JPH04346275A - Formation method of thin film thermocouple - Google Patents

Formation method of thin film thermocouple

Info

Publication number
JPH04346275A
JPH04346275A JP3118318A JP11831891A JPH04346275A JP H04346275 A JPH04346275 A JP H04346275A JP 3118318 A JP3118318 A JP 3118318A JP 11831891 A JP11831891 A JP 11831891A JP H04346275 A JPH04346275 A JP H04346275A
Authority
JP
Japan
Prior art keywords
thin film
sample
film thermocouple
forming
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3118318A
Other languages
Japanese (ja)
Inventor
Hidezo Sano
秀造 佐野
Mikio Hongo
幹雄 本郷
Katsuro Mizukoshi
克郎 水越
Takashi Kamimura
隆 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3118318A priority Critical patent/JPH04346275A/en
Publication of JPH04346275A publication Critical patent/JPH04346275A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a high reliability thin film thermocouple at an arbitrary position of a sample easily in a short time without generating a foreign matter by decomposing an organic metal material gas by an energy beam without a mask and directly forming the thin film thermocouple. CONSTITUTION:After the surface of a sample 1 is cleaned, a temperature measurement position of the sample is decided. An energy beam 12 is irradiated at a specified position of the sample 1 in an organic metal material gas 13 including a first metal 14 used as a thin film thermocouple and scanned, thereby forming the first metal 14. In the same manner, a second metal 17 is formed from an organic metal material gas 15 including the second metal 17 so that a thin film thermocouple may be formed at an arbitrary position of the sample 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、エネルギビーム加工装
置などの熱処理プロセスをもつ装置などに用いられ、試
料の任意箇所で特に微小領域に温度計測に用いる薄膜熱
電対の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film thermocouple for temperature measurement at any location on a sample, particularly in a minute area, and used in equipment having a heat treatment process such as energy beam processing equipment.

【0002】0002

【従来の技術】従来試料の微小領域の温度を計測するに
は、例えば、リビューサイエンス  インスツルメント
  58(5)、1987年、P875からP877(
Rev.  Sci.Instrum. 58(5)、
May 1987 P875〜P877)に示すように
試料上の温度計測領域にマスクを通して真空蒸着法によ
り異種金属からなる薄膜熱電対を形成し、加熱炉を用い
てこの薄膜熱電対による起電力と実温度との較正を行な
ってから実測するようにした方法が用いられている。
[Prior Art] Conventionally, in order to measure the temperature of a minute region of a sample, for example, Revue Science Instruments 58 (5), 1987, P875 to P877 (
Rev. Sci. Instrument. 58(5),
As shown in May 1987 P875-P877), a thin film thermocouple made of different metals is formed by vacuum evaporation through a mask over the temperature measurement area on the sample, and a heating furnace is used to compare the electromotive force generated by this thin film thermocouple with the actual temperature. A method is used in which the actual measurements are made after the calibration is performed.

【0003】0003

【発明が解決しようとする課題】従って、前述のマスク
を用いて薄膜熱電対を形成する方法では、試料の温度測
定箇所に対応してマスクを形成する必要があり、また、
微小の温度測定領域に対しては薄膜熱電対も微細化する
必要があるため真空蒸着時にマスク溝が蒸着材料により
目ずまりしやすくなって所定のパターンが形成できなく
なるという問題があった。
[Problems to be Solved by the Invention] Therefore, in the method of forming a thin film thermocouple using a mask as described above, it is necessary to form a mask corresponding to the temperature measurement point of the sample, and
Thin film thermocouples must also be miniaturized for minute temperature measurement areas, which poses the problem that mask grooves tend to become clogged with deposition material during vacuum deposition, making it impossible to form a predetermined pattern.

【0004】又、真空蒸着時にマスク表面に付着した蒸
着材料が、マスクを取はずす時にマスク表面からはがれ
て試料上に異物として付着し、次工程でこの異物により
試料に不具合いが生じるという問題もあった。
[0004] Another problem is that the vapor deposition material that adheres to the mask surface during vacuum evaporation peels off from the mask surface and adheres to the sample as foreign matter when the mask is removed, and this foreign matter causes defects on the sample in the next process. there were.

【0005】又、真空蒸着装置の中では蒸着材料が四方
に飛散するため試料観察用の光学系を導入することが難
しく、試料上の温度測定箇所にそれぞれのマスクパター
ンを位置あわせするのが難しいという問題もあった。
[0005] Furthermore, since the vapor deposition material scatters in all directions in a vacuum evaporation apparatus, it is difficult to install an optical system for observing the sample, and it is difficult to align each mask pattern with the temperature measurement point on the sample. There was also the problem.

