JPH04345757A - Manufacture of closed type lead battery - Google Patents

Manufacture of closed type lead battery

Info

Publication number
JPH04345757A
JPH04345757A JP3117207A JP11720791A JPH04345757A JP H04345757 A JPH04345757 A JP H04345757A JP 3117207 A JP3117207 A JP 3117207A JP 11720791 A JP11720791 A JP 11720791A JP H04345757 A JPH04345757 A JP H04345757A
Authority
JP
Japan
Prior art keywords
battery
cell
plate
charging
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3117207A
Other languages
Japanese (ja)
Other versions
JP2982376B2 (en
Inventor
Kiichi Koike
喜一 小池
Hiroyuki Jinbo
裕行 神保
Harumi Yoshino
吉野 晴美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3117207A priority Critical patent/JP2982376B2/en
Publication of JPH04345757A publication Critical patent/JPH04345757A/en
Application granted granted Critical
Publication of JP2982376B2 publication Critical patent/JP2982376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To reduce self-discharge quantity during the long time leaving of a battery and improve a capacity restoring property by making supplemental charge after battery voltage is over-discharged to 0.5 V/cell or less after finishing initial charge or battery jar formation. CONSTITUTION:Batteries of 6V 2.0Ah are made by forming a positive plate, using 1% Pb-CaO-8% SnO to which Sn is added as a positive electrode grid alloy, together with a negative plate in a plate condition, then putting a plate group, composed of separators consisting of the positive plate, the negative plate, and glass fiber, in a battery jar to be sealed, and making a battery, initially charged by injecting dilute sulfuric acid as an electrolyte, three-cell- series constitution. This battery is over-discharged to a battery voltage of 0.5V/ cell or less, and then is supplementally charged.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、密閉形鉛蓄電池の製造
方法に関し、特にその充電方法を改良した密閉形鉛蓄電
池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a sealed lead-acid battery, and more particularly to a method of manufacturing a sealed lead-acid battery with an improved charging method.

【0002】0002

【従来の技術】鉛蓄電池は他の電池と比較してエネルギ
ー密度が高く経済性に優れている。特に密閉形鉛蓄電池
は最近ビデオテープレコーダなどの小形電子機器用など
の需要が増大し、性能も著しく向上している。
BACKGROUND OF THE INVENTION Lead-acid batteries have a higher energy density and are more economical than other batteries. In particular, the demand for sealed lead-acid batteries for use in small electronic devices such as video tape recorders has increased recently, and their performance has been significantly improved.

【0003】密閉形鉛蓄電池に関しては、これまで多く
の提案がなされている。その代表的なものとして、電解
液量を正極板,負極板,セパレータから成る極板群の孔
容積と同等もしくはそれ以下として、いわゆる遊離液(
フリー液)のない状態にして、充電末期に正極板から発
生する酸素ガスを負極板に吸収させて、電解液量の減少
を抑制する方式が採用されている。
[0003] Many proposals have been made regarding sealed lead-acid batteries. As a typical example, the amount of electrolyte is set to be equal to or less than the pore volume of the electrode plate group consisting of the positive electrode plate, negative electrode plate, and separator, so-called free liquid (
A method is adopted in which the oxygen gas generated from the positive electrode plate is absorbed by the negative electrode plate at the end of charging to suppress the decrease in the electrolyte amount.

【0004】この密閉形鉛蓄電池は、フリーな電解液が
ないので横にしても倒立しても漏液せず、かつ補水不要
であるという特徴を持っているので、多方面に使用され
ている。
[0004] Sealed lead-acid batteries are used in a wide variety of applications because they do not have free electrolyte, so they do not leak when laid down or upside down, and do not require water replenishment. .

【0005】このような密閉形鉛蓄電池の充電は、化成
した正極板,負極板を用いる場合には、極板群に電解液
を注入後初充電を行う方法、または未化成極板を用いる
場合には、電解液を注入後、電槽化成を行う方法が一般
的である。
[0005] Charging of such a sealed lead-acid battery is carried out by first charging after injecting an electrolyte into the electrode plates when chemically formed positive and negative electrode plates are used, or by performing an initial charge after injecting electrolyte into the electrode plates, or when using non-formed electrode plates. A common method is to perform battery cell formation after injecting an electrolyte.

