JPH04301501A - Reference scale plate and its manufacture - Google Patents

Reference scale plate and its manufacture

Info

Publication number
JPH04301501A
JPH04301501A JP6512291A JP6512291A JPH04301501A JP H04301501 A JPH04301501 A JP H04301501A JP 6512291 A JP6512291 A JP 6512291A JP 6512291 A JP6512291 A JP 6512291A JP H04301501 A JPH04301501 A JP H04301501A
Authority
JP
Japan
Prior art keywords
stm
substrate
reference scale
probe
scale plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6512291A
Other languages
Japanese (ja)
Inventor
Hironori Matsunaga
松永 宏典
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6512291A priority Critical patent/JPH04301501A/en
Publication of JPH04301501A publication Critical patent/JPH04301501A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a reference scale for calibrating the moving distance of a probe moving device at the hyperfine processing/measuring time by nanometer(nm) or so in a usable constitution for a long term, and to establish a manufacture thereof. CONSTITUTION:A liquid crystal (PYP-909) is applied on the cleavage of a substrate of highly orientative graphite (HOPG). Stick-like molecules of the liquid crystal are made to be adsorbed into a striped pattern with a distance of the molecular length (2.5nm). Then, a pulse voltage is impressed between a probe of an STM and the substrate corresponding to the electric conductivity at the surface of the pattern measured by the STM. As a result, a reference scale of the substrate having the corrugated surface corresponding to the striped pattern of the stick-like molecules is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】現在、技術が高度化している超微
細加工,超微細特性測定等における基準スケール板と、
その製造方法に関するものである。
[Industrial Application Fields] Standard scale plates used in ultra-fine machining, ultra-fine characteristic measurement, etc., where technology is currently becoming more sophisticated.
The present invention relates to a manufacturing method thereof.

【0002】0002

【従来の技術】最近は走査型トンネル(STM)がCD
板,LSI等の各種の微細加工製品における加工精度の
評価手段として広く利用されるようになっている。
[Prior Art] Recently, scanning tunneling (STM) is
It has become widely used as a means of evaluating the processing accuracy of various microfabricated products such as plates and LSIs.

【0003】STMは、針先を極めて鋭くした金属探針
を導電性の測定対象に数nmまで接近させて、その間に
印加したバイアス電圧(数ボルト程度)によって流れる
トンネル電流を測定するが、このトンネル電流は、探針
と測定対象の間の間隔の極めて微小な変化にも敏感に応
答するので測定対象上の1原子の大きさも測定できるも
のである。以上のSTMにおいて探針を流れるトンネル
電流を一定に保たせて測定対象の試料表面上を走査させ
れば、その探針の移動軌跡によって、その試料の形状を
知ることができる(定電流モード){G.Binnin
g  and  H.Rohrer:Helv.Phy
s.Acta,55(1982)726}。以上のよう
に、STMは極めて高い分解能をもつことができ、各種
の材料表面の原子配列を計測する研究にも用いられてい
る。 更に、最近はSTMでのトンネル電流の検出に替えて探
針と試料表面の間に働く原子間力で測定する原子間力顕
微鏡(AFM)や、その間の磁気力で測定する磁気力顕
微鏡(MFM)等STMを基本とした新しい機能の顕微
鏡が開発され、各種の分野へ応用されるようになってい
る。なお、以上で説明したSTM等の顕微鏡での探針の
移動(試料面に対して上下方向と面上の走査)には、極
めて滑らかな移動が可能な圧電性セラミックスなどを用
いた圧電素子が用いられていた。そして、この圧電素子
による移動方法を、ナノメータ(nm)程度という極め
て微細な表面加工へ応用する研究も行われている。
[0003] In STM, a metal probe with an extremely sharp tip is brought close to a conductive object to be measured within a few nanometers, and the tunnel current that flows due to the bias voltage (about several volts) applied between these probes is measured. Since the tunneling current responds sensitively to extremely small changes in the distance between the probe and the object to be measured, it is possible to measure the size of even a single atom on the object to be measured. In the above STM, if the tunneling current flowing through the probe is kept constant and scanned over the surface of the sample to be measured, the shape of the sample can be determined from the trajectory of the probe (constant current mode). {G. Binnin
g and h. Rohrer: Helv. Phy
s. Acta, 55 (1982) 726}. As described above, STM can have extremely high resolution and is also used in research to measure the atomic arrangement on the surfaces of various materials. Furthermore, recently, instead of detecting tunneling current in STM, atomic force microscopes (AFM), which measure by the atomic force acting between the probe and the sample surface, and magnetic force microscopes (MFM), which measure by the magnetic force between them, have been developed. ) and other microscopes with new functions based on STM have been developed and are being applied to various fields. In addition, for the movement of the probe in the STM and other microscopes described above (scanning in the vertical direction and on the sample surface), a piezoelectric element using piezoelectric ceramics, etc., which can move extremely smoothly, is used. It was used. Research is also being conducted to apply this movement method using piezoelectric elements to extremely fine surface processing on the order of nanometers (nm).

