JPH0433361B2 - - Google Patents

Info

Publication number
JPH0433361B2
JPH0433361B2 JP61200824A JP20082486A JPH0433361B2 JP H0433361 B2 JPH0433361 B2 JP H0433361B2 JP 61200824 A JP61200824 A JP 61200824A JP 20082486 A JP20082486 A JP 20082486A JP H0433361 B2 JPH0433361 B2 JP H0433361B2
Authority
JP
Japan
Prior art keywords
fine movement
piezoelectric
piezoelectric drive
drive unit
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61200824A
Other languages
Japanese (ja)
Other versions
JPS6356621A (en
Inventor
Makoto Okano
Wataru Mizutani
Koji Kajimura
Masatoshi Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61200824A priority Critical patent/JPS6356621A/en
Publication of JPS6356621A publication Critical patent/JPS6356621A/en
Publication of JPH0433361B2 publication Critical patent/JPH0433361B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微動装置に関し、詳しくは走査型トン
ネル顕微鏡を初めとする各種精密機器に好適で、
互いに直交するX,Yの2軸方向あるいはX,
Y,Zの3軸方向に独立してオングストローム単
位の微動が可能な微動装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fine movement device, and more specifically, it is suitable for various precision instruments including scanning tunneling microscopes.
Two axes of X and Y that are orthogonal to each other or X,
The present invention relates to a fine movement device capable of fine movement in units of angstroms independently in the three axis directions of Y and Z.

〔従来の技術〕[Conventional technology]

従来、この種の微動装置には圧電素子または電
歪素子を使用するもの提案されており、例えばそ
の正立方体の1つの頂点を形成する3の稜線にあ
たる部分がそれぞれ数mm角程度残されるように素
子の3面がくり抜かれてトライポツト形状、すな
わち3面孔を有する形状にされたもの、1軸は独
立であるか他の2軸が字形状に形成されたものな
どある。
Conventionally, this type of fine movement device has been proposed to use a piezoelectric element or an electrostrictive element. There are devices in which three sides of the device are hollowed out to form a tripod shape, that is, a shape with holes on three sides, and devices in which one axis is independent or the other two axes are formed in a letter shape.

しかし、これらの微動装置では1つの軸に作用
する伸縮が他の2つの軸にも影響をおよぼし、3
軸を互いに独立させて精密に微動させることがで
きない点があり、そのような他軸への干渉を防止
するために複数個の圧電素子あるいは電歪素子を
接着剤で張り合せたものが近年提案されてきた。
However, with these fine movement devices, the expansion and contraction that acts on one axis also affects the other two axes, resulting in 3
It is not possible to move the axes independently and precisely, and in order to prevent such interference with other axes, it has been proposed in recent years that multiple piezoelectric elements or electrostrictive elements are bonded together with adhesive. It has been.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のような微動装置においては、3軸方向の
独立した微動が一応は達成されるものの、接着剤
を使用しているために発生するヒステリシスの問
題があり、更には高速微動に対して遅れが生じる
等、微動機構として看過し得ない欠点があつて、
かかる欠点は特に原子レベルの測定を可能とする
走査型トンネル顕微鏡の場合、その性能自体にも
重大な影響を斉す。
Although the above-mentioned fine movement device can achieve independent fine movement in three axial directions, there is a problem of hysteresis due to the use of adhesive, and furthermore, there is a delay in high-speed fine movement. There are drawbacks that cannot be overlooked as a fine movement mechanism, such as
These drawbacks have a serious impact on the performance of scanning tunneling microscopes, which are capable of making measurements at the atomic level.

本発明の目的は、上述の問題点に着目し、その
解決を図るべく、3軸方向に対してて互いに独立
した微移動が可能であり、性能および動作につい
ての信頼性が保証される微動装置を提供すること
にある。
An object of the present invention is to focus on the above-mentioned problems, and to solve the problems, it is an object of the present invention to provide a fine movement device that is capable of fine movement independent of each other in three axial directions and that guarantees reliability in terms of performance and operation. Our goal is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

