JP2639548B2 - Piezo actuator - Google Patents
Piezo actuatorInfo
- Publication number
- JP2639548B2 JP2639548B2 JP63057103A JP5710388A JP2639548B2 JP 2639548 B2 JP2639548 B2 JP 2639548B2 JP 63057103 A JP63057103 A JP 63057103A JP 5710388 A JP5710388 A JP 5710388A JP 2639548 B2 JP2639548 B2 JP 2639548B2
- Authority
- JP
- Japan
- Prior art keywords
- axis
- crystal
- actuator
- shape
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013078 crystal Substances 0.000 claims description 21
- 239000010453 quartz Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 description 12
- 230000005684 electric field Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 4
- 230000008602 contraction Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/028—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors along multiple or arbitrary translation directions, e.g. XYZ stages
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/202—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば超伝導の理論的解明に際し、トンネ
ル現象の応用で、原子レベルで目視できる走査型トンネ
ル顕微鏡(Scanning Tcenneling Microscope:STM)用の
微動駆動に好適な圧電アクチュエータに関する。特に3
方向のうち特定の方向の変位を強調するために、水晶を
使用した形状と駆動電極に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a scanning tunneling microscope (STM) which can be visually observed at the atomic level by applying a tunnel phenomenon to, for example, theoretical elucidation of superconductivity. The present invention relates to a piezoelectric actuator suitable for fine movement driving. Especially 3
The present invention relates to a shape using quartz and a drive electrode for emphasizing displacement in a specific direction among directions.
本発明は、広い温度範囲にわたって、しかも微小変位
を高精度に制御できる水晶アクチュエータを提供するこ
とにある。水晶は物理的、化学的に大変に安定した物質
であり、従って、これから形成される各種デバイスも多
くの点で安定したものが得られる。ところで最近では超
伝導の研究が盛んに行われているが、その理論的解明は
未だ十分とは言い難い。しかし、最近ではトンネル現象
を応用して原子を目で見ることが試みられ、その結果が
発表されている。即ち、この研究が超伝導現象を解明す
るのに役立つのではないかと非常に期待されている。本
発明の目的は、特に極低温でも結晶軸3方向のうち、対
物の接近方向の駆動を高精度で変位制御できる水晶アク
チュエータを得ることにある。An object of the present invention is to provide a crystal actuator that can control a minute displacement with high accuracy over a wide temperature range. Quartz is a material that is very stable physically and chemically, so that various devices formed therefrom can be stable in many respects. By the way, research on superconductivity has been actively conducted recently, but its theoretical elucidation is still not enough. Recently, however, attempts have been made to visually observe atoms by applying the tunnel phenomenon, and the results have been published. In other words, it is highly expected that this research will help elucidate the superconductivity phenomenon. An object of the present invention is to provide a crystal actuator capable of controlling displacement of an object in a direction approaching an object among three directions of a crystal axis with high accuracy even at a very low temperature.
STM用アクチュエータとしては、一般的にはPZTなどの
圧電セラミックスが使用されてきた。しかしながら、こ
の種の材料は温度変化に対してその圧電性が著しく変化
し、特に、極低温では圧電性が失われ、STM用アクチュ
エータとして不十分であった。In general, piezoelectric ceramics such as PZT have been used as STM actuators. However, this kind of material has a remarkable change in its piezoelectricity in response to a change in temperature. In particular, at extremely low temperatures, the piezoelectricity is lost, and the material is insufficient as an STM actuator.
このようにPZTを使用したアクチュエータでは極低温
でその機能を失い、STMで原子の姿を見ることができな
い。そこで本発明は極低温でも圧電性を有し、原子の姿
を見ることのできる新形状の水晶アクチュエータを提案
するものである。In this way, the actuator using PZT loses its function at cryogenic temperature, and the atom cannot be seen by STM. Therefore, the present invention proposes a new-shaped quartz actuator which has piezoelectricity even at extremely low temperatures and allows the appearance of atoms to be seen.
第2図は本発明の水晶アクチュエータの動作原理を説
明するための座標系と水晶ブロック1である。x,y,z軸
は水晶の電気軸、機械軸、光軸とすると、これらの結晶
軸方向に電界を加える事によって、種々の変位を引き起
こすことができる。以下、具体的に説明する。今、x
軸、y軸、z軸方向の電気偏極 (任意の方向を とすると はx,y,z軸方向の各成分)とすると、 但し、ε11,ε12,ε25,ε26は圧電定数、exx,eyy,eyz,e
zx,exyは歪みを表わす。式(1)から明らかなように、
x軸方向に電界を印加すると、x軸,y軸方向に伸び、あ
るいは縮みの歪みを起こし、更に、y軸に垂直な面のz
軸方向にも剪断歪みを起こす。一方、y軸方向の電界は
z軸に垂直な面のx軸方向の剪断歪みとx軸に垂直な面
のy軸方向の剪断歪みを引き起こす。又、z軸方向の電
界は何の歪みも引き起こさない。本発明はこれらの関係
を応用して、新形状でかつ電極配置された水晶アクチュ
エータを提案するものである。特に、伸縮の歪みをx軸
方向の電界により、剪断歪みはy軸方向の電界により駆
動するものであり、この軸の歪を強調するものである。FIG. 2 shows a coordinate system and a crystal block 1 for explaining the operation principle of the crystal actuator of the present invention. Assuming that the x, y, and z axes are the electric axis, mechanical axis, and optical axis of quartz, various displacements can be caused by applying an electric field in the direction of these crystal axes. Hereinafter, a specific description will be given. Now, x
Electric polarization in the axis, y-axis, z-axis (Any direction Then Are the components in the x, y, and z axis directions). Where ε 11 , ε 12 , ε 25 , ε 26 are piezoelectric constants, e xx , e yy , e yz , e
zx, e xy represents a distortion. As is clear from equation (1),
When an electric field is applied in the direction of the x-axis, the film is stretched or contracted in the directions of the x-axis and the y-axis.
Shear strain also occurs in the axial direction. On the other hand, the electric field in the y-axis direction causes a shear strain in a plane perpendicular to the z-axis in the x-axis direction and a shear strain in a plane perpendicular to the x-axis in the y-axis direction. Also, the electric field in the z-axis direction does not cause any distortion. The present invention proposes a crystal actuator having a new shape and electrodes arranged by applying these relationships. In particular, the expansion and contraction distortion is driven by the electric field in the x-axis direction, and the shear distortion is driven by the electric field in the y-axis direction, and the distortion of this axis is emphasized.
このように、本発明は水晶の圧電性より電界と歪みの
関係を応用する事によりx,y,z軸の3方向に歪む(変位
する)駆動電極と新形状の水晶アクチュエータを提案す
ることにより、変位に対して高精度に制御できるSTM用
アクチュエータを得ることができ、特にy軸方向の変位
が強調される。Thus, the present invention proposes a drive electrode that is distorted (displaced) in three directions of the x, y, and z axes and a new-shaped crystal actuator by applying the relationship between the electric field and the distortion rather than the piezoelectricity of the crystal. Thus, it is possible to obtain an STM actuator capable of controlling the displacement with high accuracy, and the displacement in the y-axis direction is particularly emphasized.
次に、本発明にて得られた結果を具体的に述べる。第
1図は本発明の水晶アクチュエータの形状の一実施例
で、第1図(a)は外観図、第1図(b)は平面図であ
る。第1図(a)において、アクチュエータ1はT型形
状2に加工され、更に、穴3が設けられている形状をし
ている。但し、駆動電極は図示していない。第1図
(b)は第1図(a)をz軸方向から投影したときの平
面図である。ここでは、電界によって、x,y,z軸の3方
向に変位することを述べる。T型形状2には駆動電極4,
4′,5,5′,6,6′,7,7′が設けられている。駆動電極4
と4′に電圧を印加すると、T型形状の細い基部のた
め、他の軸方向より多くの伸びの変位が、矢印Aで示す
ごとくy軸方向に伸びる。次に、電極5,5′と6,6′に電
圧を印加すると電極5と5′では伸びを、電極6と6′
では電界方向が逆であるから縮みの歪みを起こす。この
結果、矢印Bで示すごとくx軸方向に変位する。更に、
電極7と7′に電圧を印加すると剪断力により、矢印C
で示すごとくz軸方向に変位する。このように駆動電極
を配置し電圧を印加することにより、トンネル電流を検
出する針取り付け部8の針はx,y,z軸方向に変位する。
図示されていないが針取り付け部8の針は電極7と絶縁
されている。実際には、各電極に印加される電圧値を調
整することにより、3軸方向の変位量を調整することが
でき、高精度な変位制御をすることができる。Next, the results obtained by the present invention will be specifically described. FIG. 1 shows an embodiment of the shape of the crystal actuator of the present invention. FIG. 1 (a) is an external view and FIG. 1 (b) is a plan view. In FIG. 1 (a), an actuator 1 is formed into a T-shaped shape 2 and further has a hole 3 provided therein. However, the drive electrodes are not shown. FIG. 1B is a plan view when FIG. 1A is projected from the z-axis direction. Here, a description will be given of displacement in three directions of x, y, and z axes by an electric field. The drive electrode 4,
4 ', 5, 5', 6, 6 ', 7, 7' are provided. Drive electrode 4
When a voltage is applied to (4) and (4 '), the displacement of more elongation than in the other axial directions is extended in the y-axis direction as shown by arrow A because of the thin base of the T-shape. Next, when a voltage is applied to the electrodes 5, 5 'and 6, 6', the electrodes 5 and 5 'expand and the electrodes 6 and 6'
In this case, since the direction of the electric field is opposite, contraction distortion occurs. As a result, it is displaced in the x-axis direction as shown by arrow B. Furthermore,
When a voltage is applied to the electrodes 7 and 7 ', the shear force causes an arrow C
Is displaced in the z-axis direction as shown by. By arranging the driving electrodes and applying a voltage as described above, the needle of the needle mounting portion 8 for detecting the tunnel current is displaced in the x, y, and z axis directions.
Although not shown, the needle of the needle mounting portion 8 is insulated from the electrode 7. Actually, by adjusting the voltage value applied to each electrode, the amount of displacement in the three axial directions can be adjusted, and highly accurate displacement control can be performed.
以上述べたように本発明は、新形状の水晶アクチュエ
ータを提案することにより、次の著しい効果を有する。As described above, the present invention has the following remarkable effects by proposing a new shape crystal actuator.
材料に水晶を使用するので、極低温でも圧電性を有
し、STM用アクチュエータとしてトンネル電流が得ら
れ、原子の姿を見ることかできる。Since quartz is used as the material, it has piezoelectricity even at extremely low temperatures, and a tunnel current can be obtained as an actuator for STM, and the appearance of atoms can be seen.
x,y,z軸方向に変位させる駆動電極は独立して配置
されているで電圧調整により、微小、かつ、高精度の変
位制御ができ、特にy軸方向の変位を、他の方向より強
調して制御できる。The drive electrodes that displace in the x, y, and z directions are independently arranged, so that voltage adjustment enables minute, high-precision displacement control.Especially, displacement in the y-axis direction is emphasized more than in other directions. Control.
複数のアームを機械的組立てでないので、信頼性に
優れている。Since the arms are not mechanically assembled, the reliability is excellent.
水晶の弾性定数が大きいので、高い共振周波数のア
クチュエータが得られ、高速走査が可能である。Since the crystal has a large elastic constant, an actuator having a high resonance frequency can be obtained, and high-speed scanning is possible.
第1図は本発明の水晶アクチュエータの形状の外観図、
第1図(b)は第1図(a)の水晶アクチュエータのz
軸方向から投影した平面図である。 第2図は本発明の水晶アクチュエータの原理を説明する
ための座標系と水晶ブロックを示す斜視図である。 1……水晶ブロック 1′……アクチュエータ 2……T型形状 3……穴 4,4′,5,5′,6,6′,7,7′……駆動電極 8……針取り付け部 x……電気軸 y……機械軸 z……光軸FIG. 1 is an external view of the shape of the crystal actuator of the present invention,
FIG. 1 (b) shows the z of the quartz actuator of FIG. 1 (a).
It is the top view projected from the axial direction. FIG. 2 is a perspective view showing a coordinate system and a crystal block for explaining the principle of the crystal actuator of the present invention. DESCRIPTION OF SYMBOLS 1 ... Crystal block 1 '... Actuator 2 ... T-shaped shape 3 ... Hole 4, 4', 5, 5 ', 6, 6', 7, 7 '... Driving electrode 8 ... Needle mounting part x …… Electric axis y …… Mechanical axis z …… Optical axis
Claims (1)
動駆動する圧電アクチュエータにおいて、前記アクチュ
エータはT型形状を成し、かつ、前記T型形状の横棒部
分に穴が設けられ、前記水晶のT型形状の縦棒軸方向で
ある電気軸、前記水晶のT型形状の横棒軸方向である機
械軸、前記電気軸及び前記機械軸と垂直な光軸を、x
軸、y軸、z軸とするとき、x軸と垂直な面で前記水晶
のT型形状の縦棒軸に1対、x軸と垂直な面で前記水晶
のT型形状の横棒軸両端面と前記穴とに2対、y軸と垂
直な面で記水晶のT型形状の横棒軸上部面と前記穴とに
1対の駆動電極が設けられていることを特徴とする圧電
アクチュエータ。1. A piezoelectric actuator formed of a crystal block, supporting a needle and finely driving the needle, wherein the actuator has a T-shape, and a hole is provided in a horizontal bar portion of the T-shape. An electrical axis which is a vertical bar axis direction of the T-shape, a mechanical axis which is a horizontal bar axis direction of the T-shape of the quartz crystal, an optical axis which is perpendicular to the electrical axis and the mechanical axis, x
When the axis, the y-axis, and the z-axis are set, one pair of the T-shaped vertical bar axis of the crystal in a plane perpendicular to the x-axis, and both ends of the T-shaped horizontal rod axis of the crystal in a plane perpendicular to the x-axis A piezoelectric actuator, wherein two pairs of drive electrodes are provided on the surface and the hole, and one pair of drive electrodes are provided on the upper surface of the T-shaped horizontal bar axis of the quartz crystal in a plane perpendicular to the y-axis and the hole. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63057103A JP2639548B2 (en) | 1988-03-10 | 1988-03-10 | Piezo actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63057103A JP2639548B2 (en) | 1988-03-10 | 1988-03-10 | Piezo actuator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01231667A JPH01231667A (en) | 1989-09-14 |
JP2639548B2 true JP2639548B2 (en) | 1997-08-13 |
Family
ID=13046175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63057103A Expired - Lifetime JP2639548B2 (en) | 1988-03-10 | 1988-03-10 | Piezo actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2639548B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2905643B2 (en) * | 1992-05-29 | 1999-06-14 | 住友重機械工業株式会社 | Piezoelectric linear actuator |
US6018212A (en) * | 1996-11-26 | 2000-01-25 | Ngk Insulators, Ltd. | Vibrator, vibratory gyroscope, and vibration adjusting method |
US5998911A (en) * | 1996-11-26 | 1999-12-07 | Ngk Insulators, Ltd. | Vibrator, vibratory gyroscope, and vibration adjusting method |
US6747393B2 (en) | 1996-11-26 | 2004-06-08 | Ngk Insulators, Ltd. | Vibrator, vibratory gyroscope, and vibration adjusting method |
US6437483B2 (en) | 1996-11-26 | 2002-08-20 | Ngk Insulators, Ltd. | Vibrator, vibratory gyroscope, and vibration adjusting method |
US6858972B2 (en) | 2002-06-21 | 2005-02-22 | Ngk Insulators, Ltd. | Vibrator, vibratory gyroscope, and vibration adjusting method |
-
1988
- 1988-03-10 JP JP63057103A patent/JP2639548B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01231667A (en) | 1989-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0368579B1 (en) | Probe unit, driving method thereof, and scanning device for detecting tunnel current having said probe unit | |
JP2839543B2 (en) | Displacement generator | |
JPH0212381B2 (en) | ||
EP0147169A2 (en) | Flexure stage alignment apparatus | |
KR930007933B1 (en) | Magnetic head apparatus having non-magnetic metal interposed between piezoelectric members | |
JP2639548B2 (en) | Piezo actuator | |
EP0790481B1 (en) | Non-tilting plate actuator for use in a micropositioning device | |
Bergander et al. | Micropositioners for microscopy applications based on the stick-slip effect | |
JPH10209517A (en) | Piezoelectric element | |
JP2651462B2 (en) | Piezo actuator | |
JP2631297B2 (en) | Piezo actuator | |
JPH039713B2 (en) | ||
JPH01214279A (en) | Piezoelectric actuator | |
JPH01231669A (en) | Piezoelectric actuator | |
JPS63236992A (en) | Piezoelectric-element fine adjustment mechanism | |
RU224439U1 (en) | Angular movement actuator | |
JPS63153405A (en) | Scanning type tunnel microscope | |
JPH06112547A (en) | Flexural displacement actuator | |
JPH0150194B2 (en) | ||
JPH0421153B2 (en) | ||
JPS6356621A (en) | Inching device | |
JPH0356076A (en) | Fine movement mechanism | |
JPH02206376A (en) | Electrostatic type multidimensional actuator | |
JPH0324016B2 (en) | ||
JPH0746909B2 (en) | Positioning device |