【0004】0004

【発明が解決しようとする課題】以上で説明したSTM
の方法による移動はナノメータの範囲でも滑らかな移動
ができるが、移動に使用する圧電素子は、印加した電圧
に対して必ずしも直線状に移動させるものでない。従っ
て、STMの方式で移動させる範囲内における基準スケ
ールと比較して移動装置の較正を行なう必要がある。
[Problem to be solved by the invention] STM explained above
Although the method described above allows smooth movement even in the nanometer range, the piezoelectric element used for movement does not necessarily move in a straight line with respect to the applied voltage. Therefore, it is necessary to calibrate the moving device by comparing it with a reference scale within the range to be moved using the STM method.

【0005】従来のサブナノメータ領域における基準ス
ケールとして、高配向グラファイト(HOPG)等の結
晶表面の原子配列パターンが利用でき、この原子配列ま
で検出できる精度があればHOPG等の原子配列パター
ンを基準スケールに使用できるが、全ての装置がこのよ
うな原子配列の検出ができる精度を持っていない。ST
M等が実際に使用されるのはナノメータの範囲であるが
、この範囲における基準スケールは従来の技術(フォト
リソグラフィー,電子ビーム加工等)で作製することは
できなかった。
The atomic arrangement pattern on the surface of a crystal such as highly oriented graphite (HOPG) can be used as a standard scale in the conventional sub-nanometer region.If the atomic arrangement pattern of HOPG etc. has the accuracy to detect this atomic arrangement, the atomic arrangement pattern of HOPG etc. can be used as the reference scale. However, not all instruments have the precision to detect such atomic arrangements. ST
M and the like are actually used in the nanometer range, but a reference scale in this range cannot be produced using conventional techniques (photolithography, electron beam processing, etc.).

【0006】本発明は、以上で説明したSTM技術が実
際に使用される数nmから10nm程度の範囲における
ナノメータ単位での基準スケール作製における問題を解
消し、STM等の移動装置の較正に適した基準スケール
と、その製造方法を提供することを目的としている。
The present invention solves the problem of creating a reference scale in nanometer units in the range of several nm to about 10 nm, in which the STM technology described above is actually used, and is suitable for calibrating mobile devices such as STM. The purpose is to provide a standard scale and its manufacturing method.

【0007】[0007]

【課題を解決するための手段】以上で説明した本発明の
目的を達成するスケールは、HOPG,二硫化モリブデ
ン等の半導体として比較的高抵抗の導電性をもつ平坦面
の結晶基板を用いている。該基板の表面上に、棒状分子
が数nm程度の分子長間隔になって縞状で、単分層の厚
さに吸着する有機化合物を塗布し、該塗布膜上をSTM
の探針で走査し、該膜の電気伝道度に対応させて印加し
た電気パルスによって、基板表面に前記縞状パターンに
対応した縞状の凹凸形状を作製するものである。
[Means for Solving the Problems] The scale that achieves the object of the present invention described above uses a flat crystal substrate having relatively high resistance and conductivity as a semiconductor such as HOPG or molybdenum disulfide. . On the surface of the substrate, an organic compound that adsorbs to a monolayer thickness is coated in stripes with rod-shaped molecules separated by a molecular length of about several nanometers, and the coated film is subjected to STM.
A striped uneven shape corresponding to the striped pattern is created on the surface of the substrate by scanning with a probe and applying electric pulses corresponding to the electrical conductivity of the film.