【0006】本発明の目的は、試料上の任意位置にマス
クを用いることなく熱電対を容易に、かつ、確実に形成
することにある。
An object of the present invention is to easily and reliably form a thermocouple at any position on a sample without using a mask.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
、本発明は試料の微小領域の温度を計測する場合の薄膜
熱電対の形成方法であって、試料表面をクリーニングす
る工程と観察系により試料上の温度測定箇所に位置合せ
後、エネルギビームによる局所CVD(Chemica
l  Vapor  Deposition)により所
定の熱電対を形成する工程をもつことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for forming a thin film thermocouple for measuring the temperature of a minute region of a sample, which comprises a step of cleaning the sample surface and an observation system. After aligning to the temperature measurement point on the sample, local CVD (Chemica
The method is characterized in that it has a step of forming a predetermined thermocouple by vapor deposition.

【0008】[0008]

【作用】このような特徴をもつ本発明は、エネルギビー
ムと同軸に観察系を設けるようにして試料上の熱電対を
形成する箇所への位置決めを行なう。次に、熱電対とし
て使用する金属を含む有機金属材料ガス(CVDガス)
中で試料上の位置決め箇所にエネルギビームを照射する
ことによりCVDガスを分解して試料上に直接金属を析
出させるが、まず、第一の金属を温度測定箇所を始点に
してエネルギビームを試料に対して相対的に走査するこ
とにより線状に形成する。次に第二の金属を前記第一の
金属と同様に始点が温度測定箇所で前記第一の金属と接
触するように線状に形成して熱電対を形成する。試料表
面のクリーニングは前記方法により形成した金属と試料
表面との密着性を向上させる。
[Function] The present invention having the above-mentioned features positions an observation system coaxially with the energy beam to the location on the sample where the thermocouple is to be formed. Next, organic metal material gas (CVD gas) containing metal used as a thermocouple
The CVD gas is decomposed and metal is deposited directly on the sample by irradiating an energy beam onto a positioning point on the sample. It is formed into a linear shape by scanning relative to the target. Next, a thermocouple is formed by forming a second metal in the same manner as the first metal so that its starting point contacts the first metal at the temperature measurement point. Cleaning the sample surface improves the adhesion between the metal formed by the above method and the sample surface.

【0009】[0009]

【実施例】図1は本発明の一実施例による薄膜熱電対の
形成方法を示す図である。まず、■試料表面クリーニン
グであるが、試料1は、例えば、半導体装置等で配線2
、絶縁膜3から構成されている。試料1の表面4には通
常、水分5や油分6などの不純物が付着しており、試料
1の表面4に形成する薄膜熱電対の表面4との密着性が
向上する様に、例えば、Arイオン7を用いたスパッタ
エッチング等により表面4をクリーニングする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a method of forming a thin film thermocouple according to an embodiment of the present invention. First, ① Sample surface cleaning. Sample 1 is, for example, a semiconductor device with wiring 2.
, an insulating film 3. Impurities such as moisture 5 and oil 6 are usually attached to the surface 4 of the sample 1, and in order to improve the adhesion with the surface 4 of the thin film thermocouple formed on the surface 4 of the sample 1, for example, Ar The surface 4 is cleaned by sputter etching using ions 7 or the like.

【0010】なお、この試料1の表面4のクリーニング
は試料1を真空中に入れて、例えば、試料1をヒータで
加熱したり、試料1に電流を流して加熱したり、試料1
に赤外光を当てて加熱したりしながら真空排気しても良
い。これは、水分5や油分6の分子に表面4への吸着エ
ネルギより大きい熱エネルギを与えることにより表面4
から離脱させ、離脱した水分5や油分6の分子を真空排
気して取り除くものである。
The surface 4 of the sample 1 can be cleaned by placing the sample 1 in a vacuum and, for example, heating the sample 1 with a heater, heating the sample 1 by passing a current through the sample 1, or heating the sample 1 by heating the sample 1 with a heater.
It is also possible to evacuate while heating it by exposing it to infrared light. This is achieved by imparting thermal energy to the molecules of water 5 and oil 6 that is greater than the adsorption energy to the surface 4.
The separated water 5 and oil 6 molecules are removed by vacuum evacuation.

【0011】また、試料1の表面4に真空中で紫外光を
当てながら真空排気しても良い。これは、水分5や油分
6の分子と表面4との化学吸着を紫外光の光子エネルギ
により切断するもので、表面4から離脱した水分5や油
分6の分子を真空排気して取り除くのは試料1を加熱す
る場合と同様である。
Alternatively, the surface 4 of the sample 1 may be evacuated while being irradiated with ultraviolet light in a vacuum. This is to cut the chemical adsorption between water 5 and oil 6 molecules and the surface 4 using photon energy of ultraviolet light.The water 5 and oil 6 molecules that have separated from the surface 4 are removed by vacuum evacuation. It is the same as when heating 1.

