006-11-30 2008-07-10 Toshiba Corp Semiconductor device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828080A (en) * 1994-08-17 1998-10-27 Tdk Corporation Oxide thin film, electronic device substrate and electronic device
US6765742B2 (en) 2000-03-23 2004-07-20 Kabushiki Kaisha Toshiba Disk storage apparatus and head load control method
JP2008160086A (en) * 2006-11-30 2008-07-10 Toshiba Corp Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2000223419A (en) Method of forming single crystal silicon layer, and semiconductor device and manufacture thereof
JP2023504597A (en) Method of Forming High Resistivity Handle Support for Composite Substrates
KR970006723B1 (en) Formation of polycrystalline silicon thin films with large grain
US3796597A (en) Method of producing semiconducting monocrystalline silicon on spinel substrates
JP2505736B2 (en) Method for manufacturing semiconductor device
EP0154373A1 (en) Methods for producing single crystals in insulators
JPH0685264A (en) Polycrystalline silicon thin film and transistor employing the thin film
JPH0218320B2 (en)
JPH0685261A (en) Polycrystalline silicon thin film and transistor employing the thin film
JPH11233440A (en) Semiconductor device
JPH06181313A (en) Thin film transistor and manufacture thereof
JPS6315442A (en) Semiconductor substrate
JPH03104209A (en) Manufacture of semiconductor device
JPS6263419A (en) Formation of polycrystalline silicon thin film
JP3157280B2 (en) Method for manufacturing semiconductor device
JPH04349618A (en) Polycrystalline silicon thin film and manufacture thereof, and thin film transistor using same
JPH0722315A (en) Method for manufacturing semiconductor film
JPH0629536A (en) Polycrystalline silicon thin-film transistor
JP3985288B2 (en) Semiconductor crystal growth method
JPH04349617A (en) Polycrystalline silicon thin film and manufacture thereof, and thin film transistor using same
JPH04349615A (en) Formation of polycrystalline silicon thin film
JPS61270812A (en) Manufacture of semiconductor device
JPH04280623A (en) Manufacture of semiconductor film
JPH04349616A (en) Formation of polycrystalline silicon thin film
JP2592984B2 (en) Manufacturing method of silicon thin film