かかる目的を達成するために、本発明は、直方
体形状の圧電駆動部に対向電極を設け、対向電極
に電圧を印加することにより電圧の印加方向とは
直角な方向に変位を発生させ、その変位により圧
電駆動部の変位方向の移動が制御可能な微動装置
において、複数の圧電駆動部が電圧性または電歪
性の材料によつて一体に形成され、個々の圧電駆
動部の一端同士をその電極の形成面が互いに直角
方向に向くようにして順次接続した駆動部材と、
接続された駆動部材のうち端末の圧電駆動部の他
端部を支持する支持部材と、個々の圧電駆動部の
電極に印加電圧を供給する手段とを具え、複数の
圧電駆動部により接続の方向を含む互いに直交す
る3軸方向のうち少なくとも2軸方向に対して互
いに独立して変位させるようにしたことを特徴と
する。
In order to achieve such an object, the present invention provides a rectangular parallelepiped piezoelectric drive unit with a counter electrode, applies a voltage to the counter electrode to generate displacement in a direction perpendicular to the direction of voltage application, and measures the displacement. In a fine movement device in which movement in the displacement direction of piezoelectric actuators can be controlled by driving members connected in sequence with their forming surfaces facing at right angles to each other;
A support member that supports the other end of the terminal piezoelectric drive unit among the connected drive members, and a means for supplying an applied voltage to the electrodes of each piezoelectric drive unit, and the direction of connection by the plurality of piezoelectric drive units It is characterized in that it is arranged to be displaced independently of each other in at least two of the three mutually orthogonal axes including the three axes.

〔作 用〕[Effect]

本発明微動装置にあつては、1体の単一素子に
設けられた3軸方向の独立した微動発生機構によ
り個々の方向に対して他方向の軸の微動発生機構
に影響を与えることなく微動を実施させることが
できる。
In the fine movement device of the present invention, independent fine movement generation mechanisms in three axes provided in one single element allow fine movement in each direction without affecting the fine movement generation mechanism of the other axis. can be carried out.

〔実施例〕〔Example〕

以下に、図面に基づいて本発明の実施例を詳細
かつ具体的に説明する。
Embodiments of the present invention will be described in detail and specifically below based on the drawings.

第1図は本発明の一実施例を示す。本例は3次
元微動装置としてこれを走査型トンネル顕微鏡の
探針に適用した例である。1図において、1はそ
の微動装置であり、例えば圧電セラミツクスや水
晶などによる一体ものの圧電物質から図示の形状
に加工して成形される。すなわち、互いに直角に
交わるX,YおよびZの3軸方向に対して、本例
では連続したコの字型に圧電駆動部を形成し、そ
の開口の方向をそれぞれ4つの水平方向に異なら
せるようになしたもので、圧電駆動部1A,1
B,1C,1D,1F,1G,1Hおよび1Kの
うち、1A,1Cと1Gおよび1KはXY面と平
行に、1B,1DはXZ面と平行に、また1F,
1HはYZ面と平行に形成され、更に上記圧電駆
動部のうち、異なる垂直方向の圧電駆動部1Dと
1Fとの間に水平方向の接続部1E設けられてい
る。
FIG. 1 shows an embodiment of the invention. This example is an example in which this three-dimensional fine movement device is applied to the probe of a scanning tunneling microscope. In FIG. 1, reference numeral 1 denotes the fine movement device, which is formed by processing an integral piezoelectric material such as piezoelectric ceramics or crystal into the shape shown in the figure. That is, in this example, the piezoelectric actuator is formed in a continuous U-shape with respect to the three axes X, Y, and Z that intersect at right angles to each other, and the opening direction is made to differ in each of the four horizontal directions. The piezoelectric drive unit 1A, 1
Among B, 1C, 1D, 1F, 1G, 1H and 1K, 1A, 1C, 1G and 1K are parallel to the XY plane, 1B and 1D are parallel to the XZ plane, and 1F,
1H is formed parallel to the YZ plane, and furthermore, a horizontal connecting portion 1E is provided between the piezoelectric driving portions 1D and 1F, which are different in the vertical direction, among the piezoelectric driving portions.

かくして、圧電駆動部1Kの一端を延在させて
支持部材2に固定すると共に、他方の圧電駆動部
1Aの他部を延在させて、ここに探針3を固定す
る。更に、個々の圧電駆動部には第2図および第
3図に示すようにして、その上下面または垂直面
の両面に駆動電圧印加用の電極が設けられてお
り、21Aおよび31Aは圧電駆動部1Aに設け
た電極、21Bおよび31Bは圧電駆動部1Bに
設けた電極、以下同様に21Cおよび31C、2
1Dおよび31D、21Fおよび31F、21G
および31G、21Hおよび31H、21Kおよ
び31Kはそれぞれ圧電駆動部1C,1D,1
F,1G,1Hおよび1Kに設けた電極である。
Thus, one end of the piezoelectric drive unit 1K is extended and fixed to the support member 2, and the other part of the other piezoelectric drive unit 1A is extended and the probe 3 is fixed there. Furthermore, as shown in FIGS. 2 and 3, each piezoelectric drive section is provided with electrodes for applying a drive voltage on both its upper and lower surfaces or vertical surfaces, and 21A and 31A are piezoelectric drive sections. The electrodes 21B and 31B are provided on the piezoelectric drive unit 1B, and the electrodes 21C, 31C, and 2
1D and 31D, 21F and 31F, 21G
and 31G, 21H and 31H, 21K and 31K are piezoelectric drive units 1C, 1D, 1, respectively.
These are the electrodes provided at F, 1G, 1H and 1K.