【0012】次に、■薄膜熱電対の形成は、まず左図の
ように試料1の温度測定箇所11にエネルギビーム12
を位置決めし、試料1を含む雰囲気を熱電対を構成した
金属を含む有機金属材料ガス13で、例えば、イリジウ
ムカルボニル:Ir2(CO)8あるいはイリジウムア
セチルアセトネート:Ir(AcAc)3で満たした後
にエネルギビーム12を所定強度に設定して矢印の方向
に試料1に対して相対的に走査することによりエネルギ
ビーム12で有機金属ガス13を分解して、金属14の
例えばイリジウム:Irを析出して熱電対の片方を形成
する。
Next, (1) To form a thin film thermocouple, first, as shown in the left figure, an energy beam 12 is applied to the temperature measurement point 11 of the sample 1.
After filling the atmosphere containing the sample 1 with an organometallic material gas 13 containing the metal forming the thermocouple, for example, iridium carbonyl: Ir2(CO)8 or iridium acetylacetonate: Ir(AcAc)3. By setting the energy beam 12 to a predetermined intensity and scanning it relative to the sample 1 in the direction of the arrow, the organic metal gas 13 is decomposed by the energy beam 12, and a metal 14, for example, iridium: Ir, is precipitated. Forms one half of a thermocouple.

【0013】そして、右図のように再度エネルギビーム
12を試料1の温度測定箇所11に位置決めした後、試
料1を含む雰囲気を熱電対を構成の金属で既に形成の金
属14と対で用いる金属を含む有機金属材料ガス15で
、例えば、プラチナビスヘキサフルオロアセチルアセト
ネート:Pt(HFAcAc)2、あるいは、プラチナ
アセチルアセトネート:Pt(AcAc)2で満した後
にエネルギビーム12を所定強度に設定して、矢視16
の方向に試料1に対して相対的に走査して析出の金属1
4と温度測定箇所11で接触するようにして金属17、
例えば、白金(Pt)を析出して熱電対を完成する。
After positioning the energy beam 12 again at the temperature measurement point 11 of the sample 1 as shown in the figure on the right, the atmosphere containing the sample 1 is transferred to the thermocouple, which is a metal used in combination with the already formed metal 14. The energy beam 12 is set to a predetermined intensity after being filled with an organic metal material gas 15 containing, for example, platinum bishexafluoroacetylacetonate:Pt(HFAcAc)2 or platinum acetylacetonate:Pt(AcAc)2. te, arrow view 16
The precipitated metal 1 is scanned relative to the sample 1 in the direction of
4 and the metal 17 so as to be in contact with the temperature measurement point 11,
For example, a thermocouple is completed by depositing platinum (Pt).

【0014】なお、この熱電対を形成する有機金属材料
ガスは鉄カルボニル:Fe(CO)5、Fe2(CO)
9あるいはFe3(CO)12とカッパービスヘキサフ
ロロアセチルアセトネート:Cu(HFAcAc)2、
あるいは、カッパーアセチルアセトネート:Cu(Ac
Ac)2などからFe−Cu熱電対を、また、鉄を含む
有機金属材料ガスとニッケルカルボニル:Ni(CO)
4からFe−Ni熱電対を、また銅を含む有機金属材料
ガスとニッケルを含む有機金属材料ガスからCu−Ni
熱電対を、またディメチルゴールドアセチルアセトネー
ト:Me2Au(AcAc),ディメチルゴールドヘキ
サフロロアセチルアセトネート:Me2Au(HFAc
)等とニッケルを含む有機金属材料ガスからAu−Ni
熱電対を、それぞれ形成しても良い。
[0014] The organic metal material gas forming this thermocouple is iron carbonyl: Fe(CO)5, Fe2(CO).
9 or Fe3(CO)12 and kappa bishexafluoroacetylacetonate: Cu(HFAcAc)2,
Alternatively, kappa acetylacetonate: Cu(Ac
Fe-Cu thermocouple from Ac)2 etc., and organic metal material gas containing iron and nickel carbonyl: Ni(CO)
4 to Fe-Ni thermocouple, and Cu-Ni thermocouple from organometallic material gas containing copper and organometallic material gas containing nickel.
The thermocouple was also dimethylgold acetylacetonate: Me2Au (AcAc), dimethylgold hexafluoroacetylacetonate: Me2Au (HFAc).
) etc. and organic metal material gas containing nickel to Au-Ni.
Thermocouples may be formed individually.

