JPH07134133A - Scanning type probe microscope - Google Patents

Scanning type probe microscope

Info

Publication number
JPH07134133A
JPH07134133A JP5283310A JP28331093A JPH07134133A JP H07134133 A JPH07134133 A JP H07134133A JP 5283310 A JP5283310 A JP 5283310A JP 28331093 A JP28331093 A JP 28331093A JP H07134133 A JPH07134133 A JP H07134133A
Authority
JP
Japan
Prior art keywords
scanning
sample
piezoelectric element
probe
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5283310A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ueda
和浩 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5283310A priority Critical patent/JPH07134133A/en
Publication of JPH07134133A publication Critical patent/JPH07134133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To provide a scanning type probe microscope allowing the wide range observation and high resolution observation of a sample without changing a head. CONSTITUTION:The three-dimensional actuator of a scanning probe microscope has a laminated structure consisting of a relatively thin cylindrical piezoelectric element 1 for high resolution and a relatively thick piezoelectric element 2 for wide range scanning. When a sample is observed in a wide range, the scanning is carried out by use of the piezoelectric element 2 for wide range scanning, and when an atomic image is observed, the scanning is carried out by use of the cylindrical piezoelectric element 1 for high resolution, whereby the wide range observation of the sample and the observation of the atomic image can be performed without changing a power source for controlling the piezoelectric element, or replacing a head.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査型プローブ顕微鏡
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope.

【0002】[0002]

【従来の技術】走査型プローブ顕微鏡とは、走査型トン
ネル顕微鏡、原子間力顕微鏡、走査型フォトン顕微鏡な
ど、探針と探針または試料台を走査する機構を備えた顕
微鏡の総称である。これらの走査型プローブ顕微鏡は、
試料に探針を10-10 m程度に近付け、試料表面と探針
の間のトンネル電流、原子間力、トンネル光子等を測定
することにより表面形状をZ軸方向に10-11 m程度、
XY軸方向に10-10 m程度の精度で測定することが可
能である。
2. Description of the Related Art A scanning probe microscope is a general term for microscopes having a mechanism for scanning a probe and a probe or a sample stage, such as a scanning tunnel microscope, an atomic force microscope, and a scanning photon microscope. These scanning probe microscopes
By bringing the probe close to the sample to about 10 -10 m and measuring the tunnel current, atomic force, tunnel photon, etc. between the sample surface and the probe, the surface shape is about 10 -11 m in the Z-axis direction.
It is possible to measure with an accuracy of about 10 -10 m in the XY axis directions.

【0003】試料表面に探針を10-9m程度に近付ける
と試料表面の電子雲と探針の電子雲とが重なり合う。こ
の状態で探針と試料の間に電圧をかけると1μA程度の
トンネル電流と呼ばれる電流が流れる。トンネル電流は
試料と探針の間の距離に非常に敏感なため、この電流が
一定になるように探針のZ軸方向位置を制御しながら試
料表面を探針でXY軸方向に走査することで試料の表面
形状を測定することを可能とした顕微鏡が走査型トンネ
ル顕微鏡である。
When the probe is brought close to the sample surface to about 10 -9 m, the electron cloud on the sample surface and the electron cloud on the probe overlap each other. When a voltage is applied between the probe and the sample in this state, a current called a tunnel current of about 1 μA flows. Since the tunnel current is very sensitive to the distance between the sample and the probe, scan the sample surface in the XY axis directions while controlling the Z-axis position of the probe so that this current is constant. A scanning tunneling microscope is a microscope that can measure the surface shape of a sample.

【0004】また、試料表面に探針を近付けていくと、
試料と探針との間の距離が10-10m以下になると探針
と試料の間に10-9N程度の局所的な力(通称、原子間
力)が働く。試料をXY軸方向に走査させ原子間力の2
次元情報を得ることで試料表面の形状を測定する顕微鏡
が原子間力顕微鏡である。図4に走査型プローブ顕微鏡
の概略構成図を示す。図4(a)は探針を走査するタイ
プの走査型プローブ顕微鏡であり、探針3は図示しない
ヘッドに搭載された3次元アクチュエータ6に取り付け
られており、試料7は図示しない試料台に載置されてい
る。試料台には、ヘッドを試料に近付けるためのZ軸方
向粗動機構と試料の位置を動かすためのX軸Y軸方向粗
動機構が設けられている。図4(b)は探針を固定して
試料の方を走査するタイプの走査型プローブ顕微鏡であ
り、探針3はヘッドに直接固定され、試料7を載置する
試料台(図示せず)は3次元アクチュエータ6に取り付
けられている。試料台は、ヘッドを試料に近付けるため
のZ軸方向粗動機構及び及び試料を動かすためのX軸Y
軸方向粗動機構も備える。なお、Z軸方向粗動機構及び
X軸Y軸方向粗動機構は、ヘッドの方に設けることもで
きる。
When the probe is brought closer to the sample surface,
When the distance between the sample and the probe is 10 -10 m or less, a local force (commonly called atomic force) of about 10 -9 N acts between the probe and the sample. The sample is scanned in the XY axis directions and the atomic force of 2
An atomic force microscope is a microscope that measures the shape of a sample surface by obtaining dimensional information. FIG. 4 shows a schematic configuration diagram of the scanning probe microscope. FIG. 4A shows a scanning probe microscope of a type that scans a probe, the probe 3 is attached to a three-dimensional actuator 6 mounted on a head (not shown), and a sample 7 is mounted on a sample table (not shown). It is placed. The sample stage is provided with a Z-axis coarse movement mechanism for moving the head closer to the sample and an X-axis Y-axis coarse movement mechanism for moving the position of the sample. FIG. 4B shows a scanning probe microscope of a type in which the probe is fixed and the sample is scanned. The probe 3 is directly fixed to the head and a sample table (not shown) on which the sample 7 is mounted. Are attached to the three-dimensional actuator 6. The sample stage has a Z-axis coarse movement mechanism for moving the head close to the sample and an X-axis Y for moving the sample.
It also has an axial coarse movement mechanism. The Z-axis direction coarse movement mechanism and the X-axis Y-axis direction coarse movement mechanism may be provided on the head side.