更にまた、第2図および第3図において、40
はx軸方向の駆動制御電源、50はY軸方向の駆
動制御電源、60はZ軸方向の駆動制御電源であ
り、個々の電源40,50および60はそれぞれ
X方向、Y方向おおよびZ方向の変位を独立して
発生させるための対向電極間に電圧が印加される
ように接続されている。
Furthermore, in FIGS. 2 and 3, 40
is a drive control power source in the x-axis direction, 50 is a drive control power source in the Y-axis direction, and 60 is a drive control power source in the Z-axis direction, and the individual power supplies 40, 50, and 60 are for the X, Y, and Z directions, respectively. The electrodes are connected so that a voltage is applied between the opposing electrodes to independently generate displacements of the electrodes.

すなわち、第1図について説明すると、圧電駆
動部1Gおよび1KがX方向の微動機構を、また
圧電駆動部1Aおよび1CがY方向、圧電駆動部
1B,1D,1Fおよび1HがZ方向の微動機構
をそれぞれ構成しているもので、例えば圧電駆動
部1Aおよび1Cにおい、これらの対向電極21
Aと31Aおよび21Cと31C間に電圧を印加
したとすると、その電圧の極性と圧電駆動部1
A,1Cが有する圧電定数に応じて電極間が伸縮
し、それによつてY方向の変位、すなわち微動を
他方向に関係なく行せることができる。かくし
て、以下同様にしてそれぞれ独立した方向の微動
機構が構成されていることによつてX方向および
Y方向の微動を実施することができ、しかも、こ
れらの微動機構はその中間に設け接続部1Eが互
いに向きを異にする2つの圧電駆動部1Dおよび
1Fの接続によつて曲げに対し剛性が保たれるよ
うに構成されているので、固有振動数が極端に低
下するのを防止する効果が得られるものである。
That is, to explain FIG. 1, piezoelectric actuators 1G and 1K act as fine movement mechanisms in the X direction, piezoelectric actuators 1A and 1C act as fine movement mechanisms in the Y direction, and piezoelectric actuators 1B, 1D, 1F and 1H act as fine movement mechanisms in the Z direction. For example, in the piezoelectric actuators 1A and 1C, these opposing electrodes 21
If a voltage is applied between A and 31A and between 21C and 31C, the polarity of the voltage and the piezoelectric drive unit 1
The space between the electrodes expands and contracts in accordance with the piezoelectric constants of A and 1C, thereby allowing displacement in the Y direction, that is, fine movement, regardless of other directions. In this way, fine movement in the X direction and Y direction can be performed by configuring fine movement mechanisms in the respective independent directions in the same manner, and these fine movement mechanisms are provided in the middle of the connecting portion 1E. The structure is such that rigidity is maintained against bending by connecting the two piezoelectric actuators 1D and 1F, which are oriented in different directions, and this has the effect of preventing the natural frequency from dropping excessively. That's what you get.

なお、例えば圧電駆動部1Aの電極21Aおよ
び31Aと圧電駆動部1Cの電極21Cおよび3
1Cとに印加する電圧の極方向を逆にするように
制御すれば、一方が伸び他方が縮むことによつて
Y軸方向におい2倍の微動量を発生させることが
可能であり、かかることをX軸方向においても行
うことが可能である。この場合、同一方向への微
動に伸びと縮みとを利用しているので、これと直
角な方向に発生する伸び縮みによる変位量、すな
わち移動量を互いに相殺させることができるとい
う利点も合わせて得ることができる。また、Z軸
方向においては、1B,1D,1Fおよび1Hの
4つの圧電駆動部に同一方向の電界を印加するこ
とによりそれだけ大きい変位量の微動を可能とす
るものである。
Note that, for example, the electrodes 21A and 31A of the piezoelectric drive unit 1A and the electrodes 21C and 3 of the piezoelectric drive unit 1C
If the polar directions of the voltages applied to 1C and 1C are controlled to be reversed, one side will expand and the other will contract, making it possible to generate twice the amount of fine movement in the Y-axis direction. It is also possible to perform this in the X-axis direction. In this case, since elongation and contraction are used for micromovement in the same direction, there is also the advantage that the amount of displacement due to elongation and contraction that occurs in the direction perpendicular to this, that is, the amount of movement, can cancel each other out. be able to. In addition, in the Z-axis direction, by applying an electric field in the same direction to the four piezoelectric drive units 1B, 1D, 1F, and 1H, fine movement with a correspondingly large amount of displacement is possible.