【0015】また、熱電対の幅はエネルギビーム12を
収束してスポット径を小さくしたり、有機金属材料ガス
の圧力、エネルギビーム12の走査速度、およびエネル
ギ強度を所定の条件で設定することにより変更可能で、
μmオーダでも形成できる。従って、熱電対の温度測定
範囲もμmオーダで可能となる。
The width of the thermocouple can be adjusted by converging the energy beam 12 to make the spot diameter smaller, or by setting the pressure of the organic metal material gas, the scanning speed of the energy beam 12, and the energy intensity under predetermined conditions. changeable,
It can also be formed on the μm order. Therefore, the temperature measurement range of the thermocouple can be on the order of μm.

【0016】■温度計測例は、試料1を有機金属材料ガ
ス21で、例えば、モリブデンカルボニル:Mo(CO
)6などの雰囲気中に置き、Arレーザ22を矢印23
の方向に走査して幅が10μm前後の金属24のMo配
線を形成するレーザCVDにおいて、有機金属材料ガス
21が分解して金属24を析出する時の温度を調べる場
合に、熱電対の温度測定中心26をArレーザ22が通
過するように位置決めし、金属24を形成する際に熱電
対に生じる起電力を熱電対25の各々の金属に接続した
配線28、29を通して電圧計27で計測して、その起
電力と温度の関係から知ることができる。
[0016] In the example of temperature measurement, sample 1 is treated with organometallic material gas 21, for example, molybdenum carbonyl:Mo(CO
) 6, etc., and place the Ar laser 22 in the direction of the arrow 23.
In laser CVD, which scans in the direction of , to form a Mo wiring of metal 24 with a width of around 10 μm, thermocouple temperature measurement is used to investigate the temperature at which the organometallic material gas 21 decomposes and deposits metal 24. The center 26 is positioned so that the Ar laser 22 passes through it, and the electromotive force generated in the thermocouple when forming the metal 24 is measured with a voltmeter 27 through the wires 28 and 29 connected to each metal of the thermocouple 25. , can be known from the relationship between electromotive force and temperature.

【0017】図2は、本発明の薄膜熱電対を形成する方
法で、エネルギビームにレーザを用いた場合の薄膜熱電
対形成の説明図である。
FIG. 2 is an explanatory diagram of forming a thin film thermocouple when a laser is used as an energy beam in the method of forming a thin film thermocouple according to the present invention.

【0018】試料1は真空チャンバ31内のXYステー
ジ32上に固定される。真空チャンバ31にはそれぞれ
、排気のための真空ポンプ33、薄膜熱電対を形成する
ための二種類の有機金属材料ガス用のボンベ34、35
がそれぞれバルブ36、37、38を介して接続されて
いる。39はレーザ光源でレーザ光40は反射ミラー4
1、対物レンズ42、および真空チャバ31のレーザ光
透過ガラス43を通して試料1上に集光・照射される。
The sample 1 is fixed on an XY stage 32 within a vacuum chamber 31. Each of the vacuum chambers 31 includes a vacuum pump 33 for evacuation, and cylinders 34 and 35 for two types of organometallic material gases for forming a thin film thermocouple.
are connected via valves 36, 37, and 38, respectively. 39 is a laser light source and laser light 40 is a reflection mirror 4
1, the laser beam is focused and irradiated onto the sample 1 through the objective lens 42 and the laser beam transmission glass 43 of the vacuum chamber 31.

【0019】44は照明光源で、照射光45は反射ミラ
ー46、対物レンズ42を通して同様に試料1上に集光
・照射され、その観察光47は、顕微鏡48およびテレ
ビカメラ49により観察可能である。
Reference numeral 44 denotes an illumination light source, and illumination light 45 is similarly focused and irradiated onto the sample 1 through a reflection mirror 46 and an objective lens 42, and its observation light 47 can be observed with a microscope 48 and a television camera 49. .