【0006】この初充電あるいは電槽化成後、一定量放
電し、その放電電圧測定を行う容量検査、および容量検
査の放電量分を充電する補充電を行なった後、製品とし
て出荷される。
[0006] After this initial charging or formation of the container, the battery is discharged a certain amount, and a capacity test is performed to measure the discharge voltage, and an auxiliary charge is performed to charge the discharged amount for the capacity test, and then the product is shipped.

【0007】[0007]

【発明が解決しようとする課題】しかし、このような状
態で出荷された密閉形鉛蓄電池は、正極板中に不安定な
二酸化鉛(主にα−PbO2)が多量に存在し、その多
くは、放置の初期段階に分解して充電されにくい粗大な
硫酸鉛の結晶を生成するので、自己放電量が多く容量低
下が大きい。
[Problems to be Solved by the Invention] However, in sealed lead-acid batteries shipped in such a state, a large amount of unstable lead dioxide (mainly α-PbO2) is present in the positive electrode plate, and most of it is In the initial stage of storage, the battery decomposes and forms coarse lead sulfate crystals that are difficult to charge, resulting in a large amount of self-discharge and a large capacity drop.

【0008】この粗大な硫酸鉛の結晶は、低比重(低濃
度)電解液が十分存在する状態で再充電されれば安定な
二酸化鉛(β−PbO2)になり、再び放置しても二酸
化鉛の分解による自己放電量は減少するが、高比重の電
解液で電解液量を制限している密閉形鉛蓄電池では充電
されにくく、特に一般的に用いられている定電圧充電方
式では、正極板に比べて自己放電の少ない負極板の充電
状態によって充電々流が制限されるため、正極板が充電
不足になり、長時間充電あるいは定電流での過充電を行
わないと、長期放置した場合に電池の容量が回復しない
という問題点があった。
These coarse lead sulfate crystals become stable lead dioxide (β-PbO2) if they are recharged in the presence of a sufficient low-density (low-concentration) electrolyte, and even if they are left unattended again, lead dioxide remains. However, in sealed lead-acid batteries, which limit the amount of electrolyte with a high-density electrolyte, it is difficult to charge, especially in the commonly used constant-voltage charging method. Since the charging current is limited by the state of charge of the negative plate, which has less self-discharge compared to the negative plate, the positive plate becomes undercharged, and unless it is charged for a long time or overcharged with a constant current, it will There was a problem that the battery capacity did not recover.

【0009】本発明は、上記問題点を解決するもので、
長期放置中の自己放電量を減少させ、また容量回復性を
向上させた密閉形鉛蓄電池の製造方法を提供することを
目的とする。
[0009] The present invention solves the above problems.
An object of the present invention is to provide a method for manufacturing a sealed lead-acid battery that reduces self-discharge during long-term storage and improves capacity recovery.

【0010】0010

【課題を解決するための手段】このような課題を解決す
るため本発明の密閉形鉛蓄電池の製造方法は、初充電ま
たは電槽化成終了後、電池電圧が0.5V/セル以下ま
で過放電した後補充電するものである。
[Means for Solving the Problems] In order to solve the above problems, the method for manufacturing a sealed lead-acid battery of the present invention includes overdischarging until the battery voltage reaches 0.5 V/cell or less after initial charging or completion of battery cell formation. After that, you will need to re-charge the battery.

【0011】[0011]

【作用】この本発明の密閉形鉛蓄電池の製造方法では、
初充電または電槽化成終了後の密閉形鉛蓄電池を過放電
することにより、正極板中の不安定な二酸化鉛(主にα
−PbO2)をすべて放電させてから補充電することに
より、前記正極板中の不安定な二酸化鉛は、安定な二酸
化鉛(β−PbO2)に変わることとなる。
[Function] In the method for manufacturing a sealed lead-acid battery of the present invention,
By over-discharging a sealed lead-acid battery after initial charging or after completion of battery cell formation, unstable lead dioxide (mainly α
-PbO2) is completely discharged and then re-charged, the unstable lead dioxide in the positive electrode plate is changed to stable lead dioxide (β-PbO2).

【0012】0012

【実施例】以下、本発明の一実施例の密閉形鉛蓄電池の
製造方法について図面をもとにして説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a sealed lead-acid battery according to an embodiment of the present invention will be described below with reference to the drawings.

