JPH04320902A - Evaluating method for probe of scanning tunneling microscope - Google Patents

Evaluating method for probe of scanning tunneling microscope

Info

Publication number
JPH04320902A
JPH04320902A JP9029091A JP9029091A JPH04320902A JP H04320902 A JPH04320902 A JP H04320902A JP 9029091 A JP9029091 A JP 9029091A JP 9029091 A JP9029091 A JP 9029091A JP H04320902 A JPH04320902 A JP H04320902A
Authority
JP
Japan
Prior art keywords
probe
sample
scanning tunneling
tunneling microscope
stm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9029091A
Other languages
Japanese (ja)
Inventor
Satoru Fukuhara
悟 福原
Osamu Yamada
理 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9029091A priority Critical patent/JPH04320902A/en
Publication of JPH04320902A publication Critical patent/JPH04320902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a true STM image by evaluating the shape of the fore end of a probe regularly. CONSTITUTION:A reference sample 62 for which 1-to-1 correspondence of an STM image to a probe 5 is attained beforehand is provided in the vicinity of a sample 61 to be measured, the reference sample 62 is measured before and after STM measurement of the sample 61 to be measured, and constitution is so made that the shape of the fore end of the probe 5 can be evaluated on the basis of two STM images thereof obtained before and after the above measurement. Since evaluation of the shape of the fore end of the probe 5 can be conducted, a correct STM image of the sample 61 to be measured can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、走査型トンネル顕微鏡
にかかり、特に、探針に評価を実施する手法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning tunneling microscope, and more particularly to a method for evaluating a probe.

【0002】0002

【従来の技術】近年、材料研究を目的に、材料の極表面
観察装置として、走査型トンネル顕微鏡(STM)が大
いに使われてきている。原子像の観察から表面凹凸の三
次元計測まで可能で、かつ、大気中、真空中、そして液
中で観察することができる。従って、その応用範囲は無
限と考えられている。この走査型トンネル顕微鏡の原理
については、アイ  ビ  エム  ジャーナル  オ
ブ  リサーチ  アンド  デブロプメント(IBM
 J.RES.DEVELOP.VOL.30 NO.
4 P355〜P369 JULY  1986)に記
述されている。また、探針と試料の接近方法や視野選択
方法については、アプライド  フィジックス  レタ
ー第40巻(1982)第178頁から第180頁(A
ppl.Phys.Lett.40(1982)p17
8〜p180)に記述されている。
BACKGROUND OF THE INVENTION In recent years, scanning tunneling microscopes (STM) have been widely used as a device for observing the extreme surfaces of materials for the purpose of materials research. It is possible to observe everything from atomic images to three-dimensional measurements of surface irregularities, and can be observed in the atmosphere, vacuum, and liquid. Therefore, its range of applications is considered limitless. The principles of this scanning tunneling microscope are described in the IBM Journal of Research and Development (IBM Journal of Research and Development).
J. RES. DEVELOP. VOL. 30 NO.
4 P355-P369 JULY 1986). For information on how to approach the probe and sample and how to select the field of view, please refer to Applied Physics Letters, Vol. 40 (1982), pp. 178 to 180 (A
ppl. Phys. Lett. 40 (1982) p17
8 to p180).