【0005】いずれのタイプの走査型プローブ顕微鏡に
おいても、探針3をZ軸方向粗動機構を用いて試料表面
にゆっくり下ろしていき、試料7と探針3の間に電圧を
印加すると流れるトンネル電流や、試料7と探針3の間
に働く原子間力が検出器10に検出されるまで探針3を
試料7に近付ける。その後、XY走査回路8により3次
元アクチュエータ6のX軸、Y軸圧電素子に対して印加
する印加電圧を掃引することにより、探針3または試料
7をX軸Y軸方向に走査する。この時、例えば検出器1
0で測定しているトンネル電流、原子間力などの探針、
試料間の相互作用の大きさが変化しないようにフィード
バック回路9を通してZ軸方向の圧電素子に対する電圧
をフィードバック制御する。このときのZ軸方向の圧電
素子に印加した電圧から探針3のZ軸方向の変位量をコ
ンピュータ11で計算し、画像表示装置12に表示する
ことで試料表面の形状等を観察することが出来る。
In any type of scanning probe microscope, the probe 3 is slowly lowered onto the surface of the sample by using the Z-axis direction coarse movement mechanism, and a tunnel flows when a voltage is applied between the sample 7 and the probe 3. The probe 3 is brought close to the sample 7 until the detector 10 detects an electric current or an atomic force acting between the sample 7 and the probe 3. After that, the XY scanning circuit 8 sweeps the applied voltage applied to the X-axis and Y-axis piezoelectric elements of the three-dimensional actuator 6, thereby scanning the probe 3 or the sample 7 in the X-axis and Y-axis directions. At this time, for example, the detector 1
A probe for tunneling current, atomic force, etc. measured at 0,
The voltage to the piezoelectric element in the Z-axis direction is feedback-controlled through the feedback circuit 9 so that the magnitude of the interaction between the samples does not change. The computer 11 calculates the displacement amount of the probe 3 in the Z-axis direction from the voltage applied to the piezoelectric element in the Z-axis direction at this time, and displays it on the image display device 12 so that the shape of the sample surface can be observed. I can.

【0006】走査型プローブ顕微鏡においては、その探
針3の位置決め精度が分解能を決定するため、探針3の
走査には圧電素子から構成される3次元アクチュエータ
6が用いられている。圧電素子は素子両端にかかる電圧
に応じて伸び縮みする素子であり、走査型プローブ顕微
鏡に用いられる3次元アクチュエータは圧電素子をXY
Z軸各々の方向に伸び縮みするように配置してある。探
針を走査するタイプのものも、試料を走査させるタイプ
のものも、3次元アクチュエータに探針が付いている
か、試料が付いているかの違いはあるが、3次元アクチ
ュエータの構造やアクチュエータに使用する圧電素子に
違いはない。
In the scanning probe microscope, since the positioning accuracy of the probe 3 determines the resolution, a three-dimensional actuator 6 composed of a piezoelectric element is used for scanning the probe 3. The piezoelectric element is an element that expands and contracts according to the voltage applied to both ends of the element, and the three-dimensional actuator used in the scanning probe microscope uses an XY piezoelectric element.
It is arranged so as to expand and contract in each direction of the Z axis. There is a difference in whether the probe is of the type that scans the sample or that of the sample that scans the sample. There is no difference in the piezoelectric element that does.

【0007】走査プローブ顕微鏡に用いられる3次元ア
クチュエータとしては、図4に示したように圧電素子を
トライポット型に接着した片持ち式のものや、トライポ
ット型のものをX軸Y軸が両端支持になるように改良し
たものや、円筒型にした圧電素子の表面にX方向、Y方
向にそれぞれ2枚の電極を貼り付け、裏面電極との間に
電圧を印加するようにしたもの等がある。なお、走査型
プローブ顕微鏡の構造の詳細は、例えば「電子顕微鏡」
第22巻、第2号、第69頁(1987年)に記載され
ている。
As a three-dimensional actuator used in a scanning probe microscope, as shown in FIG. 4, a cantilever type in which a piezoelectric element is bonded to a tripot type, or a tripot type is used in which the X axis and the Y axis are both ends. One that has been improved to support it, one that has two electrodes attached to the surface of a cylindrical piezoelectric element in the X and Y directions, and a voltage is applied between it and the back electrode is there. For details of the structure of the scanning probe microscope, refer to, for example, "electron microscope".
Vol. 22, No. 2, p. 69 (1987).