なお、以上の説明では、電極をそれぞれ水平な
圧電駆動部の上下の対向面あるいは垂直な圧電駆
動部の円外の対向面に設けるようにしたが、圧電
駆動部の個々の形成における寸法と微動距離との
関係次第で電極をその側端側、例えば圧電駆動部
1Aおよび1Cの場合であればそのYZ面の対向
位置に配置するようにして構成することもでき
る。
In the above explanation, the electrodes are provided on the upper and lower opposing surfaces of the horizontal piezoelectric drive section or on the outer circular opposing surfaces of the vertical piezoelectric drive section. Depending on the relationship with the distance, it is also possible to arrange the electrodes on their side ends, for example, in the case of the piezoelectric actuators 1A and 1C, at opposing positions on the YZ plane.

また、本例で1体の圧電物質から成形加工した
のは、個々の圧電駆動部を直方体形状の平板とし
て形成し接着して構成すると、原子レベルではや
はり接着部に発生するヒステリシスが経年的には
微動機構の性能自体を劣化させる虞があると判断
したことによるものである。
In addition, in this example, a single piezoelectric material was molded.If the individual piezoelectric drive parts were formed as a rectangular parallelepiped flat plate and then glued together, hysteresis that occurs in the bonded parts at the atomic level will occur over time. This is due to the judgment that there is a risk that the performance of the fine movement mechanism itself may deteriorate.

更にまた、本例では3次元微動装置としての構
成について述べたが、本発明の適用は3次元の微
動装置に限られるものではなく、例えばZ軸方向
の微動には他の手段を用いることとして、Z軸方
向の微動を分担する圧電駆動部のZ軸方向の長さ
を極端に短縮し、固有振動数を上昇させた2次元
微動装置とすることもできる。
Furthermore, although this example describes the configuration as a three-dimensional fine movement device, the application of the present invention is not limited to a three-dimensional fine movement device; for example, other means may be used for fine movement in the Z-axis direction. It is also possible to obtain a two-dimensional fine movement device in which the length in the Z-axis direction of the piezoelectric drive unit that shares the fine movement in the Z-axis direction is extremely shortened, and the natural frequency is increased.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明によれば、単
一の圧電素子により2軸方向あるいは3軸方向の
微動を互いに他方向の微動に影響させることなく
独立して実施することが可能となり、相互間に干
渉がないのでそれぞれの軸方向の微動動作に対す
る信頼性が高められ、更にはまた互いに平行な圧
電駆動部材をコの字型に結合したことによつて、
これらの伸縮により例えば2倍の変位量とするこ
とが可能で、しかもこの場合は変位方向と直角な
方向の変位が相殺される利点が得られ、また、電
圧素子の固有振動数の低下を抑制した構造にする
ことができて、走査型トンネル顕微鏡や各種精密
機器に広く好適な微動装置を提供することができ
る。
As explained above, according to the present invention, it is possible to independently perform fine movements in two or three axes using a single piezoelectric element without affecting fine movements in other directions, and Since there is no interference between them, the reliability of fine movement in each axial direction is increased, and furthermore, by connecting the piezoelectric drive members parallel to each other in a U-shape,
By expanding and contracting these, it is possible to double the amount of displacement, for example, and in this case, there is an advantage that the displacement in the direction perpendicular to the displacement direction is canceled out, and the reduction in the natural frequency of the voltage element is also suppressed. Accordingly, it is possible to provide a fine movement device that is widely suitable for scanning tunneling microscopes and various precision instruments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明微動装置の構成の一例をその微
動方向と共に示す斜視図、第2図および第3図は
第1図に示す微動装置の駆動部をその駆動電源と
共にX軸方向およびY軸方向からそれぞれ見て示
す構成図である。 1……微動装置、1A,1B,1C,1D,1
E,1F,1G,1H,1K……圧電駆動部、1
E……接続部、21A,31A,21B,31
B,21C,31C,21D,31D,21F,
31F,21G,31G,21H,31H,21
K,31K……電極、40,50,60……電
源。
FIG. 1 is a perspective view showing an example of the configuration of the fine movement device of the present invention together with its fine movement direction, and FIGS. 2 and 3 show the drive section of the fine movement device shown in FIG. It is a block diagram shown as seen from each direction. 1... Fine movement device, 1A, 1B, 1C, 1D, 1
E, 1F, 1G, 1H, 1K...Piezoelectric drive unit, 1
E...Connection part, 21A, 31A, 21B, 31
B, 21C, 31C, 21D, 31D, 21F,
31F, 21G, 31G, 21H, 31H, 21
K, 31K... Electrode, 40, 50, 60... Power supply.

Claims (1)

【特許請求の範囲】 1 直方体形状の圧電駆動部に対向電極を設け、
該対向電極に電圧を印加することにより電圧の印
加方向とは直角な方向に変位を発生させ、その変
位により前記圧電駆動部の変位方向の移動が制御
可能な微動装置において、 複数の圧電駆動部が圧電性または電歪性の材料
によつて一体に形成され、前記個々の圧電駆動部
の一端同士をその電極の形成面が互いに直角方向
に向くようにして順次接続した駆動部材と、 該接続された駆動部材のうちの端末の圧電駆動
部の他端部を支持する支持部材と、 前記個々の圧電駆動部の電極に印加電圧を供給
する手段とを具え、 前記複数の圧電駆動部により前記接続の方向を
含む互いに直交する3軸方向のうち少なくとも2
軸方向に対して互いに独立して変位させるように
したことを特徴とする微動装置。
[Claims] 1. A rectangular parallelepiped-shaped piezoelectric drive unit is provided with a counter electrode,
A fine movement device capable of generating displacement in a direction perpendicular to the voltage application direction by applying a voltage to the opposing electrode, and controlling movement of the piezoelectric drive unit in the displacement direction by the displacement, comprising: a plurality of piezoelectric drive units; a driving member which is integrally formed of a piezoelectric or electrostrictive material, and in which one ends of the individual piezoelectric driving parts are successively connected to each other such that the electrode formation surfaces thereof face each other in a direction perpendicular to each other; a support member that supports the other end of the piezoelectric drive unit at the terminal end of the drive member, and means for supplying an applied voltage to the electrodes of the individual piezoelectric drive units, the plurality of piezoelectric drive units At least two of three mutually orthogonal axes including the direction of connection
A fine movement device characterized by being configured to be displaced independently of each other in the axial direction.
JP61200824A 1986-08-27 1986-08-27 Inching device Granted JPS6356621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200824A JPS6356621A (en) 1986-08-27 1986-08-27 Inching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200824A JPS6356621A (en) 1986-08-27 1986-08-27 Inching device

Publications (2)

Publication Number Publication Date
JPS6356621A JPS6356621A (en) 1988-03-11
JPH0433361B2 true JPH0433361B2 (en) 1992-06-02

Family

ID=16430814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200824A Granted JPS6356621A (en) 1986-08-27 1986-08-27 Inching device

Country Status (1)

Country Link
JP (1) JPS6356621A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243907A (en) * 1989-03-17 1990-09-28 Nippon Telegr & Teleph Corp <Ntt> Piezoelectric element driving type probe and its driving method
JP3324232B2 (en) * 1993-10-20 2002-09-17 セイコーエプソン株式会社 Disk chucking mechanism and disk device having the same

Also Published As

Publication number Publication date
JPS6356621A (en) 1988-03-11

Similar Documents

Publication Publication Date Title
US5089740A (en) Displacement generating apparatus
US7187104B2 (en) Vibration-type driving device, control apparatus for controlling the driving of the vibration-type driving device, and electronic equipment having the vibration-type driving device and the control apparatus
US4613782A (en) Actuator
US5693997A (en) Non-tilting plate actuator for use in a micropositioning device
JP3577141B2 (en) Probe scanning mechanism and scanning probe microscope using the same
JPH0433361B2 (en)
EP2495867A2 (en) Piezoelectric actuator and piezoelectric actuator array
JPH01231667A (en) Piezoelectric actuator
CN113281898A (en) MEMS micro-mirror unit and MEMS micro-mirror array
CN109478856B (en) Actuator
JP2631297B2 (en) Piezo actuator
JPH01214279A (en) Piezoelectric actuator
JPH02206376A (en) Electrostatic type multidimensional actuator
JP2531582B2 (en) Piezoelectric actuator
JPH01267492A (en) Two-dimensional piezoelectric micro-movement device
JPH07249392A (en) Tube scanner and actuator having this scanner
JP4039718B2 (en) Table mechanism
JPH01127903A (en) Scanning tunnel microscope provided with sample moving mechanism
JPH01231668A (en) Piezoelectric actuator
JPH0746909B2 (en) Positioning device
JPH01231669A (en) Piezoelectric actuator
JPH0989912A (en) Table mechanism
JPH02239432A (en) Electrostatic multidimensional actuator
JPH02261072A (en) Piezoelectric actuator
JPH05323203A (en) Micromanipulator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term