JP2631297B2 - Piezo actuator - Google Patents
Piezo actuatorInfo
- Publication number
- JP2631297B2 JP2631297B2 JP63040147A JP4014788A JP2631297B2 JP 2631297 B2 JP2631297 B2 JP 2631297B2 JP 63040147 A JP63040147 A JP 63040147A JP 4014788 A JP4014788 A JP 4014788A JP 2631297 B2 JP2631297 B2 JP 2631297B2
- Authority
- JP
- Japan
- Prior art keywords
- axis
- actuator
- crystal
- axis direction
- drive electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013078 crystal Substances 0.000 claims description 18
- 230000003287 optical effect Effects 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 description 9
- 230000005684 electric field Effects 0.000 description 8
- 239000010453 quartz Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/202—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/028—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors along multiple or arbitrary translation directions, e.g. XYZ stages
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば超伝導の理論的解明に際し、トンネ
ル現象の応用で原子レベルを目視できる走査型トンネル
顕微鏡(Scanning Tunneling Microscope:STM)用の微
動駆動に好適な圧電アクチュエーターに関する。特に、
水晶を使用した形状と駆動電極に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a scanning tunneling microscope (STM) for visualizing the atomic level by applying tunneling phenomena, for example, in the theoretical elucidation of superconductivity. The present invention relates to a piezoelectric actuator suitable for fine movement driving. Especially,
It relates to the shape and drive electrode using quartz.
本発明は、広い温度範囲に亙って、しかも微小変位を
高精度に制御できる水晶アクチュエーターを提供するこ
とにある。水晶は物理的,化学的に大変に安定した物質
であり、従って、これから形成される各種デバイスも多
くの点で安定したものが得られる。ところで最近では超
伝導の研究が盛んに行われているが、その理論的解明は
未だ十分とは言い難い。しかし、最近はトンネル現象を
応用して原子を目で見ることが試みられ、その結果が発
表されている。即ち、この研究が超伝導現象を解明する
のに役立つのではないかと非常に期待されている。本発
明の目的は、特に、極低温の環境でも結晶軸の3方向に
高精度で変位制御できる水晶アクチュエーターを得るこ
とにある。An object of the present invention is to provide a crystal actuator which can control a minute displacement with high accuracy over a wide temperature range. Quartz is a very stable substance physically and chemically, and therefore, various devices formed from the crystal can be stable in many points. By the way, research on superconductivity has been actively conducted recently, but its theoretical elucidation is still not enough. However, recently, attempts have been made to visually observe atoms by applying the tunnel phenomenon, and the results have been published. In other words, it is highly expected that this research will help elucidate the superconductivity phenomenon. An object of the present invention is to provide a crystal actuator capable of controlling displacement with high accuracy in three directions of a crystal axis even in an extremely low temperature environment.
STM用アクチュエーターとしては、一般的にはPZTなど
の圧電セラミックスが使用されてきた。しかしながら、
この種の材料は温度変化に対してその圧電性が著しく変
化し、特に、極低温では圧電性が失われ、STM用アクチ
ュエーターとして不十分であった。In general, piezoelectric ceramics such as PZT have been used as actuators for STM. However,
This kind of material has a remarkable change in piezoelectricity with temperature change, and especially at extremely low temperatures, has lost its piezoelectricity, making it inadequate as an actuator for STM.
このようにPZTを使用したアクチュエーターでは極低
温でその機能を失い、STMで原子の姿を見ることができ
ない。そこで、本発明は極低温でも圧電性を有する、ST
M用新形状の水晶アクチュエーターを提案するものであ
る。In this way, the actuator using PZT loses its function at cryogenic temperature, and the atom cannot be seen by STM. Therefore, the present invention has a piezoelectric property even at extremely low temperatures, ST
This is to propose a new shape crystal actuator for M.
