JPH02243907A - Piezoelectric element driving type probe and its driving method - Google Patents

Piezoelectric element driving type probe and its driving method

Info

Publication number
JPH02243907A
JPH02243907A JP1063968A JP6396889A JPH02243907A JP H02243907 A JPH02243907 A JP H02243907A JP 1063968 A JP1063968 A JP 1063968A JP 6396889 A JP6396889 A JP 6396889A JP H02243907 A JPH02243907 A JP H02243907A
Authority
JP
Japan
Prior art keywords
piezoelectric element
probe
displacement
piezoelectric
drive voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1063968A
Other languages
Japanese (ja)
Inventor
Yasuhiro Torii
鳥居 康弘
Kenji Yamazaki
山崎 謙治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1063968A priority Critical patent/JPH02243907A/en
Publication of JPH02243907A publication Critical patent/JPH02243907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To improve the resolution by providing a piezoelectric element part which is displaced periodically as the displacement sum of plural piezoelectric bodies in the direction of one of two X and Y axes and >=2 driving voltage terminals which controls the displacement of the piezoelectric element part. CONSTITUTION:A specific voltage is applied between the probe 1 and a sample 2 and a Z-axial control element 4 is so controlled that a tunnel current flowing through the probe 1 becomes constant, so that the probe 1 can trace the surface shape and electron state density of the sample 2. At this time, X-axial and Y-axial control circuits 8 and 9 control the X-axial and Y-axial piezoelectric elements and while the probe 1 is put in scanning operation in the X and Y directions, the element 4 is controlled so that the tunnel current becomes constant; and the displacement quantity is displayed to obtain a three-dimensional image on a display device 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は走査型トンネル顕微鏡(STM)のような探針
を用いて表面の状態を観察する装置のキイになる探針と
その駆動方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a probe that is the key to an apparatus for observing surface conditions using a probe, such as a scanning tunneling microscope (STM), and a method for driving the probe. It is something.

(従来の技術) 従来の走査型トンネル顕微鏡は、応用物理第56巻(1
9B?) 1126頁から1137頁(応用物理、56
.Nα9゜(19B?) 1126〜1137)に解説
されているように、探針をチタン酸ジルコン酸鉛系(P
ZT)の圧電セラミックスに取りつけて、トンネル電流
を測定して物質表面の電子状態を観測したり、トンネル
電流の変化に応じて、探針を微小移動して、探針と試料
表面との距離を一定に保つようにして表面形状を観察し
たりしている。
(Prior art) The conventional scanning tunneling microscope is described in Applied Physics Vol. 56 (1).
9B? ) pp. 1126-1137 (Applied Physics, 56
.. As explained in Nα9゜(19B?) 1126-1137), the probe was
ZT) can be attached to piezoelectric ceramics to measure the tunneling current and observe the electronic state on the surface of the material, or to move the tip minutely in response to changes in the tunneling current to measure the distance between the tip and the sample surface. I keep it constant and observe the surface shape.

この走査トンネル顕微鏡は、もともとは原子像のような
超微小領域の表面状態を非接触で観察するために開発さ
れたものであるが、その適用範囲は急速に広がっている
。通常は原子像を観察するためには、数1100nの狭
い領域でもよかったが、用途によっては、10〜100
μm以上の領域を走査することが望まれている。このた
め、種々の走査範囲を有する駆動電圧素子が開発されつ
つあるが、通常、走査範囲の広いものは分解能が悪い。
The scanning tunneling microscope was originally developed to observe surface conditions in ultra-small areas, such as atomic images, without contact, but its scope of application is rapidly expanding. Normally, in order to observe atomic images, a narrow region of several 1100 nanometers is sufficient, but depending on the application, a region of 10 to 100
It is desired to scan an area larger than μm. For this reason, drive voltage elements having various scanning ranges are being developed, but those with wide scanning ranges usually have poor resolution.

このため、広い範囲を観察する時と、原子像のような分
解能の高い像を観察する時とでは、異なる駆動電圧素子
に取りつけられた探針を取り替えて用いる必要があった
。このため、探針を取り替えると測定場所がずれてしま
うので、同一場所を拡大、縮小して観察するのが困難で
あった。すなわち、通常の光学顕微鏡、走査電子顕微鏡
のように同一場所の像を倍率を変えながら観察するのが
困難であった。
Therefore, when observing a wide range and when observing a high-resolution image such as an atomic image, it is necessary to replace the probes attached to different drive voltage elements. For this reason, when the probe is replaced, the measurement location shifts, making it difficult to enlarge or reduce the same location for observation. That is, it is difficult to observe an image of the same location while changing the magnification as with a normal optical microscope or scanning electron microscope.

また一般に駆動電圧素子は、走査範囲が広くなるにつれ
て重量が大きくなるので、共振周波数が低くなり、高速
に走査できなくなるという問題があった。
Furthermore, in general, as the scanning range of the driving voltage element becomes wider, the weight of the driving voltage element increases, so the resonant frequency becomes lower and there is a problem that high-speed scanning becomes impossible.

(発明が解決しようとする課題) 本発明は、走査範囲が広く、しかも分解能の高い圧電素
子駆動型探針およびその駆動方法を提供することにある
(Problems to be Solved by the Invention) An object of the present invention is to provide a piezoelectric element-driven probe having a wide scanning range and high resolution, and a method for driving the same.

(課題を解決するための手段) 本発明の圧電素子駆動型探針は、測定試料と間隔をおい
て配置された探針と、該探針に接続され、X、 Yの2
軸の少なくとも1軸方向に複数の圧電体の変位の総和と
して周期的な変位を付与する圧電素子部と、この圧電素
子部の変位を制御する二つ以上の駆動電圧端子とにより
構成する。
(Means for Solving the Problems) A piezoelectric element-driven probe of the present invention includes a probe disposed at a distance from a measurement sample, and two probes connected to the probe, X and Y.
It is composed of a piezoelectric element section that applies periodic displacement as the sum of displacements of a plurality of piezoelectric bodies in at least one axis direction, and two or more drive voltage terminals that control the displacement of this piezoelectric element section.

また本発明の圧電素子駆動型探針の駆動方法は、変位/
駆動電圧の大きな圧電体を駆動する駆動電圧端子に低周
波の駆動電圧を印加し、変位/駆動電圧の小さな圧電体
を駆動する駆動電圧端子に高周波の駆動電圧を印加して
、広い走査範囲にわたって、原子オーダの分解能で探針
を走査するか、または所望の走査範囲に対応して、一つ
以上の前記駆動電圧端子を選択し、その端子に駆動電圧
を同時に印加して探針を走査する。
Furthermore, the method for driving the piezoelectric element-driven probe of the present invention is characterized in that displacement/
A low-frequency drive voltage is applied to a drive voltage terminal that drives a piezoelectric material with a large drive voltage, and a high-frequency drive voltage is applied to a drive voltage terminal that drives a piezoelectric material with a small displacement/drive voltage to scan over a wide scanning range. , the probe is scanned with a resolution on the atomic order, or one or more of the drive voltage terminals are selected corresponding to a desired scanning range, and drive voltages are simultaneously applied to the terminals to scan the probe. .

従来の技術は、最大走査範囲の1O−4程度の分解能を
有しており、走査範囲が広くなるにつれて分解能が悪く
なるという欠点があった。例えば、原子像を観察する場
合には、最大走査範囲は1μm程度であった。このため
、同一測定場所を倍率を大きく変えながら測定するのが
困難であった。また、走査範囲が広(なるにつれて駆動
圧電素子は、高速に走査ができなくなるので、測定デー
タを収集するのに益々長い時間を要するという欠点があ
った。
The conventional technology has a resolution of about 10-4 of the maximum scanning range, and has the disadvantage that the resolution worsens as the scanning range becomes wider. For example, when observing an atomic image, the maximum scanning range was about 1 μm. For this reason, it has been difficult to measure the same measurement location while greatly changing the magnification. Furthermore, as the scanning range becomes wider, the driving piezoelectric element cannot scan at high speed, so there is a drawback that it takes an increasingly longer time to collect measurement data.

これに対して、本発明の圧電素子駆動型探針は最大走査
範囲の10−b〜10−7程度以上の分解能を有してお
り、走査範囲が広くても高分解能性を保っている。すな
わち、最大走査範囲100 am以上で原子像を観察で
きる分解能を有している。このため、同一場所を倍率を
変えながら測定することが可能である。さらに走査範囲
が広くなっても、走査速度を落とすことなく走査ができ
るので、測定データを高速に収集できる。
On the other hand, the piezoelectric element-driven probe of the present invention has a resolution of about 10-b to 10-7 or more of the maximum scanning range, and maintains high resolution even when the scanning range is wide. That is, it has a resolution that allows observation of atomic images over a maximum scanning range of 100 am or more. Therefore, it is possible to measure the same location while changing the magnification. Furthermore, even if the scanning range becomes wider, scanning can be performed without reducing the scanning speed, so measurement data can be collected at high speed.

(作 用) 試料と探針とを近付け、試料と探針との距離がトンネル
領域になるように接近させる。この領域で試料と探針と
の間に所定の電圧をかけ、トンネル電流が一定になるよ
うに試料面に垂直なZ方向の圧電素子を駆動すれば、探
針と試料との距離を一定に保つことができる。この状態
で、x、Yの2方向の圧電素子によって、探針をTVの
ラスタのように走査すれば、針の先端は試料表面の原子
に付随した電子の局所状態密度の濃淡をなぞって動くこ
とになる(仕事関数など物性が均一な試料の場合には、
探針と試料表面との間隔を一定に保つことに相当する)
。従って、Z方向の圧電微動素子に加えた電圧変化を切
り出して画像化すれば、物質の表面構造や形状を約10
pmの精度で求めることができる。
(Function) Bring the sample and the probe closer together so that the distance between the sample and the probe is in the tunnel region. By applying a predetermined voltage between the sample and the probe in this region and driving the piezoelectric element in the Z direction perpendicular to the sample surface so that the tunneling current remains constant, the distance between the probe and the sample can be kept constant. can be kept. In this state, if the probe is scanned like a TV raster using the piezoelectric element in the two directions x and y, the tip of the needle will move by tracing the density of the local state density of electrons attached to the atoms on the sample surface. (In the case of a sample with uniform physical properties such as work function,
(equivalent to keeping the distance between the probe and the sample surface constant)
. Therefore, if the voltage changes applied to the piezoelectric micro-tremor element in the Z direction are extracted and imaged, the surface structure and shape of the material can be estimated by approximately 10
It can be determined with an accuracy of pm.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

n朋↓ 第1図は本発明の一実施例を示す構成図であって、1は
探針、2は試料、3はステージ、4はZ軸圧型素子、5
 (5−1,5−2)はX軸圧型素子、6 (6−1,
6−2)はY軸圧型素子、7はZ軸制御回路、8はX軸
制御回路、9はY軸制御回路、10は表示装置である。
Figure 1 is a block diagram showing an embodiment of the present invention, in which 1 is a probe, 2 is a sample, 3 is a stage, 4 is a Z-axis pressure type element, and 5 is a block diagram showing an embodiment of the present invention.
(5-1, 5-2) are X-axis pressure type elements, 6 (6-1,
6-2) is a Y-axis pressure type element, 7 is a Z-axis control circuit, 8 is an X-axis control circuit, 9 is a Y-axis control circuit, and 10 is a display device.

探針を取りつけている圧電走査部は、X軸圧型素子5、
Y軸圧型素子6から構成されている。
The piezoelectric scanning section to which the probe is attached includes an X-axis pressure type element 5,
It is composed of a Y-axis pressure type element 6.

X、Y軸圧型素子5,6は、高精度広走査圧電素子部5
−1.6−1と粗調用の圧電素子部52.6−2とから
構成されている。高精度広走査圧電素子部5−1.6−
1は、±150〜250■の駆動電圧に対して、10〜
100μm以上の走査範囲で分解能約to pmを有す
るもので、最大走査範囲の10−6〜10−7程度の分
解能を持っており、具体的な構成は後述する。粗調用の
圧電素子部5−2゜6−2は、低電圧で変位の大きな積
層型のような圧電素子で、士数十■の駆動電圧に対して
10〜100μm程度の大きな変位が可能なもので、測
定場所の粗いアライメント(オフセット)に使用する。
The X and Y axis piezoelectric elements 5 and 6 are a high precision wide scanning piezoelectric element section 5.
-1.6-1 and a piezoelectric element section 52.6-2 for coarse adjustment. High precision wide scanning piezoelectric element section 5-1.6-
1 is 10 to 10 for a driving voltage of ±150 to 250
It has a resolution of about to pm in a scanning range of 100 μm or more, and has a resolution of about 10 -6 to 10 -7 in the maximum scanning range, and its specific configuration will be described later. The piezoelectric element section 5-2゜6-2 for coarse adjustment is a laminated type piezoelectric element that has a large displacement at low voltage, and is capable of a large displacement of about 10 to 100 μm with a driving voltage of 100 μm. This is used for rough alignment (offset) of the measurement location.

この粗調用圧電素子部5−2.6−2は、直積度広走査
圧電素子5−1.6−1と直接結合されている必要は全
くなく、圧電走査部をX、Y方向に粗調できる機構が付
加されていればどのような機構でもよい。
This coarse adjustment piezoelectric element section 5-2.6-2 does not need to be directly coupled to the direct integration wide scanning piezoelectric element 5-1.6-1, and the piezoelectric scanning section can be roughly adjusted in the X and Y directions. Any mechanism may be used as long as it has an additional mechanism that can do this.

このような構成になっているので、探針1と試料2との
間に所定の電圧をかけ、探針1に流れるトンネル電流が
一定になるように、Z軸制御回路7でZ軸圧型素子4を
制御すれば、探針1は試料2の表面形状、電子状態密度
をなぞることができる。すなわち表面状態が一定なら試
料表面のトポグラフィを測定でき、表面が非常に平坦な
ら電子状態密度を測定できる。このとき、X、Y軸の制
御回路8,9でX、Y軸の圧電素子を制御して、探針1
をX、Y方向に走査しながら、トンネル電流が一定にな
るようにZ軸圧型素子4を制御してその変位量を表示す
れば、表示装置10に3次元像として画像化できる。も
ち論、探針1と試料2との距離を一定にして、その間を
流れるトンネル電流を表示である。具体的な動作として
は、粗調用の圧電素子部5−2.6−2に駆動電圧をか
けることによって、測定試料の測定走査範囲の中心位置
に位置合わせを行い、その後、大口径の高精度広走査圧
電素子部5−1.6−1で測定領域をX。
With this configuration, a predetermined voltage is applied between the probe 1 and the sample 2, and the Z-axis pressure type element is controlled by the Z-axis control circuit 7 so that the tunnel current flowing through the probe 1 is constant. 4, the probe 1 can trace the surface shape and electronic state density of the sample 2. That is, if the surface condition is constant, the topography of the sample surface can be measured, and if the surface is extremely flat, the electronic state density can be measured. At this time, the X and Y axis control circuits 8 and 9 control the X and Y axis piezoelectric elements, and the probe 1
If the Z-axis pressure type element 4 is controlled so that the tunnel current becomes constant while scanning in the X and Y directions, and the amount of displacement is displayed, a three-dimensional image can be displayed on the display device 10. In theory, the distance between the probe 1 and the sample 2 is kept constant, and the tunnel current flowing between them is displayed. Specifically, by applying a driving voltage to the rough adjustment piezoelectric element section 5-2, 6-2, the measurement sample is aligned to the center position of the measurement scanning range, and then the large-diameter high-precision adjustment is performed. The measurement area is X with the wide scanning piezoelectric element section 5-1.6-1.

Y方向にラスクスキャンさせる。表示装置10には、通
常、一方向には250〜1000画素程度しか表示でき
ないので、走査範囲に応じて表示される分解能が決まっ
てくる。よって、X、Yの走査範囲を変えることによっ
て、表示される倍率が変化し、走査範囲を小さくするこ
とにより1.高倍率の高分解能像が得られる。例えば、
表示面の大きさを100mm角とし、高精度大口径走査
圧電素子の走査範囲をlnmから1mmまで可能とする
と、倍率を102〜103の範囲で可変にできる。すな
わち光学顕微鏡、走査電子顕微鏡に相当する観察したい
場所で倍率可変の像が容易に得られる。X、Yの走査範
囲は圧電素子にかける駆動電圧の大きさに比例して変わ
る。なお走査範囲が大きい時にも高分解能の測定データ
を収集できるので、測定データを記憶装置に蓄えておき
、あとから表示装置に表示する領域をソフト的な処理に
よって可変倍率像として表示できることは言うまでもな
い。
Perform a rask scan in the Y direction. Since the display device 10 can normally display only about 250 to 1000 pixels in one direction, the display resolution is determined depending on the scanning range. Therefore, by changing the X and Y scanning range, the displayed magnification changes, and by reducing the scanning range, 1. High-magnification, high-resolution images can be obtained. for example,
If the size of the display surface is 100 mm square and the scanning range of the high-precision, large-diameter scanning piezoelectric element is enabled from 1 nm to 1 mm, the magnification can be varied in the range of 102 to 103. That is, an image with variable magnification can be easily obtained at a desired location, equivalent to an optical microscope or a scanning electron microscope. The X and Y scanning ranges change in proportion to the magnitude of the drive voltage applied to the piezoelectric element. Since high-resolution measurement data can be collected even when the scanning range is large, it goes without saying that the measurement data can be stored in the storage device and the area to be displayed later on the display device can be displayed as a variable magnification image through software processing. .

次に本発明の基本構成部である高精度広走査圧電素子の
構成とその制御法について述べる。
Next, the configuration of the high-precision wide-scanning piezoelectric element, which is the basic component of the present invention, and its control method will be described.

第2図(a)は、変位/電圧特性の異なる二つの圧電素
子を組み合わせた例で、圧電素子部(1)と(2)の各
々の変位を独立に制御でき、これらの重ね合わせとして
全体の変位量を制御できる。各圧電素子部(1) 、 
(2)の駆動電圧に対する変位債を1:100とする。
Figure 2 (a) is an example in which two piezoelectric elements with different displacement/voltage characteristics are combined, and the displacement of each piezoelectric element part (1) and (2) can be controlled independently, and the overall effect is obtained by superimposing them. The amount of displacement can be controlled. Each piezoelectric element part (1),
The displacement ratio for the drive voltage in (2) is assumed to be 1:100.

例えば最大駆動電圧:±150〜250 Vに対する最
大変位量を、±0.5nm、±50nmとする。このよ
うな構成の圧電素子に、第2図(b)に示すような駆動
電圧を、各圧電素子部(1) 、 (2)にかけると、
第2図(C)に示すような高精度で大きな変位が得られ
る。すなわち、圧電素子部(2)には、lnmの単位で
−50,−49゜−48,・・・・・・49.50nm
のように変化し、一方、圧電素子部(1)は、10 p
mの分解能で1μmの走査範囲を有すると、この二つの
圧電素子部を組み合わせることによって、最大走査範囲
100 pmで分解能10 pmを有することができる
。言い換えれば、最大変位量は変位/圧電特性の大きな
圧電素子部(2)の特性で決まり、一方、分解能は高分
解能の圧電素子部(1)の特性で決まるので、高精度で
広い走査範囲を有するアクチュエータとして機能する。
For example, the maximum displacement amount for the maximum drive voltage: ±150 to 250 V is set to ±0.5 nm and ±50 nm. When a driving voltage as shown in FIG. 2(b) is applied to each piezoelectric element part (1) and (2) of the piezoelectric element having such a configuration,
A large displacement with high accuracy as shown in FIG. 2(C) can be obtained. That is, in the piezoelectric element part (2), -50, -49° -48, ...49.50 nm in units of lnm.
On the other hand, the piezoelectric element part (1) changes as 10 p
If the scanning range is 1 μm with a resolution of m, by combining these two piezoelectric elements, it is possible to have a resolution of 10 pm with a maximum scanning range of 100 pm. In other words, the maximum displacement amount is determined by the characteristics of the piezoelectric element part (2) with large displacement/piezoelectric characteristics, while the resolution is determined by the characteristics of the high-resolution piezoelectric element part (1), so a wide scanning range with high precision can be achieved. functions as an actuator with

組み合わせとしては、二つの圧電素子の組み合わせに限
らず、数を多(しても、もち論可能である。また二つの
圧電素子の変位量の比の組み合わせとしては、D/A変
換回路等を用いて、コンピュータで制御する場合は、2
進法、すなわち2の倍数の比になるような組み合わせに
するのがよい。
The combination is not limited to the combination of two piezoelectric elements, but it is possible to create a large number of combinations.Also, as a combination of the displacement ratio of the two piezoelectric elements, a D/A conversion circuit, etc. 2. When controlling with a computer using
It is best to use a combination that is a base system, that is, a ratio that is a multiple of 2.

第3図(a)は別の高精度広走査圧電素子の構成側図で
ある。高精度の圧電素子部が組み合わされており、各素
子の変位の重ね合わせとしてl−−タルの変位がきまる
。例えば各圧電素子の特性を、最大駆動電圧±150〜
250 Vに対する最大変位量を±0.5 μmとして
、10個程度あるとする。このような構成の圧電素子に
対して、第3図(b)に示すように、最初V sinの
電圧をかけておき、その後、各圧電素子(1)〜(11
)にかける駆動電圧を順次変えると、第3図(C)に示
すような変位量が得られる。このとき、最大変位量は、
各圧電素子の変位/電圧特性とその個数によって決まる
ので、高精度の圧電素子を組み合わせることにより、高
精度で広走査範囲を有する圧電アクチュエータとして使
用できる。
FIG. 3(a) is a side view of another high-precision, wide-scanning piezoelectric element. High-precision piezoelectric elements are combined, and the displacement of the l-tal is determined as the superposition of the displacements of each element. For example, the characteristics of each piezoelectric element are determined by the maximum drive voltage ±150~
Assuming that the maximum displacement amount for 250 V is ±0.5 μm, there are about 10 pieces. As shown in FIG. 3(b), a voltage of V sin is first applied to the piezoelectric element having such a configuration, and then each piezoelectric element (1) to (11
) By sequentially changing the driving voltage applied to the two terminals, the amount of displacement shown in FIG. 3(C) can be obtained. At this time, the maximum displacement is
Since it is determined by the displacement/voltage characteristics of each piezoelectric element and the number thereof, by combining high-precision piezoelectric elements, it can be used as a piezoelectric actuator with high precision and a wide scanning range.

第4図に本発明の他の実施例である簡易な走査範囲選択
型の圧電素子の構成例を示す。第4図(a)は、変位/
電圧特性の異なる素子(1)。
FIG. 4 shows a configuration example of a simple scanning range selection type piezoelectric element according to another embodiment of the present invention. Figure 4(a) shows the displacement/
Elements with different voltage characteristics (1).

(2) 、 (3)を組み合わせた例を示す。例えば最
大駆動電圧に対する変位範囲を、1μm、3μm。
An example combining (2) and (3) is shown below. For example, the displacement range for the maximum drive voltage is 1 μm and 3 μm.

10μmとすれば、最大走査範囲を1.3,4.10゜
11、13.14μmのように異なる走査範囲を有する
アクチュエータとして選択して使用できる。この場合は
、第2図、第3図の高精度広走査圧電素子と異なり、走
査範囲が広くなると、一般には分解能が悪くなる。第4
図(b)は、変位/電圧特性の同一の圧電素子(1)〜
(10)を組み合わせた例を示す。例えば最大駆動電圧
に対する変位範囲を、1μmの圧電体を10個組み合わ
せたとすると、最大走査範囲を1.2.・・・・・・、
  9.10,1/11のように異なる走査範囲を有す
るアクチュエータとして選択して使用できる。第3図に
示す実施例においては、二つの圧電素子を同期をとりな
がら走査する必要があったが、第4図に示す実施例では
、選択できる走査範囲を固定して、走査中に二つ以上の
圧電素子の同期をとる必要を無くしたものである。
If the maximum scanning range is 10 μm, the maximum scanning range can be selected and used as an actuator having different scanning ranges such as 1.3 μm, 4.10°11, and 13.14 μm. In this case, unlike the high-precision wide-scanning piezoelectric elements shown in FIGS. 2 and 3, as the scanning range becomes wider, the resolution generally deteriorates. Fourth
Figure (b) shows piezoelectric elements (1) with the same displacement/voltage characteristics.
An example of combining (10) is shown below. For example, if the displacement range for the maximum drive voltage is a combination of 10 piezoelectric bodies of 1 μm, the maximum scanning range is 1.2.・・・・・・、
It can be selected and used as an actuator having different scanning ranges such as 9.10 and 1/11. In the embodiment shown in Fig. 3, it was necessary to scan the two piezoelectric elements in synchronization, but in the embodiment shown in Fig. 4, the selectable scanning range is fixed, and the two piezoelectric elements are This eliminates the need to synchronize the piezoelectric elements described above.

次に圧電素子の具体的な構成例を示す。第5図(a)は
、圧電体11に電圧が印加される領域の長さを変えた例
を示し、電極12.13.14の長さが異なっており、
電圧が印加される領域に比例して走査範囲が異なる。第
5図(b)は、特性の異なる電圧素子15.16.17
を絶縁体18.19等を介して接続して、各圧電素子の
電極20に駆動電圧が印加できる構成の例を示したもの
で、種々の特性の圧電体を組み合わせて使用することが
できる。これらは、第2図、第4図(a)に示した変位
/電圧特性の異なる圧電素子を組み合わせた構成に対応
している。第5図(c)は、圧電素子21に等間隔に電
極22をつけた例で、特性の同一のものを並列に配置し
た構成例を示す。さらに第5図(d)は積層型の圧電素
子の例を示し、圧電体23の両端の各電極24に電圧を
かけるこ♂ができるようになっており、特性の同一のも
のを並列に配置したものと等価に使用できる。もち論、
各層の厚さ、電圧特性を変えれば、第5図(a)、(b
)と同様な構成を得ることができる。第5図(c)、 
 (d)は、第3図、第4図(b)の同一特性の電圧体
を配置した例に対応している。このような複合圧電素子
は、高精度広走査圧電素子、走査範囲選択型の圧電素子
として使用でき、トライポット微動機構、十字型微動構
成、やぐら型微動機構のx、y軸に用いることにより、
X−Y走査アクチュエータを構成できる。
Next, a specific example of the structure of the piezoelectric element will be shown. FIG. 5(a) shows an example in which the length of the region to which voltage is applied to the piezoelectric body 11 is changed, and the lengths of the electrodes 12, 13, and 14 are different.
The scanning range varies in proportion to the area to which the voltage is applied. Figure 5(b) shows voltage elements 15.16.17 with different characteristics.
This shows an example of a configuration in which drive voltages can be applied to the electrodes 20 of each piezoelectric element by connecting them through insulators 18, 19, etc., and piezoelectric bodies with various characteristics can be used in combination. These correspond to a configuration in which piezoelectric elements having different displacement/voltage characteristics are combined as shown in FIGS. 2 and 4(a). FIG. 5(c) shows an example in which electrodes 22 are attached to piezoelectric elements 21 at equal intervals, and shows a configuration example in which piezoelectric elements 21 having the same characteristics are arranged in parallel. Furthermore, FIG. 5(d) shows an example of a stacked piezoelectric element, in which a voltage can be applied to each electrode 24 at both ends of the piezoelectric body 23, and elements with the same characteristics are arranged in parallel. It can be used equivalently to Mochi theory,
If the thickness and voltage characteristics of each layer are changed, Figures 5(a) and (b)
) can be obtained. Figure 5(c),
(d) corresponds to an example in which voltage bodies having the same characteristics as those shown in FIGS. 3 and 4 (b) are arranged. Such a composite piezoelectric element can be used as a high-precision wide-scanning piezoelectric element or a scanning range selection type piezoelectric element, and can be used for the x and y axes of a tri-pot fine movement mechanism, a cross-shaped fine movement structure, and a tower-type fine movement mechanism.
An X-Y scanning actuator can be configured.

第6図は、本発明の別の圧電素子の具体的な構成例でチ
ューブ型の例を示す。第6図(a)は、チューブ型のy
軸、Y軸走査の駆動を制御する電極25の長さを変えた
例を示し、26はZ軸走査の駆動を制御する電極である
。第6図(b)は同一長さの電極30を多数並列に配置
した例を示し、31はZ軸走査の駆動を制御する電極で
ある。第6図(a)は、第2回、第4図(a)に示した
変位/電圧特性の異なる圧電素子を組み合わせた構成に
対応しており、これらに電圧を同期させて印加すること
により、広範囲で高精度にX、Yの走査をすることがで
きる。一方、第6図(b)は、第3図、第4図(b)の
同一特性の圧電体を配置した例に対応している。
FIG. 6 shows a tube-type example of a specific configuration of another piezoelectric element of the present invention. Figure 6(a) shows a tube-shaped y
An example is shown in which the length of the electrode 25 that controls the drive of the axial and Y-axis scans is changed, and 26 is an electrode that controls the drive of the Z-axis scan. FIG. 6(b) shows an example in which a large number of electrodes 30 of the same length are arranged in parallel, and 31 is an electrode that controls the Z-axis scanning drive. Figure 6 (a) corresponds to the configuration that combines piezoelectric elements with different displacement/voltage characteristics shown in Part 2 and Figure 4 (a). , X and Y scanning can be performed over a wide range with high precision. On the other hand, FIG. 6(b) corresponds to an example in which piezoelectric bodies having the same characteristics as those in FIGS. 3 and 4(b) are arranged.

第7図は、異なる圧電微動機構を組み合わせた本発明の
別の実施例図である。第7図は、広範囲走査の十字型微
動機構35と、高精度のチューブ型微動機構36とを組
み合わせた例を示す。チューブ型微動機構36は、外形
2mmφ、長さ10mm程度で、80人/V程度の特性
の圧電素子を構成できる。よって、±15Vで2400
人の範囲を走査できる。従って、十字型微動機構で広い
走査範囲を走査できるようにすれば、高精度広走査圧電
素子として使用できる。しかもチューブ型微動機構は、
非常に小型のため10kHz以上の高速で走査すること
ができるので、高速の圧電アクチュエータとして使用で
きる。
FIG. 7 is a diagram showing another embodiment of the present invention combining different piezoelectric fine movement mechanisms. FIG. 7 shows an example in which a wide-range scanning cross-shaped fine movement mechanism 35 and a high-precision tube-type fine movement mechanism 36 are combined. The tube type fine movement mechanism 36 has an outer diameter of 2 mmφ and a length of about 10 mm, and can constitute a piezoelectric element with a characteristic of about 80 people/V. Therefore, 2400 at ±15V
Can scan the range of people. Therefore, if the cross-shaped fine movement mechanism can scan a wide scanning range, it can be used as a high-precision, wide-scanning piezoelectric element. Moreover, the tube type fine movement mechanism
Since it is very small and can scan at a high speed of 10 kHz or more, it can be used as a high-speed piezoelectric actuator.

このような異なる圧電微動機構の組み合わせは、ここで
述べた例に限定されることなく、種々の組み合わせの構
成が可能である。
The combination of such different piezoelectric fine movement mechanisms is not limited to the example described here, and various combinations are possible.

(発明の効果) 以上説明したように、本発明の圧電素子駆動型探針は、
2種類の圧電素子を同時に駆動して、広い走査範囲にわ
たって、その走査範囲にかかわらず高精度でX−Yの2
次元走査ができる。このため、10〜107の広範囲に
わたって倍率を変えて像を観察することができる。また
一つの圧電素子に高速走査の圧電素子を用いることによ
り、高速な走査が可能になるので、その適用範囲は広い
(Effects of the Invention) As explained above, the piezoelectric element-driven probe of the present invention has the following features:
By driving two types of piezoelectric elements simultaneously, X-Y 2
Can perform dimensional scanning. Therefore, images can be observed by changing the magnification over a wide range of 10 to 107. Furthermore, by using a high-speed scanning piezoelectric element as one piezoelectric element, high-speed scanning becomes possible, so the range of application is wide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図、 第2図、第3図は本発明の高精度広走査圧電素子部と走
査制御法の説明図、 第4図は本発明の走査範囲可変圧電素子と走査制御法の
説明図、 第5図、第6図、第7図は本発明の圧電素子部の具体的
な構成側図である。 1・・・探針       2・・・試料3・・・ステ
ージ     4・・・Z軸圧電素子訃・・X軸圧電素
子   6・・・Y軸圧型素子5−1.6−1・・・高
精度広走査圧電素子部5−2.6−2・・・tIl調用
の圧電素子部7・・・Z軸制御回路   8・・・X軸
制御回路9・・・Y軸制御回路   10・・・表示装
置11・・・圧電体 15、16.17・・・圧電素子 20・・・電極 22・・・電極 24・・・電極 30.31・・・電極 36・・・チューブ型微動機構 12、13.14・・・電極 18.19・・・絶縁体 21・・・圧電素子 23・・・圧電体 25.26・・・電極 35・・・十字型微動機構
FIG. 1 is a configuration diagram of an embodiment of the present invention. FIGS. 2 and 3 are explanatory diagrams of the high-precision wide-scanning piezoelectric element section and scanning control method of the present invention. FIG. 4 is a diagram of the variable scanning range piezoelectric element of the present invention. 5, 6, and 7 are side views of the specific configuration of the piezoelectric element portion of the present invention. 1... Probe 2... Sample 3... Stage 4... Z-axis piezoelectric element... X-axis piezoelectric element 6... Y-axis pressure type element 5-1.6-1... High Precision wide scanning piezoelectric element section 5-2.6-2...Piezoelectric element section for tIl adjustment 7...Z-axis control circuit 8...X-axis control circuit 9...Y-axis control circuit 10... Display device 11... Piezoelectric body 15, 16.17... Piezoelectric element 20... Electrode 22... Electrode 24... Electrode 30.31... Electrode 36... Tube type fine movement mechanism 12, 13.14... Electrode 18.19... Insulator 21... Piezoelectric element 23... Piezoelectric body 25.26... Electrode 35... Cross-shaped fine movement mechanism

Claims (1)

【特許請求の範囲】 1、測定試料と間隔をおいて配置された探針と、該探針
に接続され、X、Yの2軸の少なくとも1軸方向に複数
の圧電体の変位の総和として周期的な変位を付与する圧
電素子部と、この圧電素子部の変位を制御する二つ以上
の駆動電圧端子とから構成されていることを特徴とする
圧電素子駆動型探針。 2、測定試料と間隔をおいて配置された探針と、該探針
に接続され、X、Yの2軸の少なくとも1軸方向に複数
の圧電体の変位の総和として周期的な変位を付与する圧
電素子部と、この圧電素子部の変位を制御する二つ以上
の駆動電圧端子とを有する圧電素子駆動型探針の駆動方
法において、変位/駆動電圧の大きな圧電体を駆動する
駆動電圧端子に低周波の駆動電圧を印加し、変位/駆動
電圧の小さな圧電体を駆動する駆動電圧端子に高周波の
駆動電圧を印加して、広い走査範囲にわたって、原子オ
ーダの分解能で探針を走査することを特徴とする圧電素
子駆動型探針の駆動方法。 3、測定試料と間隔をおいて配置された探針と、該探針
に接続され、X、Yの2軸の少なくとも1軸方向に複数
の圧電体の変位の総和として周期的な変位を付与する圧
電素子部と、この圧電素子部の変位を制御する二つ以上
の駆動電圧端子とを有する圧電素子駆動型探針の駆動方
法において、所望の走査範囲に対応して、一つ以上の前
記駆動電圧端子を選択し、その端子に駆動電圧を同時に
印加して探針を走査することを特徴とする圧電素子駆動
型探針の駆動方法。
[Claims] 1. A probe disposed at a distance from the measurement sample, and a total displacement of a plurality of piezoelectric bodies connected to the probe in at least one of the two axes X and Y. A piezoelectric element-driven probe comprising a piezoelectric element section that applies periodic displacement, and two or more drive voltage terminals that control the displacement of the piezoelectric element section. 2. A probe disposed at a distance from the measurement sample, and a probe connected to the probe to apply periodic displacement as the sum of displacements of a plurality of piezoelectric bodies in at least one of the two axes, X and Y. In a method of driving a piezoelectric element-driven probe having a piezoelectric element portion that controls displacement of the piezoelectric element portion, and two or more drive voltage terminals that control displacement of the piezoelectric element portion, a drive voltage terminal that drives a piezoelectric body with a large displacement/driving voltage. A low-frequency drive voltage is applied to the drive voltage terminal that drives the piezoelectric material with small displacement/drive voltage, and a high-frequency drive voltage is applied to the drive voltage terminal to scan the probe with atomic-order resolution over a wide scanning range. A method for driving a piezoelectric element-driven probe characterized by: 3. A probe disposed at a distance from the measurement sample, and a probe connected to the probe to impart periodic displacement as the sum of displacements of a plurality of piezoelectric bodies in at least one of the two axes, X and Y. In a method for driving a piezoelectric element-driven probe having a piezoelectric element section that controls the displacement of the piezoelectric element section, and two or more drive voltage terminals that control the displacement of the piezoelectric element section, one or more of the A method for driving a piezoelectric element-driven probe, characterized by selecting a drive voltage terminal and simultaneously applying a drive voltage to the terminal to scan the probe.
JP1063968A 1989-03-17 1989-03-17 Piezoelectric element driving type probe and its driving method Pending JPH02243907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1063968A JPH02243907A (en) 1989-03-17 1989-03-17 Piezoelectric element driving type probe and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1063968A JPH02243907A (en) 1989-03-17 1989-03-17 Piezoelectric element driving type probe and its driving method

Publications (1)

Publication Number Publication Date
JPH02243907A true JPH02243907A (en) 1990-09-28

Family

ID=13244604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1063968A Pending JPH02243907A (en) 1989-03-17 1989-03-17 Piezoelectric element driving type probe and its driving method

Country Status (1)

Country Link
JP (1) JPH02243907A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230472A (en) * 1983-06-13 1984-12-25 Hitachi Ltd Drive device
JPS6356621A (en) * 1986-08-27 1988-03-11 Agency Of Ind Science & Technol Inching device
JPS6378582A (en) * 1986-09-22 1988-04-08 Hitachi Ltd Electromechanical transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230472A (en) * 1983-06-13 1984-12-25 Hitachi Ltd Drive device
JPS6356621A (en) * 1986-08-27 1988-03-11 Agency Of Ind Science & Technol Inching device
JPS6378582A (en) * 1986-09-22 1988-04-08 Hitachi Ltd Electromechanical transducer

Similar Documents

Publication Publication Date Title
DE69309318T2 (en) Method and device for observing a surface
JP2667166B2 (en) Apparatus for micro-movement of object
EP0433604B1 (en) Electrical probe incorporating scanning proximity microscope
US5204531A (en) Method of adjusting the size of the area scanned by a scanning probe
Belaidi et al. Finite element simulations of the resolution in electrostatic force microscopy
EP0347739B1 (en) Scanning tunneling microscope and surface topographic observation method
JPH0212381B2 (en)
US6636050B2 (en) Four-terminal measuring device that uses nanotube terminals
Grube et al. Stability, resolution, and tip–tip imaging by a dual-probe scanning tunneling microscope
JPH0651831A (en) Two-dimensional position adjusting device
JPH02243907A (en) Piezoelectric element driving type probe and its driving method
JP2001194284A (en) Probe scanning method
JPH03122514A (en) Observing apparatus for surface
JPH02262001A (en) Piezoelectric-element driving type probe apparatus and driving method thereof
JPH02271204A (en) Sample moving table
JPH067042B2 (en) Piezoelectric element fine movement mechanism
JPH03140805A (en) Wide-range scanning tunneling spectroscope
JP4497665B2 (en) Probe scanning control device, scanning probe microscope using the scanning control device, probe scanning control method, and measurement method using the scanning control method
JPS63153405A (en) Scanning type tunnel microscope
JP4280382B2 (en) Information detecting apparatus and information detecting method having scanning probe
JPH0312504A (en) Control system for scanning tunneling microscope
JPH07134133A (en) Scanning type probe microscope
JPH04320902A (en) Evaluating method for probe of scanning tunneling microscope
JP2691460B2 (en) Tunnel current detector
JPH03229103A (en) Surface measuring instrument