【0003】0003

【発明が解決しようとする課題】上記従来技術は、三次
元に移動可能なピエゾに取り付けられた鋭い先端を有す
る探針と、試料表面との間を数nmオーダで一定にサー
ボ制御(Z軸ピエゾ)しながら、探針を試料面上二次元
(X,Y軸ピエゾ)に走査し、試料の物理情報を取得す
るものである。一般的に探針の作製は、タングステンや
白金を液中で電界研磨して鋭くする。こうして先鋭化さ
れた探針の先端極率判径はおおよそ0.1μm以下であ
る。これらの探針は試料面上を二次元に走査されるため
、残留ガスや試料のコンタミナントで汚染される。また
、サーボ制御の不良などにより、探針の先端が折れてし
まうことが多く発生する。これら探針の先端形状の変化
は様様のSTM像を創出する。走査型トンネル顕微鏡で
得られるSTM像は、このように、探針の先端形状に大
いに依存している。従って、探針の先端形状を常時観察
していることが重要である。しかしながら、探針先端の
極率判径は、0.1μmと小さく、容易に観察出来ない
。従って、なんらかの手法で、この探針の先端形状を評
価しなければ、誤ったSTM像を認識してしまう。これ
ら探針の先端形状の評価技法については、前記両文献に
は、なんら具体的に記述されていない。
[Problems to be Solved by the Invention] The above-mentioned conventional technology uses constant servo control (Z-axis The probe is scanned two-dimensionally (X, Y-axis piezo) over the sample surface to obtain physical information about the sample. Generally, probes are made by electropolishing tungsten or platinum in a liquid to sharpen them. The tip polar diameter of the probe thus sharpened is approximately 0.1 μm or less. Since these probes are scanned two-dimensionally over the sample surface, they become contaminated with residual gas and sample contaminants. Furthermore, the tip of the probe often breaks due to poor servo control or the like. These changes in the tip shape of the probe create various STM images. The STM image obtained with a scanning tunneling microscope is thus highly dependent on the tip shape of the probe. Therefore, it is important to constantly observe the tip shape of the probe. However, the polar diameter of the tip of the probe is as small as 0.1 μm, and cannot be easily observed. Therefore, unless the shape of the tip of the probe is evaluated using some method, an incorrect STM image will be recognized. The techniques for evaluating the tip shape of these probes are not specifically described in the above-mentioned documents.

【0004】本発明の目的は、探針の先端形状の変化を
評価することにより、真のSTM像を得ることができる
走査型トンネル顕微鏡を提供するものである。
An object of the present invention is to provide a scanning tunneling microscope that can obtain true STM images by evaluating changes in the tip shape of a probe.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、測定対象試料と同一平面上に基準試料を設置出来る
構成とする。この基準試料はあらかじめなんらかの手段
、例えば高分解能SEMやTEM等で測定したもので、
かつ、正常な探針形状とSTM像とが1対1に対応出来
ているものを用いる。
[Means for Solving the Problems] In order to achieve the above object, a configuration is adopted in which a reference sample can be placed on the same plane as the sample to be measured. This reference sample has been measured in advance by some means, such as a high-resolution SEM or TEM.
In addition, a probe with a one-to-one correspondence between a normal probe shape and an STM image is used.

【0006】[0006]

【作用】測定対象試料のSTM像測定前後に、基準試料
の測定を実施し、その基準試料のSTM像から、探針の
先端形状を評価する。これにより測定対象試料のSTM
像が正しいか間違っているかが評価出来る。
[Operation] Before and after measuring the STM image of the sample to be measured, a reference sample is measured, and the shape of the tip of the probe is evaluated from the STM image of the reference sample. This allows the STM of the sample to be measured to be
You can evaluate whether the image is correct or incorrect.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1により説明す
る。
[Embodiment] An embodiment of the present invention will be explained below with reference to FIG.

【0008】走査型トンネル顕微鏡は、図1に示すよう
に、試料面に試直方向をZ軸とし、試料面に水平方向を
各々X,Y軸とするのが一般的である。そして、測定対
象試料61と探針5とのギャップは、最初に粗動用Z軸
ピエゾ制御回路11により、粗動用Z軸ピエゾを動作さ
せ、探針を試料にトンネル領域まで接近させる。ここで
、試料と探針間に任意の電圧を印加することにより、試
料と探針間に数nAのトンネル電流が流れる。このトン
ネル電流は、試料と探針とのギャップの関数になってい
るため、トンネル電流が一定となるように、微動用Z軸
ピエゾ2にフィードバック制御を実施すれば、微動用Z
軸ピエゾの変位から試料の凹凸情報を得ることができる
。従って、X軸ピエゾ3,Y軸ピエゾ4を使って、探針
を二次元に走査すれば、試料表面の三次元情報を得るこ
とができる。以上の原理を基づいて、トンネル電流検出
回路7は、微小なトンネル電流を検出する回路,サーボ
制御回路8は、P(比例),I(積分)そして、D(微
分)要素を含んだ制御回路であり、トンネル電流が一定
となるよう、微動用Z軸ピエゾ制御回路9に、任意の出
力信号をフィードバックする回路である。その出力信号
に対応して、微動用Z軸ピエゾ制御回路により、微動用
Z軸ピエゾの伸縮を実施し、トンネル電流を一定にする
。従って、サーボ制御回路の出力信号は、微動用Z軸ピ
エゾの変位に対応している。この信号をディジタル化し
、CPUバス13により、E.W.S12 に転送し、
そのディスプレーに表示すれば、試料表面の凹凸情報を
観察することが可能となる。ここで、X,Y走査回路1
0は、探針を二次元に走査するための回路である。また
、これらの全ての回路は、エンジニアリング  ワーク
ステーションEWS12によりコントロールしている。
As shown in FIG. 1, a scanning tunneling microscope generally has a Z-axis in the direction perpendicular to the sample surface, and an X-axis and a Y-axis in the horizontal direction to the sample surface, respectively. The gap between the sample to be measured 61 and the probe 5 is determined by first operating the Z-axis piezo for coarse movement by the Z-axis piezo control circuit 11 for coarse movement to bring the probe closer to the sample to the tunnel region. Here, by applying an arbitrary voltage between the sample and the probe, a tunnel current of several nA flows between the sample and the probe. Since this tunnel current is a function of the gap between the sample and the probe, if feedback control is performed on the fine movement Z-axis piezo 2 so that the tunnel current remains constant, the fine movement Z-axis
Information on the unevenness of the sample can be obtained from the displacement of the axial piezo. Therefore, by scanning the probe two-dimensionally using the X-axis piezo 3 and Y-axis piezo 4, three-dimensional information on the sample surface can be obtained. Based on the above principle, the tunnel current detection circuit 7 is a circuit that detects a minute tunnel current, and the servo control circuit 8 is a control circuit that includes P (proportional), I (integral), and D (differential) elements. This is a circuit that feeds back an arbitrary output signal to the fine movement Z-axis piezo control circuit 9 so that the tunnel current is constant. In response to the output signal, the fine movement Z-axis piezo control circuit expands and contracts the fine movement Z-axis piezo to keep the tunnel current constant. Therefore, the output signal of the servo control circuit corresponds to the displacement of the fine movement Z-axis piezo. This signal is digitized and sent to the E. W. Transfer to S12,
By displaying the information on the display, it becomes possible to observe the unevenness information on the sample surface. Here, X, Y scanning circuit 1
0 is a circuit for scanning the probe two-dimensionally. Furthermore, all these circuits are controlled by an engineering workstation EWS12.

【0009】以上説明した走査型トンネル顕微鏡の構成
に、本発明は、図1に示すように、試料台6の上に、測
定対象試料61と基準試料62を設置した。本実施例で
は、基準試料として、HOPG上に、金あるいは、白金
を薄く蒸着したものを用いた。これらの蒸着粒子の大き
さは、数nmから数十nmで分布していることが分かっ
ている。従って、最初にこの蒸着粒子を正常探針のST
Mで測定し、得られたSTM像を基準のSTM像とする
。次に、測定対象試料をSTMで測定し、STM像を得
る。最後に、もう一度基準試料のSTM像を得る。この
STM像と、最初に得られたSTM像を比較し、蒸着粒
子の大きさの分布が類似していること、及び、STM像
の質に変化無ければ、あいだで取得した測定対象試料の
STM像は正しいと評価できる。このことは測定中に探
針の先端形状になんら変化が無いといえる。このように
、測定対象試料が変わる毎に、また、測定位置が変わる
毎にこの手法を用いれば、STM像の正しい評価が出来
る。これは、探針の先端形状を評価していることに他な
らない。もし、上記基準試料の二枚のSTM像に著しい
変化が有れば、この探針の先端形状になんらかの変化が
発生したものとみなし、新しい探針に換えて再度測定す
ることが必要である。
In the configuration of the scanning tunneling microscope described above, the present invention includes a sample to be measured 61 and a reference sample 62 placed on a sample stage 6, as shown in FIG. In this example, a thin layer of gold or platinum deposited on HOPG was used as a reference sample. It is known that the sizes of these vapor deposited particles range from several nanometers to several tens of nanometers. Therefore, the deposited particles are first transferred to the ST of the normal probe.
M is measured, and the obtained STM image is used as a reference STM image. Next, the sample to be measured is measured by STM to obtain an STM image. Finally, obtain another STM image of the reference sample. This STM image is compared with the first STM image obtained, and if the size distribution of the deposited particles is similar and there is no change in the quality of the STM image, the STM image of the sample to be measured obtained between The image can be evaluated as correct. This means that there is no change in the tip shape of the probe during measurement. In this way, if this method is used every time the sample to be measured changes or every time the measurement position changes, it is possible to accurately evaluate the STM image. This is nothing but evaluating the tip shape of the probe. If there is a significant change in the two STM images of the reference sample, it is assumed that some change has occurred in the shape of the tip of the probe, and it is necessary to replace it with a new probe and perform the measurement again.

【0010】なお、上記説明は、基準試料として、グラ
ファイト上に、金あるいは、白金を薄く蒸着したものを
用いたが、Siウェハーに金あるいは、白金を薄く蒸着
したものを用いても、まったく同じ様な形状の粒子を得
ることが出来る。また、これら蒸着粒子にこだわること
無く、あらかじめなんらかの手法で、三次元の形状が明
らかと成っている物を基準試料として採用しても良いこ
とは明らかである。
[0010] In the above explanation, graphite with thinly vapor-deposited gold or platinum was used as the reference sample, but the same result can be achieved even if a Si wafer with thinly vapor-deposited gold or platinum is used. Particles of various shapes can be obtained. Moreover, it is clear that without being particular about these vapor-deposited particles, it is also possible to use as a reference sample a material whose three-dimensional shape is already known by some method.

【0011】以上の動作により、探針先端の形状が評価
できるため、正しいSTM像の解釈が出来る。
[0011] Through the above operations, the shape of the tip of the probe can be evaluated, so that the STM image can be correctly interpreted.

【0012】0012

【発明の効果】本発明によれば走査型トンネル顕微鏡の
探針先端形状を評価できるため、正しいSTM像が取得
できる走査型トンネル顕微鏡を提供する。
According to the present invention, the shape of the probe tip of a scanning tunneling microscope can be evaluated, thereby providing a scanning tunneling microscope that can obtain accurate STM images.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の基本的な構成図である。FIG. 1 is a basic configuration diagram of an embodiment of the present invention.

【符号の説明】 1…粗動用Z軸ピエゾ、2…微動用X軸ピエゾ、3…X
軸ピエゾ、4…Y軸ピエゾ、5…探針、6…試料、7…
トンネル電流検出回路、8…サーボ制御回路、9…微動
用Z軸ピエゾ制御回路、10…X,Y走査回路、11…
粗動用Z軸ピエゾ制御回路、12…EWS、13…CP
Uバス。
[Explanation of symbols] 1...Z-axis piezo for coarse movement, 2...X-axis piezo for fine movement, 3...X
Axis piezo, 4... Y-axis piezo, 5... probe, 6... sample, 7...
Tunnel current detection circuit, 8... Servo control circuit, 9... Z-axis piezo control circuit for fine movement, 10... X, Y scanning circuit, 11...
Z-axis piezo control circuit for coarse movement, 12...EWS, 13...CP
U bus.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】探針と試料のうち少なくとも1つを複数の
移動手段で支持し、探針と試料の相対位置をnmオーダ
に接近させ、トンネル電流を生じせしめ、かつ、探針で
試料面上を二次元に走査し、試料の三次元情報を観察す
る所謂、走査型トンネル顕微鏡において、測定試料の近
傍に探針評価用の基準試料を設置出来る構成としたこと
を特徴とする走査型トンネル顕微鏡の探針評価方法。
Claim 1: At least one of the probe and the sample is supported by a plurality of moving means, the relative positions of the probe and the sample are brought close to each other on the nanometer order, a tunnel current is generated, and the sample surface is moved with the probe. In a so-called scanning tunneling microscope that scans the top two-dimensionally to observe three-dimensional information of a sample, a scanning tunneling microscope is characterized in that it is configured so that a reference sample for probe evaluation can be installed near the measurement sample. Microscope tip evaluation method.
【請求項2】請求項1記載の走査型トンネル顕微鏡にお
いて、測定試料の測定の前後に、前記探針評価用の基準
試料を測定し、そのSTM像から探針の評価を実施する
ことを特徴とする走査型トンネル顕微鏡の探針評価方法
2. The scanning tunneling microscope according to claim 1, wherein the reference sample for tip evaluation is measured before and after the measurement of the measurement sample, and the probe is evaluated from the STM image thereof. A method for evaluating the tip of a scanning tunneling microscope.
【請求項3】請求項1記載の走査型トンネル顕微鏡にお
いて、前記探針評価用の基準試料として、グラファイト
上の金あるいは白金の粒子を採用することを特徴とする
走査型トンネル顕微鏡の探針評価方法。
3. The scanning tunneling microscope according to claim 1, wherein gold or platinum particles on graphite are used as the reference sample for the probe evaluation. Method.
【請求項4】請求項1記載の走査型トンネル顕微鏡にお
いて、前記探針評価用の基準試料として、Siウエハー
上の金あるいは白金の粒子を採用することを特徴とする
走査型トンネル顕微鏡の探針評価方法。
4. A scanning tunneling microscope probe according to claim 1, wherein gold or platinum particles on a Si wafer are used as a reference sample for evaluating the probe. Evaluation method.
JP9029091A 1991-04-22 1991-04-22 Evaluating method for probe of scanning tunneling microscope Pending JPH04320902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9029091A JPH04320902A (en) 1991-04-22 1991-04-22 Evaluating method for probe of scanning tunneling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9029091A JPH04320902A (en) 1991-04-22 1991-04-22 Evaluating method for probe of scanning tunneling microscope

Publications (1)

Publication Number Publication Date
JPH04320902A true JPH04320902A (en) 1992-11-11

Family

ID=13994402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9029091A Pending JPH04320902A (en) 1991-04-22 1991-04-22 Evaluating method for probe of scanning tunneling microscope

Country Status (1)

Country Link
JP (1) JPH04320902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220108A (en) * 1995-02-16 1996-08-30 Natl Res Inst For Metals Method for determining shape of probe for spm imaging and image correction method employing it
JP2017219454A (en) * 2016-06-09 2017-12-14 住友金属鉱山株式会社 Evaluation method of probe for atomic force microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220108A (en) * 1995-02-16 1996-08-30 Natl Res Inst For Metals Method for determining shape of probe for spm imaging and image correction method employing it
JP2017219454A (en) * 2016-06-09 2017-12-14 住友金属鉱山株式会社 Evaluation method of probe for atomic force microscope

Similar Documents

Publication Publication Date Title
US6369385B1 (en) Integrated microcolumn and scanning probe microscope arrays
JP2915554B2 (en) Barrier height measurement device
Rangelow et al. Atomic force microscope integrated with a scanning electron microscope for correlative nanofabrication and microscopy
JPH0734032B2 (en) Magnetic force measuring device and method
CN107636474B (en) Multi-integrated tip scanning probe microscope
WO2019011702A1 (en) Method and apparatus for examining a measuring tip of a scanning probe microscope
Müller et al. Controlled structuring of mica surfaces with the tip of an atomic force microscope by mechanically induced local etching
Comella et al. The determination of the elastic modulus of microcantilever beams using atomic force microscopy
JPH04320902A (en) Evaluating method for probe of scanning tunneling microscope
JPH03122514A (en) Observing apparatus for surface
JPH04301501A (en) Reference scale plate and its manufacture
Seo et al. How to obtain sample potential data for KPFM measurement
JP4497665B2 (en) Probe scanning control device, scanning probe microscope using the scanning control device, probe scanning control method, and measurement method using the scanning control method
Stauffenberg et al. Tip-based nanofabrication below 40 nm combined with a nanopositioning machine with a movement range of Ø100 mm
Schneir et al. Scanning tunneling microscopy of optical surfaces
Stadelmann Review of Scanning Probe Microscopy Techniques
Virwani et al. Current displacement (IZ) spectroscopy-based characterization of nanoscale electro machining (nano-EM) tools
Satoh et al. Multi-Probe Atomic Force Microscopy Using Piezo-Resistive Cantilevers and Interaction between Probes
Shingaya et al. Electrical Measurement by Multiple-Probe Scanning Probe Microscope
JPH04332803A (en) Method for evaluating probe of scanning tunnelling microscope
Postek Jr et al. Dimensional metrology at the nanometer level: combined SEM and PPM
Resch Field Emission Based Displacement Sensing Using a Carbon Nanotube Enhanced Electromechanical Probe
Chakrabarti Study of Dielectric Degradation Using Self-Sensing and Optical Conductive Probes.
JPH04127001A (en) Scanning tunnel microscope
Pingali Image modeling and restoration for scanning probe microscopy