【0008】[0008]

【発明が解決しようとする課題】従来の走査型プローブ
顕微鏡に用いられる3次元アクチュエータは、電極間の
圧電素子の厚さが走査範囲の広さを決定し、圧電素子に
印加する電圧の安定性と電極間の圧電素子の厚さによっ
て分解能が決定される。このため広い走査範囲と高い分
解能を同時に成り立たせるには、圧電素子に印加する電
圧の高い安定性と細かい電圧コントロールが必要であ
る。例えば、視野探しのための1mm□内の走査と原子
像観察のためのサブナノメーターの精度が必要とされる
走査とを1つの圧電素子で行おうとすると、電源には1
-8のオーダーの安定性と電圧コントロール機能が要求
される。
In the three-dimensional actuator used in the conventional scanning probe microscope, the thickness of the piezoelectric element between the electrodes determines the width of the scanning range, and the stability of the voltage applied to the piezoelectric element is stable. The resolution is determined by the thickness of the piezoelectric element between the electrode and the electrode. Therefore, in order to simultaneously establish a wide scanning range and high resolution, high stability of the voltage applied to the piezoelectric element and fine voltage control are required. For example, if a single piezoelectric element is used to perform scanning within 1 mm □ for searching the field of view and scanning that requires sub-nanometer accuracy for observing atomic images, one
Stability of the order of 0-8 and voltage control function are required.

【0009】しかし、現実には、このような高い安定性
と細かい電圧コントロール機能を持った電源を得ること
は難しいため、広範囲走査用の3次元アクチュエータを
備えたヘッドと高分解能用の3次元アクチュエータを備
えたヘッドを別々に用意して、目的によってヘッドを使
い分けている。このため、従来の走査型プローブ顕微鏡
では視野探しを低倍率(広範囲走査)で行い、視野中の
特定の部分を高倍率(高分解能)で観察することが出来
ないという欠点があった。
However, in reality, it is difficult to obtain a power source having such high stability and fine voltage control function. Therefore, a head having a three-dimensional actuator for wide-range scanning and a three-dimensional actuator for high resolution are provided. Heads equipped with are prepared separately, and different heads are used depending on the purpose. For this reason, the conventional scanning probe microscope has a drawback in that it is not possible to search a field of view at a low magnification (wide range scanning) and observe a specific portion in the field of view at a high magnification (high resolution).

【0010】本発明の目的は、走査型プローブ顕微鏡の
ヘッドを変えることなく、試料の広い範囲の観察と高分
解能観察が可能な、走査型プローブ顕微鏡を提供するこ
とである。
An object of the present invention is to provide a scanning probe microscope capable of observing a wide range of a sample and high resolution observation without changing the head of the scanning probe microscope.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、探針が取り付けられた3次元アクチュエ
ータを搭載したヘッドと、試料を載置する試料台と、ヘ
ッドと試料台の間の相対距離を調整するためのZ軸方向
粗動手段と、ヘッドと試料台の間のXY方向相対位置を
調整するためのX軸Y軸方向粗動手段と、3次元アクチ
ュエータにXY走査信号を印加するXY走査回路と、探
針と試料間の相互作用を検出する相互作用検出手段とを
備え、3次元アクチュエータにより探針を試料面上でX
Y方向に走査しながら探針と試料間の相互作用を検出す
る走査型プローブ顕微鏡において、前記3次元アクチュ
エータは広範囲XY走査用アクチュエータと高分解能狭
域XY走査用アクチュエータとを一体化して組み合わせ
たものを含み、広範囲走査機能と高分解能用走査機能と
を同時に有することを特徴とするものである。
To achieve the above object, the present invention provides a head having a three-dimensional actuator to which a probe is mounted, a sample stage on which a sample is placed, and a space between the head and the sample stage. Z-axis coarse movement means for adjusting the relative distance between the head and the sample stage, X-axis Y-axis coarse movement means for adjusting the relative position between the head and the sample table in the XY directions, and an XY scanning signal to the three-dimensional actuator. An XY scanning circuit for applying a voltage and an interaction detection means for detecting an interaction between the probe and the sample are provided, and the probe is moved on the sample surface by the three-dimensional actuator.
In a scanning probe microscope that detects an interaction between a probe and a sample while scanning in the Y direction, the three-dimensional actuator is a combination of a wide range XY scanning actuator and a high resolution narrow range XY scanning actuator. And has a wide-range scanning function and a high-resolution scanning function at the same time.

【0012】また、本発明は、探針が取り付けられたヘ
ッドと、3次元アクチュエータが取り付けられた試料台
と、ヘッドと試料台の間の相対距離を調整するためのZ
軸方向粗動手段と、ヘッドと試料台の間のXY方向相対
位置を調整するためのX軸Y軸方向粗動手段と、3次元
アクチュエータにXY走査信号を印加するXY走査回路
と、探針と試料間の相互作用を検出する相互作用検出手
段とを備え、3次元アクチュエータにより探針に対して
試料をXY方向に走査しながら探針と試料間の相互作用
を検出する走査型プローブ顕微鏡において、前記3次元
アクチュエータは広範囲XY走査用アクチュエータと高
分解能狭域XY走査用アクチュエータとを一体化して組
み合わせたものを含み、広範囲走査機能と高分解能用走
査機能とを同時に有することを特徴とするものである。
Further, according to the present invention, the head to which the probe is attached, the sample stage to which the three-dimensional actuator is attached, and the Z for adjusting the relative distance between the head and the sample stage.
Axial coarse movement means, X-axis Y-axis coarse movement means for adjusting the relative position between the head and the sample table in the XY directions, an XY scanning circuit for applying an XY scanning signal to a three-dimensional actuator, and a probe. And a interaction detecting means for detecting an interaction between the sample and a scanning probe microscope for detecting an interaction between the probe and the sample while scanning the sample in the XY directions with respect to the probe by a three-dimensional actuator. The three-dimensional actuator includes a combination of a wide-range XY scanning actuator and a high-resolution narrow-area XY scanning actuator, and has a wide-range scanning function and a high-resolution scanning function at the same time. Is.

【0013】3次元アクチュエータとしては、比較的肉
厚の厚い広範囲XY走査用の円筒型圧電素子と比較的肉
厚の薄い狭域XY走査用の円筒型圧電素子を積層したも
の、広範囲XY走査用のトライポッド型圧電素子と狭域
XY走査用の円筒型圧電素子を積層したもの、広範囲X
Y走査用のX軸Y軸両端支持型圧電素子と狭域XY走査
用の円筒型圧電素子を積層したもの、狭域XY走査用の
円筒型圧電素子の周囲に広範囲XY走査用の棒状圧電素
子を取り付けたもの等を用いることができる。
As the three-dimensional actuator, a cylindrical piezoelectric element for wide-range XY scanning, which is relatively thick, and a cylindrical piezoelectric element for narrow-area XY scanning, which is relatively thin, are laminated, and for wide-range XY scanning. Of a tripod type piezoelectric element and a cylindrical type piezoelectric element for narrow range XY scanning, wide range X
A stack of a Y-scanning X-axis Y-axis both-end supporting type piezoelectric element and a narrow-range XY-scanning cylindrical piezoelectric element, and a wide-range XY-scanning rod-shaped piezoelectric element around a narrow-range XY-scanning cylindrical piezoelectric element. It is possible to use the one to which is attached.

【0014】[0014]

【作用】高分解能狭域走査用の圧電素子と広範囲走査用
圧電素子の両方を備えた3次元アクチュエータを用いる
ことにより、ヘッドを取り替えることなく試料の広い範
囲の観察と狭い範囲の高分解能観察とが可能となる。
By using a three-dimensional actuator equipped with both a high-resolution narrow-area scanning piezoelectric element and a wide-area scanning piezoelectric element, it is possible to perform wide-area observation of a sample and high-resolution observation of a narrow area without replacing the head. Is possible.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明による3次元アクチュエータの一
実施例を示す斜視図である。ただし、Z軸方向圧電素子
は図示を省略してある。本実施例の3次元アクチュエー
タは、円筒型に形成した圧電素子1,2を円筒の軸方向
に2つ重ねた構造をしている。上方の円筒型圧電素子2
は直径約10mmで、約2〜3mmと比較的厚い肉厚を
有する広範囲走査用の圧電素子であり、XY方向に各々
1mm程度の走査範囲を有している。下側の円筒型圧電
素子1は直径約10mmであるが、肉厚が約1mmと比
較的薄い高分解能用の圧電素子で、最大160μm□程
度の走査範囲を有して原子像観察可能なものである。高
分解能用圧電素子1の下部には探針3が取り付けられて
いる。各円筒型圧電素子には、2組のX軸方向制御電極
4とY軸方向制御電極5の4つの電極が、上下の圧電素
子間で位置ずれが生じないようにして蒸着等の手段によ
って取り付けられている。2つの円筒型圧電素子1,2
は接着剤により結合することも、最初から両者を一体成
形することもできる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of a three-dimensional actuator according to the present invention. However, the Z-axis direction piezoelectric element is not shown. The three-dimensional actuator of this embodiment has a structure in which two piezoelectric elements 1 and 2 formed in a cylindrical shape are stacked in the axial direction of the cylinder. Upper cylindrical piezoelectric element 2
Is a piezoelectric element for wide-range scanning having a diameter of about 10 mm and a relatively large wall thickness of about 2 to 3 mm, and each has a scanning range of about 1 mm in the XY directions. The lower cylindrical piezoelectric element 1 has a diameter of about 10 mm, but has a relatively thin wall thickness of about 1 mm and is a high-resolution piezoelectric element capable of observing an atomic image with a maximum scanning range of about 160 μm □. Is. A probe 3 is attached to the lower portion of the high resolution piezoelectric element 1. Four sets of two sets of the X-axis direction control electrode 4 and the Y-axis direction control electrode 5 are attached to each cylindrical piezoelectric element by means such as vapor deposition so as not to cause positional displacement between the upper and lower piezoelectric elements. Has been. Two cylindrical piezoelectric elements 1 and 2
Can be bonded with an adhesive, or both can be integrally molded from the beginning.

【0016】本実施例の3次元アクチュエータによる
と、まず広範囲走査用の圧電素子2を用いて試料表面の
凹凸を観察し、観察したい領域を探した後、観察領域が
視野中心にくるように試料位置をX軸Y軸方向粗動機構
を用いて移動する。その後、高分解能用圧電素子1のみ
を用いることにより、観察領域の原子像を安定に得るこ
とができる。このため、高性能な定電圧電源を用意する
ことなく、1mm□内の表面の凹凸を観察したり、原子
像を観察したりすることが容易に出来るようになる。各
圧電素子のヒステリシスや走査歪は、予めその特性を記
憶しておいてコンピュータ11によって補正する周知の
キャリブレーション法によって補正することができる。
According to the three-dimensional actuator of this embodiment, the unevenness of the sample surface is first observed using the piezoelectric element 2 for wide-range scanning, the region to be observed is searched for, and then the sample is placed so that the observation region comes to the center of the visual field. The position is moved using the X-axis and Y-axis direction coarse movement mechanism. After that, by using only the high-resolution piezoelectric element 1, it is possible to stably obtain an atomic image of the observation region. For this reason, it becomes possible to easily observe surface irregularities within 1 mm □ and observe an atomic image without preparing a high-performance constant voltage power source. The hysteresis and scanning distortion of each piezoelectric element can be corrected by a well-known calibration method in which the characteristics are stored in advance and are corrected by the computer 11.

【0017】図2は、本発明の他の実施例を示してい
る。図2(a)は高分解能用円筒型圧電素子1の周囲に
X軸方向広範囲走査用圧電素子13とY軸方向広範囲走
査用圧電素子14を張り出すことでトライポッド型3次
元アクチュエータと同じ効果が得れるようにしたもので
ある。図2(b)は図2(a)よりも剛性を高くするた
めに、広範囲走査用圧電素子13,14をX軸、Y軸の
両端で支持するようにしたものである。圧電素子13,
14と圧電素子1の接合は接着剤によって行われる。
FIG. 2 shows another embodiment of the present invention. FIG. 2A shows the same effect as the tripod type three-dimensional actuator by projecting the X-axis direction wide-range scanning piezoelectric element 13 and the Y-axis direction wide-range scanning piezoelectric element 14 around the high-resolution cylindrical piezoelectric element 1. It was made possible to obtain. 2 (b), in order to make the rigidity higher than that in FIG. 2 (a), the wide-range scanning piezoelectric elements 13 and 14 are supported at both ends of the X axis and the Y axis. Piezoelectric element 13,
The connection between 14 and the piezoelectric element 1 is performed by an adhesive.

【0018】広範囲走査用圧電素子13,14はXY方
向に各々最大1mm程度の走査範囲を有するものであ
り、高分解能用の円筒型圧電素子1は、図1の実施例と
同様に、最大160μm□程度の走査範囲を有する原子
像観察可能なものである。本実施例の3次元アクチュエ
ータを用いた走査型プローブ顕微鏡でも、円筒型圧電素
子を軸方向に2つ重ねた構造を有する前述の3次元アク
チュエータを用いた走査型プローブ顕微鏡と同等の効果
が得られた。
The wide-range scanning piezoelectric elements 13 and 14 each have a scanning range of up to about 1 mm in the XY directions, and the high-resolution cylindrical piezoelectric element 1 has a maximum of 160 μm as in the embodiment of FIG. Atomic images can be observed with a scanning range of about □. The scanning probe microscope using the three-dimensional actuator of the present embodiment can also achieve the same effect as that of the scanning probe microscope using the above-described three-dimensional actuator having a structure in which two cylindrical piezoelectric elements are stacked in the axial direction. It was

【0019】ここでは、棒状の圧電素子13,14を広
範囲走査用圧電素子とし、円筒型圧電素子1を高分解能
用圧電素子として説明したが、円筒型圧電素子1を広範
囲走査用とし、棒状の圧電素子13,14を高分解能用
とすることも可能である。また、図2のように、棒状の
X軸方向走査用圧電素子及びY軸方向走査用圧電素子を
円筒型圧電素子の周囲に張り出す構造とせずに、トライ
ポッド型圧電素子の下側に円筒型圧電素子を取り付ける
ことによっても、本実施例と同様の作用効果が得られ
る。
Here, the rod-shaped piezoelectric elements 13 and 14 are used as wide-range scanning piezoelectric elements, and the cylindrical piezoelectric element 1 is described as a high-resolution piezoelectric element. It is also possible to use the piezoelectric elements 13 and 14 for high resolution. In addition, as shown in FIG. 2, the rod-shaped X-axis direction scanning piezoelectric element and the Y-axis direction scanning piezoelectric element are not extended to the circumference of the cylindrical piezoelectric element, but a cylindrical type is provided below the tripod type piezoelectric element. Even if the piezoelectric element is attached, the same effect as that of the present embodiment can be obtained.

【0020】前述の3実施例はすべて、3次元アクチュ
エータに探針が付いた、探針走査型の走査プローブ顕微
鏡である。図3に示す実施例は、本発明を試料走査型の
走査プローブ顕微鏡に用いた例である。図3(a)の3
次元アクチュエータは、高分解能用円筒型圧電素子1と
広範囲走査用円筒型圧電素子2を円筒の軸方向に2つ重
ねた構造をしている。図3(b)は、高分解能用円筒型
圧電素子1にX軸方向広範囲走査用圧電素子13とY軸
方向広範囲走査用圧電素子14を張り出すことでトライ
ポッド型3次元アクチュエータと同じ効果が得れるよう
にしたものである。図3(c)は、図3(b)よりも剛
性を高くするために、広範囲走査用圧電素子13,14
をX軸、Y軸の両端で支持するようにしたものである。
高分解能用円筒型圧電素子1の上部には、試料7を載置
するための試料台が固定されている。試料台は、走査型
トンネル顕微鏡の場合には導電性金属からなり、原子間
力顕微鏡の場合には磁石とするのが好都合である。
The above-described three embodiments are all probe scanning type scanning probe microscopes in which a probe is attached to a three-dimensional actuator. The embodiment shown in FIG. 3 is an example in which the present invention is applied to a sample scanning type scanning probe microscope. 3 of FIG. 3 (a)
The dimensional actuator has a structure in which two high resolution cylindrical piezoelectric elements 1 and a wide range scanning cylindrical piezoelectric element 2 are stacked in the axial direction of the cylinder. FIG. 3B shows the same effect as the tripod-type three-dimensional actuator obtained by projecting the X-axis direction wide-range scanning piezoelectric element 13 and the Y-axis direction wide-range scanning piezoelectric element 14 on the high-resolution cylindrical piezoelectric element 1. It was designed to be FIG. 3C shows the piezoelectric elements 13 and 14 for wide range scanning in order to make the rigidity higher than that of FIG.
Is supported at both ends of the X axis and the Y axis.
On the upper part of the high resolution cylindrical piezoelectric element 1, a sample table for mounting a sample 7 is fixed. The sample stage is conveniently made of a conductive metal in the case of a scanning tunneling microscope and a magnet in the case of an atomic force microscope.

【0021】図3の各実施例に用いた広範囲走査用圧電
素子はXY方向に各々最大1mm程度の走査範囲を持っ
たものであり、高分解能用の圧電素子は最大160mm
□程度の走査範囲を持った、原子像観察可能なものを用
いてある。本実施例の3次元アクチュエータを組み込ん
だ走査型プローブ顕微鏡によると、広範囲走査用の圧電
素子を用いて試料表面の凹凸を観察し、観察したい領域
を探し、観察領域を視野中心付近にくるように試料位置
(又は、探針の位置)を粗動機構を用いて動かした後、
高分解能用圧電素子を用いることにより、観察領域の原
子像を得ることができる。本実施例でも、高性能な定電
圧電源を用意することなく、1mm□内の表面の凹凸を
観察したり、原子像を観察したりすることが容易に出来
るようになった。
The wide-range scanning piezoelectric elements used in the respective embodiments of FIG. 3 have a scanning range of up to about 1 mm in the XY directions, and the high-resolution piezoelectric element has a maximum of 160 mm.
An atomic image observable one with a scanning range of □ is used. According to the scanning probe microscope incorporating the three-dimensional actuator of the present embodiment, the unevenness of the sample surface is observed by using the piezoelectric element for wide range scanning, the region to be observed is searched, and the observation region is located near the center of the visual field. After moving the sample position (or probe position) using the coarse movement mechanism,
By using the high resolution piezoelectric element, an atomic image of the observation region can be obtained. Also in the present embodiment, it becomes possible to easily observe the surface irregularities within 1 mm □ and the atomic image without preparing a high-performance constant voltage power source.

【0022】本実施例においても、棒状のX軸方向走査
用圧電素子及びY軸方向走査用圧電素子を円筒型圧電素
子の周囲に張り出す構造とせずに、トライポッド型圧電
素子の上側に円筒型圧電素子を取り付けることによって
も、同様の作用効果を得ることができる。
Also in the present embodiment, the rod-shaped X-axis direction scanning piezoelectric element and the Y-axis direction scanning piezoelectric element are not formed to extend around the cylindrical type piezoelectric element, but the cylindrical type is provided above the tripod type piezoelectric element. The same effect can be obtained by mounting the piezoelectric element.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
3次元アクチュエータを広範囲走査用と高分解能用の圧
電素子を組み合わせた構造とすることにより、試料の広
い範囲を観察したり、原子像を観察したりする際に、ヘ
ッドを交換することなく観察することが出来る。その結
果、広範囲観察で見たい領域を探した後、その部分の高
分解能観察が実施することが現実可能となる。
As described above, according to the present invention,
By observing a wide range of a sample or observing an atomic image without changing the head, the three-dimensional actuator has a structure in which piezoelectric elements for wide-range scanning and high resolution are combined. You can As a result, it is practically possible to carry out high-resolution observation of the area after searching for the area to be seen in wide area observation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による走査型プローブ顕微鏡
用3次元アクチュエータの構成図。
FIG. 1 is a configuration diagram of a three-dimensional actuator for a scanning probe microscope according to an embodiment of the present invention.

【図2】本発明の他の実施例による走査型プローブ顕微
鏡用3次元アクチュエータの構成図。
FIG. 2 is a configuration diagram of a three-dimensional actuator for a scanning probe microscope according to another embodiment of the present invention.

【図3】本発明の他の実施例による走査型プローブ顕微
鏡用3次元アクチュエータの構成図。
FIG. 3 is a configuration diagram of a three-dimensional actuator for a scanning probe microscope according to another embodiment of the present invention.

【図4】走査型プローブ顕微鏡の概略構成図。FIG. 4 is a schematic configuration diagram of a scanning probe microscope.

【符号の説明】[Explanation of symbols]

1…高分解能用円筒型圧電素子、2…広範囲走査用円筒
型圧電素子、3…探針、4…X軸電極、5…Y軸電極、
6…3次元アクチュエータ、7…試料、8…XY走査回
路、9…Z軸フィードバック回路、10…探針/試料間
相互作用検出器、11…コンピュータ、12…画像表示
装置、13…X軸方向広範囲走査用圧電素子、14…Y
軸方向広範囲走査用圧電素子
DESCRIPTION OF SYMBOLS 1 ... Cylindrical piezoelectric element for high resolution, 2 ... Cylindrical piezoelectric element for wide range scanning, 3 ... Probe, 4 ... X-axis electrode, 5 ... Y-axis electrode,
6 ... Three-dimensional actuator, 7 ... Sample, 8 ... XY scanning circuit, 9 ... Z-axis feedback circuit, 10 ... Probe / sample interaction detector, 11 ... Computer, 12 ... Image display device, 13 ... X-axis direction Wide-range scanning piezoelectric element, 14 ... Y
Piezoelectric element for axial wide range scanning

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04R 17/00 330 E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H04R 17/00 330 E

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 探針が取り付けられた3次元アクチュエ
ータを搭載したヘッドと、試料を載置する試料台と、ヘ
ッドと試料台の間の相対距離を調整するためのZ軸方向
粗動手段と、ヘッドと試料台の間のXY方向相対位置を
調整するためのX軸Y軸方向粗動手段と、3次元アクチ
ュエータにXY走査信号を印加するXY走査回路と、探
針と試料間の相互作用を検出する相互作用検出手段とを
備え、3次元アクチュエータにより探針を試料面上でX
Y方向に走査しながら探針と試料間の相互作用を検出す
る走査型プローブ顕微鏡において、 前記3次元アクチュエータは広範囲XY走査用アクチュ
エータと高分解能狭域XY走査用アクチュエータとを一
体化して組み合わせたものを含み、広範囲走査機能と高
分解能用走査機能とを同時に有することを特徴とする走
査型プローブ顕微鏡。
1. A head mounted with a three-dimensional actuator to which a probe is attached, a sample table on which a sample is mounted, and a Z-axis coarse movement means for adjusting a relative distance between the head and the sample table. , X-axis and Y-axis coarse movement means for adjusting the relative position between the head and the sample table in the XY directions, an XY scanning circuit for applying an XY scanning signal to a three-dimensional actuator, and interaction between the probe and the sample. And an interaction detecting means for detecting X
In a scanning probe microscope that detects the interaction between a probe and a sample while scanning in the Y direction, the three-dimensional actuator is a combination of a wide range XY scanning actuator and a high resolution narrow range XY scanning actuator. And a scanning function for high resolution at the same time.
【請求項2】 探針が取り付けられたヘッドと、3次元
アクチュエータが取り付けられた試料台と、ヘッドと試
料台の間の相対距離を調整するためのZ軸方向粗動手段
と、ヘッドと試料台の間のXY方向相対位置を調整する
ためのX軸Y軸方向粗動手段と、3次元アクチュエータ
にXY走査信号を印加するXY走査回路と、探針と試料
間の相互作用を検出する相互作用検出手段とを備え、3
次元アクチュエータにより探針に対して試料をXY方向
に走査しながら探針と試料間の相互作用を検出する走査
型プローブ顕微鏡において、 前記3次元アクチュエータは広範囲XY走査用アクチュ
エータと高分解能狭域XY走査用アクチュエータとを一
体化して組み合わせたものを含み、広範囲走査機能と高
分解能用走査機能とを同時に有することを特徴とする走
査型プローブ顕微鏡。
2. A head to which a probe is attached, a sample stage to which a three-dimensional actuator is attached, a Z-axis coarse movement means for adjusting a relative distance between the head and the sample stage, and the head and the sample. X-axis and Y-axis direction coarse movement means for adjusting the XY-direction relative position between the stands, an XY scanning circuit for applying an XY scanning signal to the three-dimensional actuator, and a mutual detecting means for detecting the interaction between the probe and the sample. Equipped with action detection means 3
A scanning probe microscope that detects an interaction between a probe and a sample while scanning the sample in the XY directions with respect to the probe by a three-dimensional actuator, wherein the three-dimensional actuator is a wide range XY scanning actuator and a high resolution narrow range XY scan. A scanning probe microscope having a wide-range scanning function and a high-resolution scanning function at the same time, including a combination of a scanning actuator and a scanning actuator.
【請求項3】 前記3次元アクチュエータは、比較的肉
厚の厚い広範囲XY走査用の円筒型圧電素子と比較的肉
厚の薄い狭域XY走査用の円筒型圧電素子を積層したも
のを含むことを特徴とする請求項1または2記載の走査
型プローブ顕微鏡。
3. The three-dimensional actuator includes a stack of a cylindrical piezoelectric element for wide area XY scanning, which is relatively thick, and a cylindrical piezoelectric element for narrow area XY scanning, which is relatively thin. The scanning probe microscope according to claim 1 or 2.
【請求項4】 前記3次元アクチュエータは、広範囲X
Y走査用のトライポッド型圧電素子と狭域XY走査用の
円筒型圧電素子を積層したものを含むことを特徴とする
請求項1または2記載の走査型プローブ顕微鏡。
4. The three-dimensional actuator has a wide range X
The scanning probe microscope according to claim 1 or 2, further comprising a laminate of a Y-scanning tripod-type piezoelectric element and a narrow-range XY-scanning cylindrical piezoelectric element.
【請求項5】 前記3次元アクチュエータは、広範囲X
Y走査用のX軸Y軸両端支持型圧電素子と狭域XY走査
用の円筒型圧電素子を積層したものを含むことを特徴と
する請求項1または2記載の走査型プローブ顕微鏡。
5. The three-dimensional actuator has a wide range X
3. The scanning probe microscope according to claim 1, further comprising a stack of a Y-scanning X-axis Y-axis both-end supporting piezoelectric element and a narrow-range XY-scanning cylindrical piezoelectric element.
【請求項6】 前記3次元アクチュエータは、狭域XY
走査用の円筒型圧電素子の周囲に広範囲XY走査用の棒
状圧電素子を取り付けたものを含むことを特徴とする請
求項1または2記載の走査型プローブ顕微鏡。
6. The three-dimensional actuator is a narrow range XY.
3. The scanning probe microscope according to claim 1, further comprising a rod-shaped piezoelectric element for wide-range XY scanning mounted around a scanning cylindrical piezoelectric element.
JP5283310A 1993-11-12 1993-11-12 Scanning type probe microscope Pending JPH07134133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5283310A JPH07134133A (en) 1993-11-12 1993-11-12 Scanning type probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5283310A JPH07134133A (en) 1993-11-12 1993-11-12 Scanning type probe microscope

Publications (1)

Publication Number Publication Date
JPH07134133A true JPH07134133A (en) 1995-05-23

Family

ID=17663808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5283310A Pending JPH07134133A (en) 1993-11-12 1993-11-12 Scanning type probe microscope

Country Status (1)

Country Link
JP (1) JPH07134133A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902928A (en) * 1997-06-02 1999-05-11 International Business Machines Corporation Controlling engagement of a scanning microscope probe with a segmented piezoelectric actuator
JP2009536325A (en) * 2006-05-10 2009-10-08 カール ツァイス インドゥストリーレ メステクニーク ゲーエムベーハー Method and apparatus for contacting a surface point of a workpiece
WO2015110870A1 (en) * 2014-01-27 2015-07-30 Kazakevich Michael Scanning probe microscope with improved resolution - multi scanner spm
CN111157769A (en) * 2020-01-06 2020-05-15 广州大学 Electrochemiluminescence imaging system and imaging method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902928A (en) * 1997-06-02 1999-05-11 International Business Machines Corporation Controlling engagement of a scanning microscope probe with a segmented piezoelectric actuator
JP2009536325A (en) * 2006-05-10 2009-10-08 カール ツァイス インドゥストリーレ メステクニーク ゲーエムベーハー Method and apparatus for contacting a surface point of a workpiece
WO2015110870A1 (en) * 2014-01-27 2015-07-30 Kazakevich Michael Scanning probe microscope with improved resolution - multi scanner spm
CN111157769A (en) * 2020-01-06 2020-05-15 广州大学 Electrochemiluminescence imaging system and imaging method thereof

Similar Documents

Publication Publication Date Title
EP0433604B1 (en) Electrical probe incorporating scanning proximity microscope
CN100478666C (en) Micro structure, cantilever, scanning probe microscope and a method of measuring deformation quantity for the fine structure
JPH03235004A (en) Scanning electron microscope with scanning tunneling microscope
EP0361932A2 (en) Scanning tunnel-current-detecting device and method
EP0441311B1 (en) Surface microscope apparatus
JPH03120401A (en) Scanning type tunneling microscope
US5214342A (en) Two-dimensional walker assembly for a scanning tunneling microscope
CN111413519A (en) Multi-integrated tip scanning probe microscope
Grube et al. Stability, resolution, and tip–tip imaging by a dual-probe scanning tunneling microscope
US6194813B1 (en) Extended-range xyz linear piezo-mechanical scanner for scanning-probe and surface force applications
JPH07134133A (en) Scanning type probe microscope
JPH08233836A (en) Scanning probe microscope, standard device for calibrating height direction thereof and calibration method
Tsunemi et al. Development of multi-environment dual-probe atomic force microscopy system using optical beam deflection sensors with vertically incident laser beams
JPH01287403A (en) Scan type tunnel microscope
JP2869508B2 (en) Scanning probe microscope with magnetic field control
JP3892184B2 (en) Scanning probe microscope
JP2001305036A (en) Micro-area scanning device and scanning probe microscope
JPH0625642B2 (en) Scanning tunnel microscope device
JPH0835972A (en) Simplified spm apparatus
JP2691460B2 (en) Tunnel current detector
JPH03229103A (en) Surface measuring instrument
JPH0225702A (en) Scanning type tunnel microscope and scanning type tunnel spectroscope
JPH0293304A (en) Microscopic device
JPH0771913A (en) Fine adjustment, and scanning type probe microscope
JPH10339735A (en) Scanning type probe microscope