【0008】以上における有機化合物の選定によってS
TM等の移動の基準スケールに適した数nm程度の凹凸
の基準スケールを作製することができる。
By selecting the organic compound above, S
It is possible to produce a reference scale with irregularities of approximately several nanometers, which is suitable as a reference scale for movement such as TM.

【0009】[0009]

【作用】微細構造の測定と微細加工への利用の展開が予
想されるSTM等において、その移動装置の較正に必要
な数nm程度の精度のよい基準スケールを用いることに
より、前記装置の走査範囲における高精度の探針移動の
制御が可能になる。
[Function] In STM, etc., which is expected to be used for microstructure measurement and microfabrication, the scanning range of the device is This makes it possible to control the movement of the probe with high precision.

【0010】0010

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。本実施例に用いた基板の材料は、基板に原子
のスケールでの平坦性を機械的な安定性が必要なことか
らHOPGを用いた。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. As the material of the substrate used in this example, HOPG was used because the substrate required flatness and mechanical stability on an atomic scale.

【0011】以上の導電性基板に塗布する有機化合物も
、液晶材料をはじめとした各種の棒状分子からなる有機
材料で、基板表面に吸着させたとき、その基板上に分子
長に対応した間隔になった縞のパターンに配列するもの
がSTMの観察によって認められた。以上の有機材料は
、分子の構成により種々の分子長(〜数nm迄)をもつ
ものを比較的容易に合成できるので、STM装置の基準
スケールとして較正に適したものを作製することができ
る。
The organic compound coated on the conductive substrate described above is also an organic material composed of various rod-shaped molecules including liquid crystal materials, and when adsorbed onto the substrate surface, it forms on the substrate at intervals corresponding to the molecular length. STM observation revealed that the stripes were arranged in a striped pattern. The above-mentioned organic materials can be relatively easily synthesized with various molecular lengths (up to several nanometers) depending on the molecular configuration, so it is possible to fabricate a material suitable for calibration as a reference scale for an STM device.

【0012】本実施例においては、予めその分子長等が
知られていて、かつ、STMによる観察が報告されてい
るピリミジン系液晶PYP−909{5−n−Nony
l−2−(4−nonyl  Oxyphenyl)−
pyrimidine}を用いた{J.K.Spong
等:Nature,339(1989)137}。本液
晶は、次ぎのような温度範囲によって逐次相転移を示す
。結晶相<35℃<スメクチックC<60℃<スメクチ
ックA<75℃<等方性液体。
In this example, pyrimidine liquid crystal PYP-909{5-n-Nony
l-2-(4-nonyl Oxyphenyl)-
pyrimidine} using {J. K. Spong
et al.: Nature, 339 (1989) 137}. This liquid crystal exhibits sequential phase transitions depending on the following temperature ranges. Crystal phase<35°C<Smectic C<60°C<Smectic A<75°C<Isotropic liquid.

【0013】本実施例では、先ず、HOPGをヘキ開し
て作った基板のヘキ開面にPYP−909の粉末を載せ
た後80℃まで昇温して粉末を液体状態にした。続いて
、0.5℃/分の降温速度で室温(20℃)まで徐冷し
、次ぎに、アセトン中に軽く浸漬して基板表面の固形結
晶部分のみ溶解して除去した。以上によって固形結晶の
み除去したHOPGの表面は、ヘキ開したときと同じ程
度の金属光沢を示していた。
In this example, first, PYP-909 powder was placed on the cleavage surface of a substrate made by cleavage of HOPG, and the temperature was raised to 80° C. to turn the powder into a liquid state. Subsequently, the substrate was gradually cooled down to room temperature (20°C) at a cooling rate of 0.5°C/min, and then lightly immersed in acetone to dissolve and remove only the solid crystal portion on the substrate surface. The surface of the HOPG from which only the solid crystals were removed showed the same level of metallic luster as when it was cleaved.

【0014】以上の工程後の基板表面をSTM{ユニソ
ク(株)製:USM−301)を用いて観察した。以上
での観察による明暗像の概要を図2に斜視図で示した。 図2は、棒状分子が約2.5nmの間隔になって縞状パ
ターンに配列した状態を示している。この観察に用いた
STMの探針は、0.4mmφ のタングステン線を機
械研磨で形成したもので、バイアス電圧Vt=1.0V
にして、トンネル電流It=0.1nAに設定した上で
、可変電流モードで測定したものである。この可変電流
モードは、探針を基板表面から一定の高さに保って走査
させ、基板表面の凹凸をトンネル電流の変化として測定
する方法である。
After the above steps, the surface of the substrate was observed using an STM (USM-301, manufactured by Unisoku Co., Ltd.). A perspective view of the outline of the bright and dark images observed above is shown in FIG. 2. FIG. 2 shows a state in which rod-shaped molecules are arranged in a striped pattern with an interval of about 2.5 nm. The STM probe used for this observation was a 0.4 mmφ tungsten wire formed by mechanical polishing, and the bias voltage Vt = 1.0 V.
The tunnel current It was set to 0.1 nA and measured in variable current mode. This variable current mode is a method in which the probe is kept at a constant height from the substrate surface and scanned, and irregularities on the substrate surface are measured as changes in tunnel current.

【0015】図2の像の明暗は、その位置におけるトン
ネル電流の大きさを示しており、電流値が大きいほど明
るく(白く)なっている。図2で示した縞の間隔は、前
記のSpong等の報告の値と良く一致している。以上
で示したデータから、このような分子配列のパターンは
再現性よく作製できることを示していて、形成した縞間
隔のパターンがナノメーター程度の基準スケールに使用
可能なことを示している。
The brightness and darkness of the image in FIG. 2 indicates the magnitude of the tunnel current at that position, and the larger the current value, the brighter (whiter) the image becomes. The stripe spacing shown in FIG. 2 is in good agreement with the value reported by Spong et al. The data presented above indicate that such a molecular arrangement pattern can be produced with good reproducibility, and that the formed stripe spacing pattern can be used on a reference scale of about nanometers.

【0016】しかし、以上で形成したHOPG基板上の
分子配列パターンを継続して観察すると、10日程度迄
は安定していることが分かったが、より長期にわたって
吸着分子の配列を保てることは期待できないことが分か
った。そこで本実施例では、上記で得られた分子配列の
縞状パターンを下地のHOPG基板に安定した凹凸形状
にして保持するため、次の実験を行った。
However, when we continuously observed the molecular arrangement pattern on the HOPG substrate formed above, we found that it was stable for about 10 days, but it is hoped that the arrangement of adsorbed molecules can be maintained for a longer period of time. I found out that I can't do it. Therefore, in this example, in order to maintain the striped pattern of the molecular arrangement obtained above in a stable uneven shape on the underlying HOPG substrate, the following experiment was conducted.

【0017】即ち、図2に示した縞状パターンにおける
明部、すなわち、電気伝導度の高い部分において、探針
と基板の間に測定状態より高い電圧パルスを印加した。 その高い電圧パルスの電圧は3.0Vから4.0Vで、
パルス幅は100 μ secから500μ secに
した。以上による前記HOPG基板表面のSTMの可変
電流モードによる走査と、該表面での電気伝導度に対応
させたパルス電圧印加によって、図2に示したPYP−
909の縞パターンと同じパターンになったHOPG基
板表面の凹凸像が、図1のように形成されていた。この
図1における溝の深さは、0.3nmであった。
That is, in the bright part of the striped pattern shown in FIG. 2, that is, the part with high electrical conductivity, a voltage pulse higher than that in the measurement state was applied between the probe and the substrate. The voltage of the high voltage pulse is 3.0V to 4.0V,
The pulse width was varied from 100 μsec to 500 μsec. The PYP-
An uneven image on the surface of the HOPG substrate having the same pattern as the striped pattern of 909 was formed as shown in FIG. The depth of the groove in FIG. 1 was 0.3 nm.

【0018】以上のように、HOPG表面における溝形
成は、SEMの極めて鋭い探針先端との間に印加された
電圧による局所的な放電加工によると推測される。以上
で形成した溝の深さは、印加するパルス電圧によって変
化させることができ、本実施例のパターンでは、溝の深
さを0.1nmから0.5nmの範囲で変えても良好な
形状の基準が得られた。図1は、STMでのVt=0.
5V、It=0.6nAにした定電流モ−ドで測定した
ものである。
As described above, the formation of grooves on the HOPG surface is presumed to be caused by local electrical discharge machining caused by the voltage applied between the extremely sharp tip of the SEM probe. The depth of the grooves formed above can be changed by applying a pulse voltage, and in the pattern of this example, even if the depth of the grooves is changed in the range of 0.1 nm to 0.5 nm, a good shape can be obtained. A standard has been obtained. FIG. 1 shows Vt=0.
It was measured in constant current mode at 5V and It=0.6nA.

【0019】以上で説明した本発明の実施例からも分か
るように、本実施例は液晶分子の配列パターンを基準に
して、スケールを形成するので、SEM等の探針移動に
用いる圧電素子がもつ印加電圧に対する非線形性を較正
して、加工や測定の精度に与える影響を無視できる程度
まで小さくできる。以上で作製した基準スケールは、使
用した液晶分子の長さにより一定間隔に形成した縞状の
凹凸パターンであり、SEM等の探針移動用圧電素子の
較正用に使用できると共に、該スケールの溝測定曲線に
より使用した探針の特性チエックをも行うことができる
As can be seen from the embodiments of the present invention explained above, in this embodiment, the scale is formed based on the arrangement pattern of liquid crystal molecules. By calibrating nonlinearity with respect to applied voltage, the effect on processing and measurement accuracy can be reduced to a negligible level. The reference scale prepared above has a striped concavo-convex pattern formed at regular intervals depending on the length of the liquid crystal molecules used, and can be used for calibrating a piezoelectric element for moving a probe in SEM, etc. It is also possible to check the characteristics of the probe used based on the measurement curve.

【0020】以上は、本発明を実施例によって説明した
が、本発明は実施例によって限定されるものでなく、例
えば使用する基板として導電性で層状化合物であるMo
S2のヘキ開面を用いてもよく、液晶材料として縞間隔
が3.5nmになる8CB(4−octyl−4’−c
yanobihenyl)を用いても実施例と同じ効果
を得ることができる。
The present invention has been described above with reference to Examples, but the present invention is not limited to the Examples. For example, the substrate used is Mo, which is a conductive layered compound.
The hexagonal surface of S2 may be used, and 8CB (4-octyl-4'-c
The same effect as in the example can be obtained by using yanobihenyl).

【0021】以上の外にも基板材料としては、導電性が
あって平坦面が形成できるものであればよいのでシリコ
ン(Si),ガリウム砒素(GaAs)等の半導体材料
も使用することができる。更に、分子長がことなって、
導電性基板上に縞状に配列する有機材料を用いることで
、ナノメーター程度で種々の間隔(2〜10nm)をも
つ縞状基準スケールを形成することが可能になり、目的
に対応させた仕様に作製することができる。
In addition to the above materials, semiconductor materials such as silicon (Si) and gallium arsenide (GaAs) can also be used as long as they are electrically conductive and can form a flat surface. Furthermore, the molecular length is different,
By using organic materials arranged in stripes on a conductive substrate, it is possible to form striped reference scales with various spacings (2 to 10 nm) on the order of nanometers, allowing specifications to be tailored to the purpose. It can be made into

【0022】以上は、本発明の基準スケールを、STM
等の圧電素子を用いる探針移動装置の較正で説明したが
、STMの電子ビームの電磁的な走査の粒子ビーム走査
の較正にも使用できる。
In the above, the reference scale of the present invention is STM
Although the calibration of a probe moving device using a piezoelectric element has been described, it can also be used to calibrate a particle beam scan of an electromagnetic scan of an STM electron beam.

【0023】[0023]

【発明の効果】本発明による棒状分子の分子長を利用す
る方法は、従来のフォトリソグラフィー技術では作製で
きないナノメーター程度の縞状基準スケールを高精度に
、かつ、再現性よく作製することができる。従って、今
後発展する超微細加工,超微細形状測定の精度を向上さ
せる基準スケールにすることができる。
[Effects of the Invention] The method using the molecular length of rod-shaped molecules according to the present invention can produce a nanometer-sized striped reference scale with high precision and good reproducibility, which cannot be produced using conventional photolithography technology. . Therefore, it can be used as a reference scale to improve the accuracy of ultra-fine processing and ultra-fine shape measurement that will be developed in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】HOPGのヘキ開基板で形成した縞状溝パター
ンの基準スケールのSTM像である。
FIG. 1 is a reference scale STM image of a striped groove pattern formed on a cleaved substrate of HOPG.

【図2】導電性基板上に形成したPYP−909単分子
縞状配列パターンのSTM像である。
FIG. 2 is an STM image of a PYP-909 monomolecule striped array pattern formed on a conductive substrate.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  導電性の基板の表面を波長が2nmか
ら10nmで、深さが0.1nmから1.5nmの波状
の溝を並列に並べた形状にしたことを特徴とする基準ス
ケール板。
1. A reference scale plate characterized in that the surface of a conductive substrate has a shape in which wavy grooves having a wavelength of 2 nm to 10 nm and a depth of 0.1 nm to 1.5 nm are arranged in parallel.
【請求項2】  請求項1の導電性の基板が、高配向グ
ラファイト(HOPG)、二硫化モリブデン(MoS2
)、シリコン(Si)、ガリウム砒素(GaAs)等の
導電性の結晶基板であることを特徴とする請求項1の基
準スケール板。
2. The conductive substrate of claim 1 is made of highly oriented graphite (HOPG), molybdenum disulfide (MoS2
), silicon (Si), gallium arsenide (GaAs), or the like.
【請求項3】  表面を平坦に形成した導電性基板の表
面に、棒状分子の単分子層が縞状に配列して吸着する有
機化合物を塗布し、形成した該縞状パターンの表面を走
査型トンネル顕微鏡(STM)で走査し、前記縞状パタ
ーンでの電気伝導度に対応させたパルス電圧をSTMの
金属探針との間に印加して放電させ、前記吸着分子の縞
状配列パターンに対応した溝を前記基板の表面に形成す
ることを特徴とする基準スケール板の製造方法。
3. An organic compound to which a monomolecular layer of rod-shaped molecules is arranged and adsorbed in stripes is applied to the surface of a conductive substrate with a flat surface, and the surface of the striped pattern formed is scanned. Scanning is performed using a tunneling microscope (STM), and a pulse voltage corresponding to the electrical conductivity in the striped pattern is applied between the metal probe of the STM and a discharge, which corresponds to the striped arrangement pattern of the adsorbed molecules. A method for manufacturing a reference scale plate, characterized in that a groove is formed on the surface of the substrate.
【請求項4】  請求項3の溝形成に印加するパルス電
圧は、電圧が3.0Vから4.0Vで、パルス幅が10
0μsecから500μsecの範囲であることを特徴
とする請求項3の基準スケール板の製造方法。
4. The pulse voltage applied to form the groove according to claim 3 has a voltage of 3.0 V to 4.0 V and a pulse width of 10 V.
4. The method of manufacturing a reference scale plate according to claim 3, wherein the time is in a range of 0 μsec to 500 μsec.
JP6512291A 1991-03-29 1991-03-29 Reference scale plate and its manufacture Pending JPH04301501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6512291A JPH04301501A (en) 1991-03-29 1991-03-29 Reference scale plate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6512291A JPH04301501A (en) 1991-03-29 1991-03-29 Reference scale plate and its manufacture

Publications (1)

Publication Number Publication Date
JPH04301501A true JPH04301501A (en) 1992-10-26

Family

ID=13277760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6512291A Pending JPH04301501A (en) 1991-03-29 1991-03-29 Reference scale plate and its manufacture

Country Status (1)

Country Link
JP (1) JPH04301501A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794569A (en) * 1993-06-07 1995-04-07 Internatl Business Mach Corp <Ibm> Calibration standard, and generating method thereof
JP2006064459A (en) * 2004-08-25 2006-03-09 Mitsutoyo Corp Calibration sample of surface property measurement device and surface property measurement device
JP2006177713A (en) * 2004-12-21 2006-07-06 Kyoto Univ Inspection/calibration artifact of shape measuring machine
JP2008070181A (en) * 2006-09-13 2008-03-27 Mitsutoyo Corp Roundness measuring device calibration tool, and calibration method for the roundness measuring device
CN101578233A (en) * 2006-11-28 2009-11-11 凯纳图公司 A method, computer program and apparatus for the characterization of molecules
CN102889866A (en) * 2012-09-28 2013-01-23 西安交通大学 Length measuring and tracing method using graphene bond length as measuring reference

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794569A (en) * 1993-06-07 1995-04-07 Internatl Business Mach Corp <Ibm> Calibration standard, and generating method thereof
JP2006064459A (en) * 2004-08-25 2006-03-09 Mitsutoyo Corp Calibration sample of surface property measurement device and surface property measurement device
JP4689988B2 (en) * 2004-08-25 2011-06-01 株式会社ミツトヨ Calibration specimen for surface texture measuring machine
JP2006177713A (en) * 2004-12-21 2006-07-06 Kyoto Univ Inspection/calibration artifact of shape measuring machine
JP2008070181A (en) * 2006-09-13 2008-03-27 Mitsutoyo Corp Roundness measuring device calibration tool, and calibration method for the roundness measuring device
JP4690276B2 (en) * 2006-09-13 2011-06-01 株式会社ミツトヨ Calibration method for roundness measuring apparatus
CN101578233A (en) * 2006-11-28 2009-11-11 凯纳图公司 A method, computer program and apparatus for the characterization of molecules
CN102889866A (en) * 2012-09-28 2013-01-23 西安交通大学 Length measuring and tracing method using graphene bond length as measuring reference

Similar Documents

Publication Publication Date Title
Howland et al. A Practical Guide: To Scanning Probe Microscopy
Bennewitz Friction force microscopy
Samorì Scanning probe microscopies beyond imaging
Meyer et al. Scanning probe microscopy
US6591658B1 (en) Carbon nanotubes as linewidth standards for SEM &amp; AFM
Göbel et al. Atomic force microscope as a tool for metal surface modifications
Facci et al. Room-temperature single-electron junction.
Sorokina et al. Atomic force microscopy modified for studying electric properties of thin films and crystals. Review
Kleineberg et al. STM Lithography in an Organic Self‐Assembled Monolayer
Magonov et al. Advancing characterization of materials with atomic force microscopy-based electric techniques
JPH04301501A (en) Reference scale plate and its manufacture
US20100043108A1 (en) Probe for scanning probe microscope
Gulbinski et al. Study of the influence of adsorbed water on AFM friction measurements on molybdenum trioxide thin films
Bosse et al. High speed friction microscopy and nanoscale friction coefficient mapping
Świadkowski et al. Near-zero contact force atomic force microscopy investigations using active electromagnetic cantilevers
Cui et al. Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers
Sulania et al. Atomic and magnetic force studies of co thin films and nanoparticles: understanding the surface correlation using fractal studies
Lee et al. Fabrication of thermal microprobes with a sub-100 nm metal-to-metal junction
Lysenko et al. Manufacturing and characterization of nanostructures using scanning tunneling microscopy with diamond tip
JPH0658753A (en) Measured length correction method
SADEGH et al. STUDYING OF VARIOUS NANOLITHOGRAPHY METHODS BYUSING SCANNING PROBE MICROSCOPE
Wawro et al. Au clusters deposited on Si (111) and graphite surfaces
Stadelmann Review of Scanning Probe Microscopy Techniques
JP2789244B2 (en) Method of forming microprobe
Debata et al. Materials characterization using scanning tunneling microscopy: from fundamentals to advanced applications