【0013】試験に用いた密閉形鉛蓄電池は、正極格子
合金として、過放電後の充電受け入れ性を向上させるた
めSnを添加したPb−Ca0.1%−Sn0.8%を
用いた正極板を負極板とともに極板状態で化成後、正極
板1枚、負極板1枚およびガラス繊維より成るセパレー
タで構成した極板群を電槽に入れ封口後、電解液の希硫
酸を注入して初充電した電池を3セル直列構成すること
により6V2.0Ahの電池を作成して用いた。
[0013] The sealed lead-acid battery used in the test had a positive electrode plate using Pb-Ca0.1%-Sn0.8% to which Sn was added to improve charge acceptance after overdischarge as the positive electrode grid alloy. After chemical formation in the plate state along with the negative electrode plate, the electrode group consisting of one positive electrode plate, one negative electrode plate, and a separator made of glass fiber is placed in a battery container and sealed, and diluted sulfuric acid as an electrolyte is injected for initial charging. A 6V2.0Ah battery was created and used by configuring three cells in series.

【0014】この電池の電槽は、図示していないがポリ
エチレン(PE)より成る枠体で極板群の周囲を囲み、
極板群の両面をポリエチレンフィルム(以降PEフィル
ムと略す)とブリキ板をラミネートした集電板で押さえ
、枠体と集電板のPEフィルム面を熱溶着し封口したも
のを用い、従来のスチレン,アクリロニトリル,ブタジ
エン共重合樹脂電槽(以降ABS樹脂電槽と略す)に比
べて水分透過率が1/10以下であり、長期放置中の電
解液の減少がほとんどない構成とした。
Although not shown, the battery case of this battery has a frame made of polyethylene (PE) surrounding the electrode plate group,
Both sides of the electrode plate group are held down by a current collector plate made by laminating polyethylene film (hereinafter abbreviated as PE film) and tin plate, and the frame body and the PE film side of the current collector plate are sealed by heat welding, instead of conventional styrene. , acrylonitrile, and butadiene copolymer resin batteries (hereinafter referred to as ABS resin batteries), the water permeability is 1/10 or less, and the electrolyte solution hardly decreases during long-term storage.

【0015】次に初充電した電池を、12Ωの抵抗を用
いて初期放電々流0.5Aで、放電末期電圧が0.05
V/セル〜1.7V/セルの間の7種類に規定された値
になるまで放電し、放電量の130%補充電することに
より評価用電池を作成した。
Next, the initially charged battery was charged with an initial discharge current of 0.5A using a 12Ω resistor, and the final discharge voltage was 0.05.
Batteries for evaluation were prepared by discharging the batteries until they reached seven specified values between V/cell and 1.7 V/cell, and supplementary charging at 130% of the discharge amount.

【0016】このような過放電を行なった電池を、25
℃で6ヶ月間保存し、初期容量を100とした残存容量
率(%)と2.45V/セルの定電圧充電後の初期容量
を100とした回復容量率(%)を測定し、その容量特
性の変化を比較した。
[0016] The battery that has been overdischarged in this way is
After storing it at ℃ for 6 months, the remaining capacity rate (%) with the initial capacity as 100 and the recovered capacity rate (%) with the initial capacity after constant voltage charging at 2.45V/cell as 100 were measured. Changes in characteristics were compared.

【0017】図2に示すように過放電を行わないで通常
の放電(放電末期電圧1.5〜1.7V/セル)を入れ
長期放置した電池では、放置後の容量低下および容量ば
らつきが大きく、また容量の回復性も悪い。
As shown in Figure 2, batteries that are left for a long period after being subjected to normal discharge (end-of-discharge voltage 1.5 to 1.7 V/cell) without over-discharging show a large capacity drop and large capacity variations after being left unused. , and capacity recovery is also poor.

【0018】この電池の正極板表面などには、充電して
も粗大な硫酸鉛の結晶が残存していた。
Even after charging, coarse lead sulfate crystals remained on the surface of the positive electrode plate of this battery.