【0020】まず試料1を真空チャンバ31内のXYス
テージ32上に固定する。この状態で、バルブ36を用
いて真空ポンプ33により真空チャンバ31を真空排気
する。次に、薄膜熱電対形成のための第一の有機金属材
料ガスをバルブ37を開いてボンベ34により真空チャ
ンバ31内に一定圧力まで供給する。次に、顕微鏡48
およびテレビカメラ49により試料1の温度測定箇所を
位置決めし、レーザ光源39よりレーザ光40を所定の
強度で発振する。レーザ光40は対物レンズ42により
試料1の表面に集光される。 レーザ光源39にArレーザの基本波、YAGレーザの
基本波・第二高調波などの可視波長より長い波長のレー
ザ光を用いると、試料1の表面でレーザ光が吸収されて
高温に加熱されるため有機金属材料ガスが熱分解して金
属を析出する。また、レーザ光源39にArレーザの第
二高調波、YAGレーザの第三、第四高調波、およびエ
キシマレーザなどの可視波長よりも短い波長のレーザ光
を用いると、紫外光の光子エネルギで有機金属材料ガス
が光分解して同様に金属を析出する。
First, the sample 1 is fixed on the XY stage 32 inside the vacuum chamber 31. In this state, the vacuum chamber 31 is evacuated by the vacuum pump 33 using the valve 36 . Next, the first organometallic material gas for forming the thin film thermocouple is supplied into the vacuum chamber 31 up to a constant pressure by opening the valve 37 and using the cylinder 34 . Next, the microscope 48
Then, the temperature measurement point of the sample 1 is positioned using the television camera 49, and the laser light source 39 emits laser light 40 at a predetermined intensity. Laser light 40 is focused on the surface of sample 1 by objective lens 42 . When the laser light source 39 uses laser light with a wavelength longer than the visible wavelength, such as the fundamental wave of an Ar laser or the fundamental wave/second harmonic of a YAG laser, the surface of the sample 1 absorbs the laser light and heats it to a high temperature. Therefore, the organometallic material gas thermally decomposes and metals are deposited. Furthermore, if a laser beam with a wavelength shorter than the visible wavelength such as the second harmonic of an Ar laser, the third or fourth harmonic of a YAG laser, or an excimer laser is used for the laser light source 39, the photon energy of ultraviolet light can be used to The metal material gas is photodecomposed and metal is similarly deposited.

【0021】試料1にレーザ光40を照射しながらXY
ステージ32を駆動することにより、任意形状の連続し
た金属膜を形成することができる。
While irradiating the sample 1 with the laser beam 40,
By driving the stage 32, a continuous metal film having an arbitrary shape can be formed.

【0022】薄膜熱電対の第一の金属を所定形状に形成
した後、真空チャンバ31内の有機金属材料ガスを真空
ポンプ33により排気し、第二の有機金属材料ガスをバ
ルブ38を開いてボンベ35より真空チャンバ31内に
一定圧力まで供給し、第一の有機金属材料ガスの場合と
同様にして薄膜熱電対の第二の金属を所定形状に形成す
ることにより、薄膜熱電対を形成できる。
After forming the first metal of the thin film thermocouple into a predetermined shape, the organometallic material gas in the vacuum chamber 31 is evacuated by the vacuum pump 33, and the second organometallic material gas is pumped into the cylinder by opening the valve 38. 35 into the vacuum chamber 31 to a constant pressure, and forming the second metal of the thin film thermocouple into a predetermined shape in the same manner as in the case of the first organometallic material gas, a thin film thermocouple can be formed.

【0023】図3は、本発明の薄膜熱電対を形成する方
法でエネルギビームに荷電粒子で、イオンあるいは電子
を用いる場合の薄膜熱電対形成の説明図である。
FIG. 3 is an explanatory diagram of forming a thin film thermocouple when charged particles such as ions or electrons are used as an energy beam in the method for forming a thin film thermocouple of the present invention.

【0024】試料1は真空チャンバ51内のXYステー
ジ52上に固定される。真空チャンバ51にはそれぞれ
排気のための真空ポンプ53、薄膜熱電対を形成するた
めの二種類の有機金属材料ガス用のノズル54、55お
よびボンベ56、57がそれぞれバルブ58、59、6
0を介して接続されている。61はイオン源あるいは電
子源である。これらの発生源から生じた荷電粒子ビーム
62は第一段アパーチャ63、集光静電レンズ64、第
二段アパーチャ65により微細ビームに収束されて試料
1上に照射される。66は荷電粒子ビーム62の試料1
上への照射のオン、オフを行なうブランキング電極で、
67はブランキングコントローラ、68はブランキング
時の荷電粒子ビーム入射電極である。また、69は試料
1上で荷電粒子ビーム62を偏向して走査するデフレク
タ電極および70はブランキングコントローラである。 また71は荷電粒子ビーム62を試料1に照射したとき
に試料1から発生する二次電子、あるいは二次イオンを
検出する二次粒子ディデクタで、例えば、マイクロチャ
ンネルプレートであり、これによりSIM(Scann
ing Ion Microscope:走査イオン顕
微鏡)像を得る。このSIM像により試料表面の観察を
行なうことができる。また、72はブランキング電極6
6、デフレクタ電極69、および、二次粒子ディテクタ
71などをコントロールするメインコントローラである
The sample 1 is fixed on an XY stage 52 within a vacuum chamber 51. The vacuum chamber 51 includes a vacuum pump 53 for evacuation, nozzles 54 and 55 and cylinders 56 and 57 for two types of organic metal material gases for forming a thin film thermocouple, and valves 58, 59 and 6, respectively.
Connected via 0. 61 is an ion source or an electron source. A charged particle beam 62 generated from these sources is focused into a fine beam by a first stage aperture 63, a condensing electrostatic lens 64, and a second stage aperture 65, and is irradiated onto the sample 1. 66 is sample 1 of charged particle beam 62
A blanking electrode turns on and off the upward irradiation.
67 is a blanking controller, and 68 is a charged particle beam incidence electrode during blanking. Further, 69 is a deflector electrode that deflects and scans the charged particle beam 62 on the sample 1, and 70 is a blanking controller. Further, 71 is a secondary particle detector that detects secondary electrons or secondary ions generated from the sample 1 when the sample 1 is irradiated with the charged particle beam 62, and is, for example, a microchannel plate.
Obtain an image using a scanning ion microscope. The sample surface can be observed using this SIM image. In addition, 72 is a blanking electrode 6
6, a main controller that controls the deflector electrode 69, the secondary particle detector 71, etc.

