JP2789244B2 - Method of forming microprobe - Google Patents

Method of forming microprobe

Info

Publication number
JP2789244B2
JP2789244B2 JP31746889A JP31746889A JP2789244B2 JP 2789244 B2 JP2789244 B2 JP 2789244B2 JP 31746889 A JP31746889 A JP 31746889A JP 31746889 A JP31746889 A JP 31746889A JP 2789244 B2 JP2789244 B2 JP 2789244B2
Authority
JP
Japan
Prior art keywords
probe
conductive
tip
sample
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31746889A
Other languages
Japanese (ja)
Other versions
JPH03179202A (en
Inventor
俊光 川瀬
明彦 山野
博康 能瀬
俊彦 宮▲崎▼
高弘 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31746889A priority Critical patent/JP2789244B2/en
Priority to US07/621,886 priority patent/US5132533A/en
Priority to EP90123458A priority patent/EP0431623B1/en
Priority to ES90123458T priority patent/ES2098240T3/en
Priority to DE69030239T priority patent/DE69030239T2/en
Priority to CA 2031733 priority patent/CA2031733C/en
Publication of JPH03179202A publication Critical patent/JPH03179202A/en
Application granted granted Critical
Publication of JP2789244B2 publication Critical patent/JP2789244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、走査型トンネル顕微鏡(以下STMと略す)
や高密度記録・再生装置などに使用される。先端部の曲
率半径が極めて小さいプローブの形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a scanning tunneling microscope (hereinafter abbreviated as STM).
And high-density recording / reproducing devices. The present invention relates to a method for forming a probe having a very small radius of curvature at the tip.

[従来の技術] 従来の一般的なSTMは、導電性試料表面と導電性検出
プローブ先端部間に流れるトンネル電流を検出し、トン
ネル電流が一定になるように、試料表面と検出プローブ
間の距離を電気的フィードバックにより制御して、原子
・分子の構造を画像として表示する方式である。このよ
うなSTMの分解能は、プローブ先端部の曲率半径で決定
される。分解能を上げる為には、プローブ先端部をより
尖鋭にすることが必要となる。
[Prior art] Conventional general STM detects a tunnel current flowing between the conductive sample surface and the tip of the conductive detection probe, and adjusts the distance between the sample surface and the detection probe so that the tunnel current becomes constant. Is controlled by electrical feedback to display the structure of atoms and molecules as an image. The resolution of such an STM is determined by the radius of curvature of the probe tip. In order to increase the resolution, it is necessary to make the tip of the probe sharper.

従来のプローブ作製方法は、白金やタングステン棒の
先端を機械的研摩により円錐状に尖らせたものや、電解
研摩法により、先端を尖鋭化(特開昭61−32326号公
報、電解研摩による針状体の形成方法)したものが一般
的である。これらにより得られる先端曲率半径は、せい
ぜい0.1マイクロンメートルである。この他に、機械研
摩や電解研摩法を用いて形成したプローブ先端部をさら
に尖鋭化する為に超高真空槽内で、電解蒸発を行う手法
がある。
Conventional methods for producing a probe include a method in which the tip of a platinum or tungsten rod is sharpened conically by mechanical polishing, or a method in which the tip is sharpened by electrolytic polishing (Japanese Patent Laid-Open No. 61-32326, Is generally used. The tip radius of curvature obtained from these is at most 0.1 micron meter. In addition, there is a method of performing electrolytic evaporation in an ultra-high vacuum chamber in order to further sharpen the tip of the probe formed by using mechanical polishing or electrolytic polishing.

[発明が解決しようとしている課題] しかしながら、従来の機械研摩や電解研摩法を用いて
作製するプローブは、原子・分子を観察する場合およ
び、原子あるいは、分子の結合状態を観察する場合に先
端曲率半径が0.1マイクロンメートル程度と大きすぎる
為精度の高い観察ができなかった。また、電解蒸発法を
用いてプローブ先端をさらに尖鋭化する手法では、超高
真空槽内で加熱や高電界を行う必要があり、また、STM
の試料に損傷を与えないような工夫も必要となり、装置
が大がかりになってしまうという問題点を有していた。
[Problems to be Solved by the Invention] However, a probe manufactured using a conventional mechanical polishing or electrolytic polishing method requires a tip curvature when observing atoms and molecules and when observing the bonding state of atoms or molecules. Since the radius was too large, about 0.1 micron meters, high-precision observation was not possible. In addition, in the method of sharpening the probe tip using the electrolytic evaporation method, it is necessary to perform heating and a high electric field in an ultra-high vacuum chamber.
In order to prevent the sample from being damaged, it is necessary to take measures to prevent the sample from being damaged, resulting in a problem that the apparatus becomes large.