〔課題を解決するための手段〕 第1図は本発明の水晶アクチュエーターの動作原理を
説明するための座標系と水晶ブロック1である。x,y,z
は水晶の電気軸,機械軸,光軸とすると、これらの結晶
軸方向に電界を与える事によって、種々の変位を引き起
こすことができる。[Means for Solving the Problems] FIG. 1 shows a coordinate system and a crystal block 1 for explaining the operation principle of the crystal actuator of the present invention. x, y, z
Assuming that an electric axis, a mechanical axis, and an optical axis of quartz are used, various displacements can be caused by applying an electric field in the direction of these crystal axes.
以下、具体的に説明する。今、x軸,y軸,z軸方向の電
気偏極を (任意の方向を とすると は各成分)とすると、 但し、ε11,ε12,ε14,ε25,ε26は圧電定数,e
xx,eyy,eyz,ezx,exyは歪みを表す。式(1)から明
らかなように、x軸方向に電界を印加すると、x軸,y軸
方向に伸び、あるいは縮みの歪みを起こし、更に、y軸
に垂直な面のz軸方向にもせん断歪みを起こす。Hereinafter, a specific description will be given. Now, the electric polarization in the x-axis, y-axis, and z-axis directions (Any direction Then Are the components) Here, ε 11 , ε 12 , ε 14 , ε 25 and ε 26 are piezoelectric constants and e
xx , eyy , eyz , ezx , and xy represent distortion. As is evident from equation (1), when an electric field is applied in the x-axis direction, stretching or contraction occurs in the x-axis and y-axis directions, and shearing also occurs in the z-axis direction on a plane perpendicular to the y-axis. Cause distortion.
一方、y軸方向の電界は、z軸に垂直な面のx軸方向
のせん断歪みとx軸に垂直な面のy軸方向のせん断歪み
を引き起こす。又、z軸方向の電界は何の歪みも引き起
こさない。本発明はこれらの関係を応用して、形状と電
極配置を提案するものである。特に、伸縮の歪みはx軸
方向の電界により、せん断歪みはy軸方向の電界により
駆動するものである。On the other hand, the electric field in the y-axis direction causes a shear strain in a plane perpendicular to the z-axis in the x-axis direction and a shear strain in a plane perpendicular to the x-axis in the y-axis direction. Also, the electric field in the z-axis direction does not cause any distortion. The present invention proposes a shape and an electrode arrangement by applying these relationships. In particular, expansion and contraction distortion is driven by an electric field in the x-axis direction, and shear distortion is driven by an electric field in the y-axis direction.
このように、本発明は水晶の圧電性より、電界と歪み
の関係を応用する事により、x,y,z軸の3方向に歪む
(変位する)駆動電極と新形状の水晶アクチュエーター
を提案することにより、変位量を正確に制御できるSTM
用アクチュエーターを得ることができる。As described above, the present invention proposes a drive electrode that is distorted (displaced) in three directions of the x, y, and z axes and a new-shaped crystal actuator by applying the relationship between an electric field and distortion rather than the piezoelectricity of quartz. STM that can accurately control the displacement amount
Actuator can be obtained.