【0025】この構成で、まず試料1を真空チャンバ5
1内のXYステージ52上に固定し、XYステージ52
を駆動して試料1の薄膜熱電対形成の概略位置まで移動
する。 この状態で、バルブ58を開いて真空ポンプ53により
真空チャンバ51を真空排気し、荷電粒子ビーム源61
から荷電粒子ビーム62を発生させて、第一段アパーチ
ャ63、集束静電レンズ64、第二段アパーチャ65を
通して荷電粒子ビーム62を試料上1に照射し、デフレ
クタコントローラ70からデフレクタ電極69を駆動し
て荷電粒子ビーム62を平面的に走査して、二次粒子デ
ィテクタ71で検出されるSIM像により試料1の観察
を行なって、正確な薄膜熱電対の形成箇所に関する位置
情報をメインコントローラ72に送る。次に、ブランキ
ングコントローラ67によりブランキング電極66を駆
動して荷電粒子ビーム62をカットした後、薄膜熱電対
形成のための第一の有機金属材料ガスをバルブ59を開
いてボンベ56よりノズル54を通して真空チャンバ5
1内に導入する。この状態で、ブランキング電極66を
オフして荷電粒子ビーム62が再び試料1に照射するよ
うにして、メインコントローラ72によりデフレクタコ
ントローラ70を介してデフレクタ電極96を駆動する
ことにより薄膜熱電対の第一の金属膜を形成する。
With this configuration, the sample 1 is first placed in the vacuum chamber 5.
Fixed on the XY stage 52 in 1, the XY stage 52
The sample 1 is moved to the approximate position where the thin film thermocouple is to be formed. In this state, the valve 58 is opened, the vacuum chamber 51 is evacuated by the vacuum pump 53, and the charged particle beam source 61 is evacuated.
A charged particle beam 62 is generated from the sample, and the sample 1 is irradiated with the charged particle beam 62 through the first stage aperture 63, the focusing electrostatic lens 64, and the second stage aperture 65, and the deflector electrode 69 is driven by the deflector controller 70. The charged particle beam 62 is scanned in a plane to observe the sample 1 using the SIM image detected by the secondary particle detector 71, and the positional information regarding the precise formation location of the thin film thermocouple is sent to the main controller 72. . Next, after cutting the charged particle beam 62 by driving the blanking electrode 66 by the blanking controller 67, the first organometallic material gas for forming the thin film thermocouple is introduced from the cylinder 56 into the nozzle 54 by opening the valve 59. through the vacuum chamber 5
Introduced within 1. In this state, the blanking electrode 66 is turned off so that the charged particle beam 62 irradiates the sample 1 again, and the main controller 72 drives the deflector electrode 96 via the deflector controller 70 to activate the thin film thermocouple. One metal film is formed.

【0026】薄膜熱電対の第一の金属を所定形状に形成
した後、ブランキング電極をオンして荷電粒子ビーム6
2を、再び、カットし、バルブ59を閉じて薄膜熱電対
形成のための第一の有機金属材料ガスの供給を停止する
とともに第二の有機金属材料ガスをバルブ60を開いて
ボンベ57よりノズル55を通して真空チャンバ51内
に導入する。 この状態で、第一の有機金属材料ガスの場合と同様にし
て薄膜熱電対の第二の金属を所定形状に形成することに
より、薄膜熱電対を形成できる。
After forming the first metal of the thin film thermocouple into a predetermined shape, the blanking electrode is turned on and the charged particle beam 6
2 is cut again, the valve 59 is closed to stop the supply of the first organometallic material gas for forming the thin film thermocouple, and the second organometallic material gas is introduced from the cylinder 57 by opening the valve 60 and into the nozzle. 55 into the vacuum chamber 51. In this state, a thin film thermocouple can be formed by forming the second metal of the thin film thermocouple into a predetermined shape in the same manner as in the case of the first organometallic material gas.