本発明は、上記従来技術の欠点に鑑みなされたもので
あって、簡単な構成で従来に比べさらに先端を尖鋭化し
た微小プローブの形成方法の提供を目的とする。
The present invention has been made in view of the above-described drawbacks of the related art, and has as its object to provide a method for forming a microprobe having a simple configuration and a sharpened tip compared to the related art.

[課題を解決するための手段および作用] 本発明によれば、導電性プローブの先端を導電性部材
に対し微小距離まで接近させた状態で、該導電性プロー
ブおよび導電性部材間に電圧を印加して、該導電性プロ
ーブ先端を溶融して微小突起を形成する微小プローブの
形成方法において、前記導電性部材の導電性プローブ接
近位置に突起を設け、該突起と導電性プローブ間に電圧
を印加し、微小プローブを形成することにより、先端曲
率半径の向上による高分解能化を得ようとするものであ
る。
[Means and Actions for Solving the Problems] According to the present invention, a voltage is applied between the conductive probe and the conductive member while the tip of the conductive probe is brought close to the conductive member to a very small distance. Then, in the method for forming a microprobe, in which the tip of the conductive probe is melted to form a microprotrusion, a protrusion is provided at a position of the conductive member closer to the conductive probe, and a voltage is applied between the protrusion and the conductive probe. Then, by forming a micro probe, it is intended to obtain a high resolution by improving the radius of curvature of the tip.

[参考例および実施例] 以下、本発明の参考例および実施例を図面に基づいて
説明する。
Reference Examples and Examples Hereinafter, reference examples and examples of the present invention will be described with reference to the drawings.

第1図は、本発明による参考例の構成と電気ブロック
の説明図である。1はタングステン、白金、白金ロジウ
ム、白金イリジウム等の導電性材料を電解研摩法や、機
械的研摩等により、先端を尖鋭にした、導電性プローブ
である。2は導電性の材料と、スパッタ法、めっき法等
により作製した、導電性プローブ被覆材料である。3は
導電性試料である。4は微小突起であり導電性プローブ
被覆材料2で被覆された、導電性プローブ1の先端に形
成されている。5は導電性試料3を固定するための基
板、6は導電性プローブ1と導電性試料3との距離を制
御する為の縦方向位置制御手段、7は導電性プローブ1
と導電性プローブ被覆材料2間にバイアス電圧を掃引印
加する可変バイアス電源、8はバイアス電圧を可変する
ためのパルス電源、9は導電性プローブ1と導電性試料
3間に流れるトンネル電流を検出するトンネル電流検出
回路、10は、縦方向位置制御手段6を制御するためのプ
ローブ縦方向位置制御回路である。本参考例ではプロー
ブと試料間の距離を制御する検知手段として、トンネル
電流を用いたが、なんらこれに限定する必要はなく、例
えば、原子間力、磁気力、静電力等の検知手段を用いて
もよい。以上説明したような、構成で微小突起を形成す
る方法について第1図および第2図を用いてさらに、詳
細な説明を行う。
FIG. 1 is an explanatory diagram of a configuration and an electric block of a reference example according to the present invention. Reference numeral 1 denotes a conductive probe in which a conductive material such as tungsten, platinum, platinum rhodium, and platinum iridium is sharpened at its tip by electrolytic polishing or mechanical polishing. Reference numeral 2 denotes a conductive material and a conductive probe coating material prepared by a sputtering method, a plating method, or the like. 3 is a conductive sample. Reference numeral 4 denotes a minute projection formed at the tip of the conductive probe 1 covered with the conductive probe coating material 2. 5 is a substrate for fixing the conductive sample 3, 6 is a vertical position control means for controlling the distance between the conductive probe 1 and the conductive sample 3, and 7 is the conductive probe 1.
A bias power supply for sweeping and applying a bias voltage between the conductive probe and the conductive probe coating material 2, a pulse power supply 8 for varying the bias voltage, and 9 detecting a tunnel current flowing between the conductive probe 1 and the conductive sample 3. The tunnel current detection circuit 10 is a probe vertical position control circuit for controlling the vertical position control means 6. In this reference example, a tunneling current was used as a detecting means for controlling the distance between the probe and the sample, but the present invention is not limited to this.For example, a detecting means such as an atomic force, a magnetic force, and an electrostatic force is used. You may. The method for forming the minute projections with the configuration as described above will be further described in detail with reference to FIGS.