【0019】しかし図1に示すような放電々圧特性の平
坦領域(以降プラトーという)以下(0.5V/セル)
に放電末期電圧が低下するまで過放電した電池では、図
2のAに示すような長期放置後の容量低下やばらつきが
少なく、また図2のBに示すように容量の回復性も向上
するが、放電末期電圧1.0V/セル以上の過放電では
その効果が少なく、放電末期電圧は少なくとも1.0V
/セル以下、望ましくは、0.5V/セル以下に過放電
するのが望ましい。このことは、放電々圧特性のプラト
ーは、α−PbO2が放電してPbSO4になる反応と
考えられこのPbSO4は、過放電後の補充電で安定な
β−PbO2に変化していると推定される。この試験は
、化成板を用いた電池についてのみ説明しているが、電
槽化成した電池でも同様な効果が得られ、サイクル寿命
やトリクル寿命特性などについても特性の低下がないこ
とを確認している。
However, below the flat region (hereinafter referred to as plateau) of the discharge pressure characteristics as shown in FIG. 1 (0.5 V/cell)
Batteries that are over-discharged until the end-of-discharge voltage decreases have less capacity loss and variation after long-term storage, as shown in A in Figure 2, and improved capacity recovery, as shown in B in Figure 2. , the effect is small in overdischarge where the end-of-discharge voltage is 1.0 V/cell or more, and the end-of-discharge voltage is at least 1.0 V.
It is desirable to overdischarge to a voltage of 0.5V/cell or less, preferably 0.5V/cell or less. This indicates that the plateau in the discharge pressure characteristics is thought to be due to a reaction in which α-PbO2 is discharged and becomes PbSO4, and it is assumed that this PbSO4 is changed to stable β-PbO2 by supplementary charging after overdischarge. Ru. Although this test only describes batteries using chemically formed plates, it was confirmed that similar effects were obtained with batteries formed using chemically formed containers, and there was no deterioration in characteristics such as cycle life and trickle life. There is.

【0020】このような過放電は、通常の容量検査後連
続して行うことができるので製造工程内で容易に実施可
能である。
[0020] Such overdischarge can be carried out continuously after a normal capacity test, so it can be easily carried out during the manufacturing process.

【0021】[0021]

【発明の効果】以上の実施例の説明で明らかなように、
本発明の密閉形鉛蓄電池の製造方法によって製造した電
池においては、長期間放置しても容量低下およびそのば
らつきも少なく、また容量回復性に優れている。
[Effects of the Invention] As is clear from the above description of the embodiments,
A battery manufactured by the method for manufacturing a sealed lead-acid battery of the present invention has less capacity loss and less variation even when left for a long period of time, and has excellent capacity recovery.

【0022】この理由として次のことが考えられる。初
充電または電槽化成後に生成する正極活物質の二酸化鉛
は、不安定で分解しやすいα−PbO2が多く、このα
−PbO2が高比重電解液中で除々に分解すると粗大で
不活性な硫酸鉛の結晶を生じ、充電しても活性なPbO
2にもどりにくいので、長期放置後の残存容量低下や回
復容量の低下が発生する。このため、長期放置前に、過
放電を行ないα−PbO2をすべて放電して充電されや
すい微細で活性な硫酸鉛にした後補充電し、安定なβ−
PbO2に変換することにより、長期放置中の自己放電
量を減少させる。これにより充電されにくい粗大な硫酸
鉛の結晶が生成しないので、回復容量率が向上すると考
えられる。なお、正極格子合金にSnを含有させないと
、過放電時に格子表面に不導体の硫酸鉛の被膜を生成し
、充電受け入れが悪くなるので、Sbを含有しない合金
では、充電受け入れ性を向上させるため、Snを含有さ
せる必要がある。
The reason for this can be considered as follows. The positive electrode active material lead dioxide produced after initial charging or cell formation contains a lot of α-PbO2, which is unstable and easily decomposed.
- When PbO2 gradually decomposes in a high-density electrolyte, coarse and inactive lead sulfate crystals are formed, and PbO2 remains active even after charging.
Since it is difficult to return to 2, the remaining capacity and recovery capacity decrease after being left unused for a long period of time. Therefore, before leaving it for a long period of time, over-discharge is performed to discharge all α-PbO2 into fine, active lead sulfate that is easily charged, and then supplementary charging is performed to stabilize β-PbO2.
By converting to PbO2, the amount of self-discharge during long-term storage is reduced. This is thought to improve the recovery capacity rate because coarse lead sulfate crystals that are difficult to charge are not generated. Note that if the positive electrode lattice alloy does not contain Sn, a film of nonconducting lead sulfate will form on the lattice surface during overdischarge, resulting in poor charge acceptance. , Sn must be contained.