【0027】この結果、試料上の任意箇所に微細な薄膜
熱電対を形成できるようになるので、試料の微細領域で
の温度計測が可能となる。
As a result, it becomes possible to form a minute thin film thermocouple at any location on the sample, making it possible to measure the temperature in a minute area of the sample.

【0028】[0028]

【発明の効果】本発明によれば、マスクを用いる必要が
ないのでマスクの作成に要する時間が不要となる。また
、エネルギビームによりCVDガスを分解して熱電対を
形成の金属膜を析出するので、エネルギビームの照射箇
所に試料を位置決めすることで容易に熱電対の形成位置
を決めることができ、さらに形成条件を変えることによ
り任意の幅で微細形状の熱電対を形成することができる
。また、試料表面での化学反応によりCVDガスから直
接金属を析出するので異物の発生がなく、他の工程で異
物により試料を損ねることがない。
According to the present invention, there is no need to use a mask, so the time required to create a mask is eliminated. In addition, since the energy beam decomposes the CVD gas and deposits the metal film that forms the thermocouple, it is possible to easily determine the formation position of the thermocouple by positioning the sample at the energy beam irradiation point. By changing the conditions, it is possible to form thermocouples with arbitrary widths and minute shapes. Furthermore, since the metal is directly deposited from the CVD gas by a chemical reaction on the surface of the sample, no foreign matter is generated, and the sample is not damaged by foreign matter in other processes.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の薄膜熱電対を形成する方法の説明図、
FIG. 1 is an explanatory diagram of a method for forming a thin film thermocouple of the present invention,

【図2】レーザを用いた薄膜熱電対形成の説明図、[Fig. 2] An explanatory diagram of forming a thin film thermocouple using a laser,

【図
3】荷電粒子を用いた薄膜熱電対形成の説明図。
FIG. 3 is an explanatory diagram of forming a thin film thermocouple using charged particles.

【符号の説明】[Explanation of symbols]

1…試料,12…エネルギビーム,13…有機金属材料
ガス,14…第一の金属,15…有機金属材料ガス,1
7…第二の金属,39…レーザ発振器,40…レーザ光
,61…荷電粒子ビーム源,62…荷電粒子ビーム。
DESCRIPTION OF SYMBOLS 1... Sample, 12... Energy beam, 13... Organometallic material gas, 14... First metal, 15... Organometallic material gas, 1
7... Second metal, 39... Laser oscillator, 40... Laser light, 61... Charged particle beam source, 62... Charged particle beam.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】薄膜熱電対の形成方法であって、試料表面
をクリーニングする工程と,試料の温度測定箇所に位置
決め後に前記薄膜熱電対のそれぞれの金属を含む有機金
属材料ガス中で前記試料の前記温度測定箇所にエネルギ
ビームを照射しながらそれぞれの金属を別々に形成する
ようにしたことを特徴とする薄膜熱電対の形成方法。
1. A method for forming a thin film thermocouple, comprising the steps of: cleaning the surface of a sample; and, after positioning the sample at a temperature measurement point, forming the sample in an organometallic material gas containing each metal of the thin film thermocouple. A method for forming a thin film thermocouple, characterized in that each metal is formed separately while irradiating the temperature measurement point with an energy beam.
【請求項2】請求項1において、前記試料表面のクリー
ニングはArイオンなどの不活性ガスイオンを用いたス
パッタエッチングによる薄膜熱電対の形成方法。
2. The method of forming a thin film thermocouple according to claim 1, wherein the cleaning of the sample surface is performed by sputter etching using inert gas ions such as Ar ions.
【請求項3】請求項1において、前記試料表面のクリー
ニングは真空中で試料の加熱により行う薄膜熱電対の形
成方法。
3. The method of forming a thin film thermocouple according to claim 1, wherein the cleaning of the sample surface is performed by heating the sample in a vacuum.
【請求項4】請求項1において、前記試料表面のクリー
ニングは真空中で試料に紫外光を当てることにより行う
薄膜熱電対の形成方法。
4. The method of forming a thin film thermocouple according to claim 1, wherein the cleaning of the sample surface is performed by irradiating the sample with ultraviolet light in a vacuum.
【請求項5】請求項1において、前記有機金属材料ガス
としてそれぞれイリジウム及び白金を含み、イリジウム
と白金により薄膜熱電対を形成するようにした薄膜熱電
対の形成方法。
5. The method of forming a thin film thermocouple according to claim 1, wherein the organic metal material gases each contain iridium and platinum, and the thin film thermocouple is formed from iridium and platinum.
【請求項6】請求項1において、前記有機金属材料ガス
としてそれぞれ鉄及び銅を含み、鉄と銅により薄膜熱電
対を形成するようにした薄膜熱電対の形成方法。
6. The method of forming a thin film thermocouple according to claim 1, wherein the organic metal material gases each contain iron and copper, and the thin film thermocouple is formed from iron and copper.
【請求項7】請求項1において、前記有機金属材料ガス
としてそれぞれ鉄及びニッケルを含み、鉄とニッケルに
より、薄膜熱電対を形成するようにした薄膜熱電対の形
成方法。
7. The method of forming a thin film thermocouple according to claim 1, wherein the organic metal material gases each contain iron and nickel, and the thin film thermocouple is formed from iron and nickel.
【請求項8】請求項1において、前記有機金属材料ガス
としてそれぞれ銅及びニッケルを含み、銅とニッケルに
より、薄膜熱電対を形成するようにした薄膜熱電対の形
成方法。
8. The method of forming a thin film thermocouple according to claim 1, wherein the organic metal material gases each contain copper and nickel, and the thin film thermocouple is formed from copper and nickel.
【請求項9】請求項1において、前記有機金属材料ガス
としてそれぞれ金及びニッケルを含み、金とニッケルに
より、薄膜熱電対を形成するようにした薄膜熱電対の形
成方法。
9. The method of forming a thin film thermocouple according to claim 1, wherein the organic metal material gases each contain gold and nickel, and the thin film thermocouple is formed from gold and nickel.
【請求項10】請求項1において、前記エネルギビーム
が、レーザである薄膜熱電対の形成方法。
10. The method of forming a thin film thermocouple according to claim 1, wherein the energy beam is a laser.
【請求項11】請求項1において、前記エネルギビーム
がイオンビームである薄膜熱電対の形成方法。
11. The method of forming a thin film thermocouple according to claim 1, wherein the energy beam is an ion beam.
【請求項12】請求項1において、前記エネルギビーム
は電子ビームである薄膜熱電対の形成方法。
12. The method of forming a thin film thermocouple according to claim 1, wherein the energy beam is an electron beam.
JP3118318A 1991-05-23 1991-05-23 Formation method of thin film thermocouple Pending JPH04346275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3118318A JPH04346275A (en) 1991-05-23 1991-05-23 Formation method of thin film thermocouple

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3118318A JPH04346275A (en) 1991-05-23 1991-05-23 Formation method of thin film thermocouple

Publications (1)

Publication Number Publication Date
JPH04346275A true JPH04346275A (en) 1992-12-02

Family

ID=14733707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3118318A Pending JPH04346275A (en) 1991-05-23 1991-05-23 Formation method of thin film thermocouple

Country Status (1)

Country Link
JP (1) JPH04346275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200144088A (en) 2018-04-17 2020-12-28 미쓰비시 마테리알 가부시키가이샤 Cu-Ni alloy sputtering target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200144088A (en) 2018-04-17 2020-12-28 미쓰비시 마테리알 가부시키가이샤 Cu-Ni alloy sputtering target

Similar Documents

Publication Publication Date Title
US4876112A (en) Process for forming metallic patterned film
JP4730875B2 (en) Proximity deposition method and system
US4324854A (en) Deposition of metal films and clusters by reactions of compounds with low energy electrons on surfaces
US6344115B1 (en) Pattern forming method using charged particle beam process and charged particle beam processing system
JP2733244B2 (en) Wiring formation method
EP0237220B1 (en) Method and apparatus for forming a film
JP3715956B2 (en) Information acquisition device, sample evaluation device, and sample evaluation method
JP2001345360A (en) Inspecting and analyzing method and sample manufacturing apparatus
US5336636A (en) Method for contacting conductive structures in VLSI circuits
JPH04346275A (en) Formation method of thin film thermocouple
JPH09304253A (en) Method and apparatus for concentrating and analyzing impurities
US7005638B2 (en) Apparatus and method for reducing the electron-beam-induced deposition of contamination products
JP3044811B2 (en) Photomask repair equipment
JP3218024B2 (en) Method and apparatus for forming metal pattern film
JP2939906B1 (en) Ion beam processing equipment
JPH08222565A (en) Method and device for forming metallic film on electronic circuit board, and method of correcting its wiring
JPH03267374A (en) Laser cvd device
JP3185320B2 (en) Semiconductor device wiring correction method and device
JPS61224342A (en) Correction for lsi aluminum wiring and device thereof
JP3908530B2 (en) Photomask white defect correction method
JPH11274044A (en) Machining method by charged beam and machining system thereof, and observation method and system by the charged beam
JPH0385729A (en) Wiring formation
JP2747314B2 (en) Laser processing method and apparatus
JPH0338833A (en) Wiring correction apparatus
JPH0553259B2 (en)