次に、本発明にて得られた結果を具体的に述べる。第
2図(a)は本発明の水晶アクチュエーターの外観図を
示す。水晶ブロック1には貫通孔2が設けられていて、
各面には駆動電極3,4,5,6が配置されている。但し、対
向電極は図示されてない。この駆動電極に電圧を印加す
ることによって各方向に変位させることができる。第2
図(b)は第2図(a)をz軸方向から投影したときの
平面図である。ここでは、電界によってどの方向に変位
するかを具体的に述べる。駆動電極3と3′に電圧を印
加すると伸びの変位が、即ち、矢印Aで示すごとくy軸
方向に伸びる。従って、駆動電極5と5′に電圧を印加
すると同様にy軸方向に伸びの変位する。但し、電極3
と電極5は同極となるようにする。次に、電極4と4′
に電圧を印加すると伸びの変位をするが、片側には電極
が配置されていないので、矢印Bで示すごとくx軸方向
に変位する。更に、電極6と6′に電圧を印加するとせ
ん断力により、z軸方向に変位する。このように駆動電
極を配置することにより、針取り付部7はx,y,z軸方向
に変位する。実際には、各電極に印加される電圧値を調
整することにより、3軸方向の変位量を調整することが
でき、高精度な変位制御をすることができる。Next, the results obtained by the present invention will be specifically described. FIG. 2 (a) shows an external view of the crystal actuator of the present invention. A through hole 2 is provided in the crystal block 1,
Drive electrodes 3, 4, 5, and 6 are arranged on each surface. However, the counter electrode is not shown. By applying a voltage to this drive electrode, it can be displaced in each direction. Second
FIG. 2B is a plan view when FIG. 2A is projected from the z-axis direction. Here, the direction of displacement due to the electric field will be specifically described. When a voltage is applied to the drive electrodes 3 and 3 ′, the displacement of the extension is extended in the y-axis direction as shown by the arrow A. Accordingly, when a voltage is applied to the drive electrodes 5 and 5 ', the drive electrodes 5 and 5' are similarly extended and displaced in the y-axis direction. However, electrode 3
And the electrode 5 have the same polarity. Next, electrodes 4 and 4 '
When a voltage is applied, the electrode is displaced in elongation, but is displaced in the x-axis direction as shown by the arrow B because no electrode is arranged on one side. Further, when a voltage is applied to the electrodes 6 and 6 ', the electrodes 6 and 6' are displaced in the z-axis direction by a shearing force. By arranging the drive electrodes in this manner, the needle attaching section 7 is displaced in the x, y, and z axis directions. Actually, by adjusting the voltage value applied to each electrode, the amount of displacement in the three axial directions can be adjusted, and highly accurate displacement control can be performed.
以上述べたように、本発明は、新形状の水晶アクチュ
エーターを提案することにより、次の著しい効果を有す
る。As described above, the present invention has the following remarkable effects by proposing a new-shaped quartz actuator.
材料に水晶を使用するので、極低温でも圧電性を有
し、STM用アクチュエーターとしてトンネル電流が得ら
れ、原子の姿を見ることができる。Since quartz is used as the material, it has piezoelectricity even at extremely low temperatures, and a tunnel current can be obtained as an actuator for STM, and the appearance of atoms can be seen.
x,y,z軸方向に変位させる駆動電極は独立して配置さ
れているので、電圧調整により、微小、且つ、高精度の
変位制御ができる。Since the drive electrodes for displacing in the x, y, and z-axis directions are independently disposed, minute and high-precision displacement control can be performed by adjusting the voltage.
1つの材料でx,y,z軸3方向に変位させることができ
るので、信頼性に優れている。Since one material can be displaced in three directions of the x, y, and z axes, the reliability is excellent.
水晶の弾性定数が大きいので、高い共振周波数のアク
チュエーターが得られ、高速走査が可能である。Since the elastic constant of quartz is large, an actuator having a high resonance frequency can be obtained, and high-speed scanning is possible.
第1図は本発明の水晶アクチュエーターの原理を説明す
るための座標系と水晶ブロックを示す。 第2図(a)は本発明の水晶アクチュエーターの形状と
駆動電極配置の外観図である。 第2図(b)は第2図(a)の水晶アクチュエーターの
z軸方向から投影した平面図である。 1……水晶ブロック 2……貫通孔 3,3′,4,4′,5,5′,6,6′……駆動電極 7……針取り付部 x……電気軸 y……機械軸 z……光軸FIG. 1 shows a coordinate system and a crystal block for explaining the principle of the crystal actuator of the present invention. FIG. 2 (a) is an external view of the shape and drive electrode arrangement of the crystal actuator of the present invention. FIG. 2 (b) is a plan view of the crystal actuator shown in FIG. 2 (a) projected from the z-axis direction. 1 ... Crystal block 2 ... Through hole 3,3 ', 4,4', 5,5 ', 6,6' ... Driving electrode 7 ... Needle attaching part x ... Electric axis y ... Mechanical axis z ... optical axis
Claims (1)
動駆動する圧電アクチュエータにおいて、前記アクチュ
エータは水晶の電気軸x、機械軸y、光軸zと平行であ
る稜線よりなる直方体形状を成し、かつ、前記直方体形
状には光軸zと平行に貫通孔が設けられ、一方のx軸と
垂直な表面と前記貫通孔とに2対の駆動電極と、他方の
x軸と垂直な表面と前記貫通孔とに1対の駆動電極と、
一方のy軸と垂直な表面と前記貫通孔とに1対の駆動電
極が設けられていることを特徴とする圧電アクチュエー
タ。1. A piezoelectric actuator formed of a crystal block, supporting a needle and finely driving the needle, wherein the actuator has a rectangular parallelepiped shape having ridges parallel to an electric axis x, a mechanical axis y, and an optical axis z of the crystal. And, in the rectangular parallelepiped shape, a through hole is provided in parallel with the optical axis z, two pairs of drive electrodes are provided on a surface perpendicular to one x axis and the through hole, and a surface perpendicular to the other x axis. A pair of drive electrodes in the through hole,
A piezoelectric actuator, wherein a pair of drive electrodes is provided on one surface perpendicular to the y-axis and the through hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63040147A JP2631297B2 (en) | 1988-02-23 | 1988-02-23 | Piezo actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63040147A JP2631297B2 (en) | 1988-02-23 | 1988-02-23 | Piezo actuator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01214278A JPH01214278A (en) | 1989-08-28 |
JP2631297B2 true JP2631297B2 (en) | 1997-07-16 |
Family
ID=12572658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63040147A Expired - Lifetime JP2631297B2 (en) | 1988-02-23 | 1988-02-23 | Piezo actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2631297B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6327120B1 (en) * | 1997-04-17 | 2001-12-04 | Fujitsu Limited | Actuator using piezoelectric element and head-positioning mechanism using the actuator |
-
1988
- 1988-02-23 JP JP63040147A patent/JP2631297B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01214278A (en) | 1989-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5089740A (en) | Displacement generating apparatus | |
JP2577423B2 (en) | Large-stroke scanning tunneling microscope | |
KR20050114208A (en) | High resolution piezoelectric motor | |
EP0790481B1 (en) | Non-tilting plate actuator for use in a micropositioning device | |
KR930007933B1 (en) | Magnetic head apparatus having non-magnetic metal interposed between piezoelectric members | |
JP2639548B2 (en) | Piezo actuator | |
JP2631297B2 (en) | Piezo actuator | |
JPH10209517A (en) | Piezoelectric element | |
JP2651462B2 (en) | Piezo actuator | |
US20230329118A1 (en) | Piezoelectric driving element | |
JPH039713B2 (en) | ||
Gao et al. | The design and characterization of a piezo-driven ultra-precision stepping positioner | |
JPH01214279A (en) | Piezoelectric actuator | |
JPH01231669A (en) | Piezoelectric actuator | |
Jones et al. | Adaptive devices for precise position control | |
JP2000009867A (en) | Stage moving device | |
US3851192A (en) | Electromechanical transducers using coupled ferroelectric-ferroelastic crystals | |
RU224439U1 (en) | Angular movement actuator | |
JPH0433361B2 (en) | ||
JPH0150194B2 (en) | ||
JPH06112547A (en) | Flexural displacement actuator | |
JPH02206376A (en) | Electrostatic type multidimensional actuator | |
JPS63153405A (en) | Scanning type tunnel microscope | |
JPH0356076A (en) | Fine movement mechanism | |
JPS62203573A (en) | Piezoelectric actuator |