【0023】上述のように本発明の密閉形鉛蓄電池の製
造方法により製造した電池は、初充電後、過放電した後
、補充電を行うことにより、長期放置されても容量回復
の信頼性が高いので、その工業的価値は極めて高い。
As described above, the battery manufactured by the method for manufacturing a sealed lead-acid battery of the present invention has reliability in capacity recovery even after being left unused for a long period of time by performing supplementary charging after initial charging and over-discharging. Therefore, its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の密閉形鉛蓄電池の製造方法
における過放電時の電圧特性を示すグラフ
FIG. 1 is a graph showing voltage characteristics during overdischarge in the manufacturing method of a sealed lead-acid battery according to an embodiment of the present invention.

【図2】図1
に示す過放電を、放電末期電圧が0.05〜1.7V/
セルの範囲で7段階に規定した値で行った電池を補充電
後、長期放置したときの残存容量率と回復容量率を示す
グラフ
[Figure 2] Figure 1
When the overdischarge shown in is
A graph showing the remaining capacity rate and recovered capacity rate when a battery is left for a long period of time after supplementary charging at a value specified in seven levels within the cell range.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極板,負極板,セパレータに電解液を保
持させ、遊離液が存在しない程度に電解液量を制限し、
正極格子合金がアンチモンを含まず錫を含有した密閉形
鉛蓄電池であって、初充電または電槽化成終了後、過放
電した後補充電する密閉形鉛蓄電池の製造方法。
Claim 1: An electrolytic solution is held in a positive electrode plate, a negative electrode plate, and a separator, and the amount of electrolytic solution is limited to such an extent that there is no free solution,
A method for manufacturing a sealed lead-acid battery in which the positive electrode grid alloy does not contain antimony but contains tin, and the battery is over-discharged after initial charging or completion of battery cell formation, and then supplementary charging is performed.
【請求項2】電池電圧が0.5V/セル以下まで過放電
後、補充電する請求項1記載の密閉形鉛蓄電池の製造方
法。
2. The method for manufacturing a sealed lead-acid battery according to claim 1, wherein supplementary charging is performed after over-discharging until the battery voltage reaches 0.5 V/cell or less.
JP3117207A 1991-05-22 1991-05-22 Manufacturing method of sealed lead-acid battery Expired - Fee Related JP2982376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3117207A JP2982376B2 (en) 1991-05-22 1991-05-22 Manufacturing method of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3117207A JP2982376B2 (en) 1991-05-22 1991-05-22 Manufacturing method of sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH04345757A true JPH04345757A (en) 1992-12-01
JP2982376B2 JP2982376B2 (en) 1999-11-22

Family

ID=14706044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3117207A Expired - Fee Related JP2982376B2 (en) 1991-05-22 1991-05-22 Manufacturing method of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2982376B2 (en)

Also Published As

Publication number Publication date
JP2982376B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
US8502494B2 (en) Battery charging apparatus and method
Riezenman The search for better batteries
JP4233073B2 (en) Non-aqueous electrolyte battery defect sorting method
WO2019093654A1 (en) Method for charging battery and device for charging battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPS5832473B2 (en) Manufacturing method of sealed nickel-cadmium alkaline storage battery
WO2021186777A1 (en) Capacity restoration device, manufacturing method of secondary battery, capacity restoration method, and secondary battery system
US3424618A (en) Process for the forming of sealed alkaline sintered electrode accumulators having a low self-discharge
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JPS62103976A (en) Cathode plate for enclosed lead storage battery
JP2976579B2 (en) Manufacturing method of sealed lead-acid battery
JPH0750616B2 (en) Lead acid battery
Barsukov Battery selection, safety, and monitoring in mobile applications
Shukla et al. Electrochemical power sources: 1. Rechargeable batteries
JPH0793135B2 (en) Lead acid battery and manufacturing method thereof
Burrows et al. Low maintenance lead-acid batteries for energy storage
KR20070058304A (en) Charge control method of ni-cd battery
JPH0443570A (en) Manufacture of sealed lead storage battery
JPH01149376A (en) Sealed lead-acid battery
JP3221154B2 (en) Sealed lead-acid battery
JPH0246662A (en) Sealed lead-acid battery
JPS635866B2 (en)
CN114497691A (en) Lithium ion battery capacity grading optimization method
JPH0559553B2 (en)
JP3582068B2 (en) How to charge lead storage batteries

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees