JPH04343264A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04343264A
JPH04343264A JP3115160A JP11516091A JPH04343264A JP H04343264 A JPH04343264 A JP H04343264A JP 3115160 A JP3115160 A JP 3115160A JP 11516091 A JP11516091 A JP 11516091A JP H04343264 A JPH04343264 A JP H04343264A
Authority
JP
Japan
Prior art keywords
well
conductivity type
impurity
implanting
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3115160A
Other languages
Japanese (ja)
Inventor
Tadahiko Horiuchi
堀内 忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3115160A priority Critical patent/JPH04343264A/en
Publication of JPH04343264A publication Critical patent/JPH04343264A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method of forming a self-aligned P well.N well in a CMOS circuit device. CONSTITUTION:A photoresist 3 is formed through a photolithography process, and phosphorus ions 4 are implanted for the formation of an N well. In succession, a silicon oxide film is selectively grown to the photoresist 3 through a liquid phase growth method. After the photoresist 3 is removed, boron ions 7 are implanted for the formation of a P well using the selectively grown silicon oxide film 5 as a mask. A substrate 1 is thermally treated to diffuse impurities for the formation of a P well 9 and an N well 8. The well of a CMOS circuit can be sharply shortened in forming process.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に相補型MOS回路装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a complementary MOS circuit device.

【0002】0002

【従来の技術】相補型MOS回路装置においてはNチャ
ンネルMOSトランジスタとPチャンネルMOSトラン
ジスタが同一半導体基板上に具備されている。特に近年
の微細なMOSトランジスタを使用する相補型MOS回
路装置においては短チャンネル効果と寄生バイポーラ動
作を制御するためにPウェルとNウェルを同時に形成す
る必要がある。従来の相補型MOS回路装置の製造方法
においては、上記PウェルとNウェルを形成するために
、例えば図3(a)〜(c)の様にフォトリソグラフィ
工程を2回くり返してイオン注入を行っている。また、
別の従来例においては、図4(a)〜(d)に示す様に
シリコン窒化膜をエッチングした領域を例えば5000
オングストローム厚く酸化した酸化膜18をマスクとし
てイオン注入7を行っている。
2. Description of the Related Art In a complementary MOS circuit device, an N-channel MOS transistor and a P-channel MOS transistor are provided on the same semiconductor substrate. Particularly in recent complementary MOS circuit devices using minute MOS transistors, it is necessary to form a P well and an N well at the same time in order to control short channel effects and parasitic bipolar operations. In a conventional method for manufacturing a complementary MOS circuit device, in order to form the P-well and N-well, ion implantation is performed by repeating the photolithography process twice as shown in FIGS. 3(a) to 3(c), for example. ing. Also,
In another conventional example, as shown in FIGS. 4(a) to 4(d), the etched area of the silicon nitride film is
Ion implantation 7 is performed using the oxide film 18, which is oxidized to a thickness of angstroms, as a mask.

【0003】0003

【発明が解決しようとする課題】前者の従来例において
は、リソグラフィ工程が2回必要とされるために製造工
期が長いという欠点がある。またリソグラフィ工程での
ゴミのための不可避に導入されるパターン欠陥のために
製品歩留が低下するという欠点もある。
The former conventional example has the disadvantage that the manufacturing period is long because the lithography process is required twice. Another drawback is that product yield is reduced due to pattern defects that are inevitably introduced due to dust during the lithography process.

【0004】後者の従来例においては、厚い酸化膜18
を形成するためウェル形成後に図4(d)のごとく段差
を生ずる。ゲート電極のフォトリソグラフィ工程はMO
S型回路装置において最も高精細な精度を要求されるが
、前述の段差はこのリソグラフィ工程に有害な作用をも
たらす。すなわち図4のA点に露光の最良のフォーカス
条件を設定すると図のB点では図の様にフォーカスがず
れるためリソグラフィの精度の悪化が生じる。さらに厚
い酸化工程は不純物の再分布を生じさせるので製造上の
バラツキが増えるという欠点も生じる。
In the latter conventional example, a thick oxide film 18
In order to form a well, a step is generated as shown in FIG. 4(d) after the well is formed. The photolithography process of the gate electrode is MO
Although the highest precision is required in the S-type circuit device, the above-mentioned step has a detrimental effect on the lithography process. That is, if the best focus condition for exposure is set at point A in FIG. 4, the focus at point B in the figure shifts as shown in the figure, resulting in deterioration of lithography accuracy. Furthermore, a thick oxidation process causes redistribution of impurities, resulting in increased manufacturing variations.

【0005】[0005]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板の一主面にフォトリソグラフィ工
程によってフォトレジストマスクを形成する工程と、第
1の導電型の不純物をイオン注入する工程と、該フォト
レジストマスクの開孔部に対して絶縁膜を選択的に成長
させる工程と、該フォトレジストマスクを除去する工程
と、前記選択的に成長した絶縁膜をマスクとして逆導電
型の不純物をイオン注入する工程とを有する。
[Means for Solving the Problems] A method for manufacturing a semiconductor device of the present invention includes the steps of forming a photoresist mask on one main surface of a semiconductor substrate by a photolithography process, and ion-implanting impurities of a first conductivity type. a step of selectively growing an insulating film with respect to the opening of the photoresist mask; a step of removing the photoresist mask; and a step of growing an insulating film of the opposite conductivity type using the selectively grown insulating film as a mask. and a step of ion-implanting impurities.

【0006】本発明の望ましい実施様態においては、前
記のフォトレジストマスクの開孔部に対して絶縁膜を選
択的に成長させる工程が、ケイフッ素酸(H2 SiF
6 )に二酸化シリコン(SiO2 )を溶解した飽和
水溶液に対し、ホウ酸(H3 BO3 )水溶液を添加
することによって過飽和状態を作りSiO2 を析出さ
せ堆積させる工程となっている。
In a preferred embodiment of the present invention, the step of selectively growing an insulating film in the openings of the photoresist mask is performed using silicofluoric acid (H2SiF).
6) is a step in which a supersaturated state is created by adding a boric acid (H3 BO3) aqueous solution to a saturated aqueous solution in which silicon dioxide (SiO2) is dissolved, and SiO2 is precipitated and deposited.

【0007】さらに、本発明の望ましい実施様態を述べ
ると、前記の第1の導電型の不純物をイオン注入する工
程が、相補型MOS回路装置の第1の導電型のウェルを
形成する不純物をイオン注入する工程であり、逆導電型
の不純物をイオン注入する工程が逆導電型のウェルを形
成する不純物をイオン注入する工程となっている。
Further, in a preferred embodiment of the present invention, the step of ion-implanting the impurity of the first conductivity type ion-implants the impurity forming the well of the first conductivity type of the complementary MOS circuit device. In this step, the step of ion-implanting an impurity of a reverse conductivity type is a step of ion-implanting an impurity that forms a well of a reverse conductivity type.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0009】図1(a)〜(d)は本発明の一実施例の
工程断面図である。シリコン基板1の上にシリコン酸化
膜2を形成し、リソグラフィ工程によってフォトレジス
ト3を形成し、これをマスクとしてリンイオン注入4を
行う。〔図1(a)〕。その結果、リン注入層6が形成
される。続いて、ケイフッ素酸(H2SiF6 )に二
酸化シリコン(SiO2 )を溶解しさらにホウ酸(H
3 BO3 )水溶液を添加し過飽和状態とした溶液に
シリコン基板1をさらすと(液相成長法)、シリコン酸
化膜の選択成長がおこりフォトレジスト3の開孔部に対
してのみシリコン酸化膜が形成される〔図1(b)〕。 続いてフォトレジスト3を除去し選択成長シリコン酸化
膜5をマスクとしてボロンイオン注入7を行う。続いて
例えば1200℃で4時間の熱処理を施し、シリコン酸
化膜を除去すれば、図1(d)のごとくNウェル8とP
ウェル9が得られる。
FIGS. 1(a) to 1(d) are process cross-sectional views of an embodiment of the present invention. A silicon oxide film 2 is formed on a silicon substrate 1, a photoresist 3 is formed by a lithography process, and phosphorus ion implantation 4 is performed using this as a mask. [Figure 1(a)]. As a result, a phosphorus injection layer 6 is formed. Next, silicon dioxide (SiO2) was dissolved in fluorosilicic acid (H2SiF6) and then boric acid (H2SiF6) was dissolved.
3BO3) When the silicon substrate 1 is exposed to a supersaturated solution by adding an aqueous solution (liquid phase growth method), selective growth of a silicon oxide film occurs, and a silicon oxide film is formed only on the openings of the photoresist 3. [Figure 1(b)]. Subsequently, the photoresist 3 is removed and boron ion implantation 7 is performed using the selectively grown silicon oxide film 5 as a mask. Next, heat treatment is performed at, for example, 1200°C for 4 hours to remove the silicon oxide film, and the N well 8 and P well 8 are formed as shown in FIG.
Well 9 is obtained.

【0010】図2(a)〜(d)は本発明の第2の実施
例を説明する工程断面図である。第2の実施例において
は、バイポーラトランジスタを構成するエピ成長層下の
n+ 拡散層とそれを電気的に分離するP型拡散層が、
本発明の方法を用いて形成される。第1の実施例と同様
の工程手順によってヒ素とボロンを順次シリコン基板に
イオン注入しヒ素埋込層13とボロン埋込層14を形成
する〔図2(a)〜(c)〕。その後n型シリコンエピ
タキシャル成長を行い、リソグラフィ工程とイオン注入
工程によってP型拡散層16を形成する〔図2(d)〕
。 以上、本発明の方法によってバイポーラトランジスタを
構成するn+ 埋込層と分離領域が形成された。
FIGS. 2(a) to 2(d) are process sectional views illustrating a second embodiment of the present invention. In the second embodiment, the n+ diffusion layer under the epitaxial growth layer constituting the bipolar transistor and the P-type diffusion layer electrically separating it are
formed using the method of the present invention. Arsenic and boron are ion-implanted into a silicon substrate in sequence to form an arsenic buried layer 13 and a boron buried layer 14 using the same process procedure as in the first embodiment [FIGS. 2(a) to 2(c)]. After that, n-type silicon epitaxial growth is performed, and a P-type diffusion layer 16 is formed by a lithography process and an ion implantation process [FIG. 2(d)]
. As described above, the n+ buried layer and the isolation region constituting the bipolar transistor were formed by the method of the present invention.

【0011】[0011]

【発明の効果】以上説明したように本発明は、フォトレ
ジストに対して酸化膜を選択成長させることによってウ
ェルを形成するイオン注入をセレフアライン化できるの
で、相補型MOS回路装置のウェル形成工程を著しく短
縮できる、もしくは半導体基板表面上にパターン精度の
悪化をもたらす段差を形成させずにウェルのセルフアラ
イン工程を実現できるという効果を有する。
As explained above, the present invention enables ion implantation for forming wells to be self-aligned by selectively growing an oxide film on a photoresist. It has the effect that the well self-alignment process can be shortened or that the well self-alignment process can be realized without forming a step on the surface of the semiconductor substrate that causes deterioration of pattern accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例の工程断面図である。FIG. 1 is a process sectional view of a first embodiment of the present invention.

【図2】本発明の第2の実施例の工程断面図である。FIG. 2 is a process sectional view of a second embodiment of the present invention.

【図3】従来技術を示す工程断面図である。FIG. 3 is a process sectional view showing a conventional technique.

【図4】他の従来例を示す工程断面図である。FIG. 4 is a process sectional view showing another conventional example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板の一主面にフォトリソグラ
フィ工程によってフォトレジストマスクを形成する工程
と、第1の導電型の不純物をイオン注入する工程と、該
フォトレジストマスクの開孔部に対して絶縁膜を選択的
に成長させる工程と、該フォトレジストマスクを除去す
る工程と、前記選択的に成長した絶縁膜をマスクとして
逆導電型の不純物をイオン注入する工程とを有すること
を特徴とする半導体装置の製造方法。
1. A step of forming a photoresist mask on one main surface of a semiconductor substrate by a photolithography process, a step of ion-implanting an impurity of a first conductivity type, and a step of ion-implanting an impurity of a first conductivity type into an opening of the photoresist mask. The method is characterized by comprising a step of selectively growing an insulating film, a step of removing the photoresist mask, and a step of ion-implanting an impurity of an opposite conductivity type using the selectively grown insulating film as a mask. A method for manufacturing a semiconductor device.
【請求項2】  請求項1記載の半導体装置の製造方法
において、フォトレジストマスクの開孔部に対して絶縁
膜を選択的に成長させる工程が、ケイフッ化水素酸(H
2 SiF6 )に二酸化シリコン(SiO2 )を溶
解した飽和水溶液に対し、ホウ酸(H3 BO3 )水
溶液を添加することによって過飽和状態を作りSiO2
 を折出させ堆積させる工程であることを特徴とする半
導体装置の製造方法。
2. In the method of manufacturing a semiconductor device according to claim 1, the step of selectively growing the insulating film in the openings of the photoresist mask is performed using hydrofluorosilicic acid (H
A supersaturated state is created by adding boric acid (H3 BO3) aqueous solution to a saturated aqueous solution of silicon dioxide (SiO2) dissolved in SiF6).
1. A method for manufacturing a semiconductor device, comprising a step of precipitating and depositing.
【請求項3】  請求項1又は2記載の半導体装置の製
造方法において、第1の導電型の不純物をイオン注入す
る工程が、相補型MOS回路装置の第1の導電型のウェ
ルを形成する不純物をイオン注入する工程であり、逆導
電型の不純物をイオン注入する工程が逆導電型のウェル
を形成する不純物をイオン注入する工程であることを特
徴とする半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the step of ion-implanting an impurity of a first conductivity type includes implanting an impurity that forms a well of a first conductivity type of a complementary MOS circuit device. 1. A method of manufacturing a semiconductor device, wherein the step of ion-implanting an impurity of a reverse conductivity type is a step of ion-implanting an impurity that forms a well of a reverse conductivity type.
JP3115160A 1991-05-21 1991-05-21 Manufacture of semiconductor device Pending JPH04343264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3115160A JPH04343264A (en) 1991-05-21 1991-05-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3115160A JPH04343264A (en) 1991-05-21 1991-05-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04343264A true JPH04343264A (en) 1992-11-30

Family

ID=14655822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3115160A Pending JPH04343264A (en) 1991-05-21 1991-05-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04343264A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204042A (en) * 1995-01-25 1996-08-09 Nec Corp Manufacture of semiconductor device
US5571745A (en) * 1994-08-01 1996-11-05 Nec Corporation Fabrication method of semiconductor device containing n- and p-channel MOSFETs
US5731214A (en) * 1996-03-02 1998-03-24 Yamaha Corporation Manufacture of semiconductor device with self-aligned doping
KR100677997B1 (en) * 2005-12-28 2007-02-02 동부일렉트로닉스 주식회사 Method for manufacturing in semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571745A (en) * 1994-08-01 1996-11-05 Nec Corporation Fabrication method of semiconductor device containing n- and p-channel MOSFETs
JPH08204042A (en) * 1995-01-25 1996-08-09 Nec Corp Manufacture of semiconductor device
US5731214A (en) * 1996-03-02 1998-03-24 Yamaha Corporation Manufacture of semiconductor device with self-aligned doping
KR100677997B1 (en) * 2005-12-28 2007-02-02 동부일렉트로닉스 주식회사 Method for manufacturing in semiconductor device

Similar Documents

Publication Publication Date Title
JPH0355984B2 (en)
JP2982383B2 (en) Method for manufacturing CMOS transistor
JPH0555484A (en) Manufacture of semiconductor device
JPS61242064A (en) Manufacture of complementary type semiconductor device
JPH04343264A (en) Manufacture of semiconductor device
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH1065019A (en) Manufacturing method of cmos device
JP2003031679A (en) Method for manufacturing semiconductor device
JPH06260607A (en) Semiconductor device and its manufacture
JPH0423329A (en) Manufacture of semiconductor device
JP3097095B2 (en) Method for manufacturing semiconductor device
JPH0237765A (en) Manufacture of integrated circuit
JPH0629315A (en) Semiconductor device and manufacture thereof
JPS6043028B2 (en) Manufacturing method of semiconductor device
JPH04368171A (en) Manufacture of bi-cmos integrated circuit
JPS62269352A (en) Manufacture of semiconductor device
KR930010122B1 (en) Making method of cmos cell
JPH0320074A (en) Manufacture of complementary mis integrated circuit
JPH04209524A (en) Manufacture of semiconductor device
KR19990075922A (en) Semiconductor device manufacturing method
JPH09129747A (en) Semiconductor device manufacturing method
JPH0445543A (en) Manufacture method of semiconductor device
JPH06216379A (en) Semiconductor device and its manufacture
JPS62239563A (en) Manufacture of semiconductor device
JPH0316140A (en) Manufacture of mos-type semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000201