導電性プローブ1の材料にはタングステンを用いた、
タングステンプローブを尖鋭化する為に一般的な電解研
摩法を用いて作製した電解研摩により作製されたタング
ステンプローブの先端曲率半径は、0.1マイクロンメー
トル程度であった。電解研摩により作製したプローブ1
表面上に、イオンビームスパッタ装置を用いて、金を10
ナノメートル程度被覆した。導電性試料3の材料には、
白金蒸着膜を用いた。縦方向位置制御手段6には、市販
のPZT素子(変位量:1μm/1000V)を用いた。前記材料お
よび素子の構成でプローブ1の被覆材料2と、試料3間
距離が、数ナノメートルになるようにトンネル電流検出
回路9を用いて接近させた。またプローブ1と試料3の
距離が、温度ドリフト、外部振動等の外乱によって、変
化しないようにプローブ縦方向位置制御回路10と、縦方
向位置制御手段6により電気的フィードバックをかけて
制御した。環境状態は、大気中である。この状態で、パ
ルス巾4μs,パルス高さ、4Vの条件値をパルス電源8か
ら、プローブをプラス側に設定してある可変バイアス電
源7に掃引し、第1図、あるいは、第2図(b)に示す
ような微小突起4を形成した。形成された微小突起の大
きさは、高さ10ナノメートル、底面積15平方ナノメート
ル程度であった。
Tungsten was used as the material of the conductive probe 1,
The radius of curvature of the tip of a tungsten probe manufactured by electrolytic polishing using a general electrolytic polishing method to sharpen the tungsten probe was about 0.1 μm. Probe 1 made by electrolytic polishing
On the surface, use an ion beam sputtering device to deposit 10 gold
It was coated on the order of nanometers. Materials for the conductive sample 3 include:
A platinum deposited film was used. As the vertical position control means 6, a commercially available PZT element (displacement: 1 μm / 1000 V) was used. The tunnel current detection circuit 9 was used so that the distance between the coating material 2 of the probe 1 and the sample 3 was several nanometers with the above-mentioned material and element configuration. The probe vertical position control circuit 10 and the vertical position control means 6 control the distance between the probe 1 and the sample 3 by applying electrical feedback so that the distance does not change due to disturbances such as temperature drift and external vibration. Environmental conditions are in the atmosphere. In this state, the condition values of pulse width 4 μs, pulse height, and 4 V are swept from the pulse power supply 8 to the variable bias power supply 7 in which the probe is set to the plus side, and FIG. 1 or FIG. ) Was formed. The size of the formed microprojections was about 10 nanometers in height and about 15 square nanometers in bottom area.

前記プローブ材料、プローブ被覆材料、試料の材料は
なんらこれらに限定するものではなく、適宜選択でき
る。ただし、プローブ被覆材料よりも試料の方が高融点
であることが必要となる。
The probe material, the probe coating material, and the sample material are not limited to these, and can be appropriately selected. However, the sample needs to have a higher melting point than the probe coating material.

また、パルス条件値も、形成する微小突起の大きさに
より、適宜選択できるが、試料とプローブ被覆材料の両
者にダメージを与えてはならない。
Also, the pulse condition value can be appropriately selected depending on the size of the microprojections to be formed, but it is necessary not to damage both the sample and the probe coating material.

以上のような微小突起4を形成することにより、真空
中・大気中を問わず、分子結合状態を分解できる高分解
能な、微小プローブを提供することが可能となる。ま
た、パルス電圧印加により、試料にダメージを与えない
ような適切な材料を選択すれば、STM動作中にプローブ
を試料に接触させ原子・分子の分解能が得られなくなっ
たプローブでも、原子・分子の分解能を有する微小突起
をSTMの構成で容易に再生することが可能となる。
By forming the fine projections 4 as described above, it is possible to provide a high-resolution microprobe capable of decomposing a molecular bonding state regardless of whether it is in a vacuum or in the air. In addition, if an appropriate material is selected so as not to damage the sample by applying a pulse voltage, even if the probe comes into contact with the sample during STM operation and the resolution of atoms and molecules cannot be obtained, It is possible to easily reproduce the minute projections having the resolution with the STM configuration.

次に本発明の実施例について第3図を用いて説明す
る。この実施例は参考例で説明した構成において試料3
のみを交換したものである。試料3には、先端が鋭った
山状の突起31があらかじめ形成されている。この突起31
は公知の適当な方法により作製される。微小突起4の形
成方法は、参考例と同様であるが、試料3上に山状の突
起31がある為に、パルス電圧を掃引した際、電界の集中
が、平面に比べ増す。従って、参考例(第1図および第
2図)の微小突起4よりも、さらに先端曲率半径が小さ
い微小突起4が形成可能となる。
Next, an embodiment of the present invention will be described with reference to FIG. This embodiment is similar to the sample 3 in the configuration described in the reference example.
Only exchanged. The sample 3 has a mountain-shaped projection 31 with a sharp tip formed in advance. This projection 31
Is prepared by a known appropriate method. The method of forming the minute projections 4 is the same as that of the reference example. However, since the mountain-shaped projections 31 are provided on the sample 3, when the pulse voltage is swept, the concentration of the electric field increases as compared with the plane. Therefore, it is possible to form the minute projections 4 having a smaller tip radius of curvature than the minute projections 4 of the reference example (FIGS. 1 and 2).

[発明の効果] 以上説明したように、0.1マイクロンメートルの先端
曲率半径をもつプローブの先端に、さらに先端曲率半径
の小さい微小突起を真空中、大気中を問わずSTM構成の
装置で容易に形成可能で、かつ原子・分子を十分解像で
きる高分解能な微小プローブを簡略な方法で形成でき、
性能の向上と、製造装置の小型化、製造方法の簡略化と
いう面において、大きな効果を得ることができる。
[Effects of the Invention] As described above, a microprojection having a smaller tip radius of curvature is easily formed on the tip of a probe having a tip radius of curvature of 0.1 micron meter using an STM configuration device regardless of whether it is in a vacuum or in the atmosphere. It is possible to form a high-resolution microprobe that is capable of sufficiently resolving atoms and molecules by a simple method.
Significant effects can be obtained in terms of improvement in performance, downsizing of the manufacturing apparatus, and simplification of the manufacturing method.

【図面の簡単な説明】[Brief description of the drawings]

第1図は参考例に係る微小プローブを用いた表面検出手
段の構成図、 第2図(a)および(b)は参考例の微小プローブ先端
に形成される微小突起部分の説明図、 第3図(a)および(b)は本発明に係る微小プローブ
先端に形成される微小突起の別の形成方法の説明図であ
る。 1:導電性プローブ、 2:導電性被覆材料、 3:導電性試料、 4:微小突起、 5:基板、 6:縦方向位置制御手段、 7:可変バイアス電源、 8:パルス電源、 9:トンネル電流検出回路、 10:プローブ縦方向位置制御回路。
FIG. 1 is a configuration diagram of a surface detecting means using a microprobe according to a reference example. FIGS. 2 (a) and (b) are explanatory diagrams of microprotrusion portions formed at the tip of the microprobe of the reference example. FIGS. 7A and 7B are explanatory views of another method for forming a micro projection formed on the tip of a micro probe according to the present invention. 1: Conductive probe, 2: Conductive coating material, 3: Conductive sample, 4: Microprojection, 5: Substrate, 6: Vertical position control means, 7: Variable bias power supply, 8: Pulse power supply, 9: Tunnel Current detection circuit, 10: Probe vertical position control circuit.

フロントページの続き (72)発明者 宮▲崎▼ 俊彦 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 小口 高弘 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平1−149355(JP,A) 特開 昭63−265101(JP,A) 特開 昭63−265102(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01B 7/34 G01B 21/30 G01N 37/00Continued on the front page (72) Inventor Miya ▲ saki ▼ Toshihiko 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Takahiro Oguchi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon (56) References JP-A-1-149355 (JP, A) JP-A-63-265101 (JP, A) JP-A-63-265102 (JP, A) (58) Fields investigated (Int. Cl. 6, DB name) G01B 7/34 G01B 21/30 G01N 37/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性プローブの先端を導電性部材に対し
微小距離まで接近させた状態で、該導電性プローブおよ
び導電性部材間に電圧を印加して、該導電性プローブ先
端を溶融して微小突起を形成する微小プローブの形成方
法において、 前記導電性部材の導電性プローブ接近位置に突起を設
け、該突起と導電性プローブ間に電圧を印加することを
特徴とする微小プローブの形成方法。
A voltage is applied between the conductive probe and the conductive member while the tip of the conductive probe is brought close to the conductive member to a very small distance to melt the conductive probe tip. A method for forming a microprobe that forms a microprotrusion, comprising: providing a protrusion at a position of the conductive member closer to the conductive probe, and applying a voltage between the protrusion and the conductive probe.
【請求項2】前記導電性部材は前記導電性プローブより
高い融点を有することを特徴とする特許請求の範囲第1
項記載の微小プローブの形成方法。
2. The method according to claim 1, wherein said conductive member has a higher melting point than said conductive probe.
The method for forming a microprobe described in the above item.
JP31746889A 1989-12-08 1989-12-08 Method of forming microprobe Expired - Fee Related JP2789244B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP31746889A JP2789244B2 (en) 1989-12-08 1989-12-08 Method of forming microprobe
US07/621,886 US5132533A (en) 1989-12-08 1990-12-05 Method for forming probe and apparatus therefor
EP90123458A EP0431623B1 (en) 1989-12-08 1990-12-06 Method and Apparatus for Forming a Probe
ES90123458T ES2098240T3 (en) 1989-12-08 1990-12-06 METHOD FOR THE FORMATION OF A PROBE AND APPARATUS FOR THE SAME.
DE69030239T DE69030239T2 (en) 1989-12-08 1990-12-06 Method and device for forming a probe
CA 2031733 CA2031733C (en) 1989-12-08 1990-12-07 Method for forming probe and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31746889A JP2789244B2 (en) 1989-12-08 1989-12-08 Method of forming microprobe

Publications (2)

Publication Number Publication Date
JPH03179202A JPH03179202A (en) 1991-08-05
JP2789244B2 true JP2789244B2 (en) 1998-08-20

Family

ID=18088567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31746889A Expired - Fee Related JP2789244B2 (en) 1989-12-08 1989-12-08 Method of forming microprobe

Country Status (2)

Country Link
JP (1) JP2789244B2 (en)
CA (1) CA2031733C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736358B1 (en) * 2004-11-12 2007-07-06 재단법인서울대학교산학협력재단 Method to assemble nanostructures at the end of scanning probe microscope's probe and scanning probe microscope with the probe
KR100660189B1 (en) * 2004-11-12 2006-12-21 한국과학기술원 An apparatus to bond a nano-tip using electrochemical etching and method thereof

Also Published As

Publication number Publication date
CA2031733A1 (en) 1991-06-09
JPH03179202A (en) 1991-08-05
CA2031733C (en) 1994-10-04

Similar Documents

Publication Publication Date Title
CA1270132A (en) Method and atomic force microscope for imaging surfaces with atomic resolution
US4724318A (en) Atomic force microscope and method for imaging surfaces with atomic resolution
USRE33387E (en) Atomic force microscope and method for imaging surfaces with atomic resolution
JP2741629B2 (en) Cantilever probe, scanning tunneling microscope and information processing apparatus using the same
JP2915554B2 (en) Barrier height measurement device
JP2923813B2 (en) Cantilever displacement element, scanning tunneling microscope using the same, and information processing apparatus
US5253516A (en) Atomic force microscope for small samples having dual-mode operating capability
JPH05284765A (en) Cantilever type displacement element, cantilever type probe using the same, scan type tunnel microscope using the same probe and information processor
JP2919119B2 (en) Scanning probe microscope and recording / reproducing device
US5132533A (en) Method for forming probe and apparatus therefor
JP3069923B2 (en) Cantilever probe, atomic force microscope, information recording / reproducing device
DE102016214658A1 (en) Scanning probe microscope and method for inspecting a sample surface
US5329236A (en) Apparatus for estimating charged and polarized states of functional groups in a solution
JP2789244B2 (en) Method of forming microprobe
JP3643480B2 (en) Drawing device
JPH09251026A (en) Scanning probe microscope
JP2900764B2 (en) Evaluation method of semiconductor surface thin film
JPH04162339A (en) Manufacture of probe for surface observation device and surface observation device
JP2007147347A (en) Probe, cantilever beam, scanning probe microscope, and measuring method of scanning tunnel microscope
JP3090295B2 (en) Needle tip shape measurement device, standard sample, and needle tip shape measurement method
JP2956144B2 (en) Sidewall shape measurement method
JP3234722B2 (en) Arc-shaped warped lever type actuator, method of driving the actuator, and information processing apparatus using information input / output probe
JP2802675B2 (en) Probe forming method and apparatus
JP2770537B2 (en) Scanning tunneling microscope
JPH0850872A (en) Sample surface observation method, interatomic force microscope, fine working method, and fine working device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees