JP2007147347A - Probe, cantilever beam, scanning probe microscope, and measuring method of scanning tunnel microscope - Google Patents

Probe, cantilever beam, scanning probe microscope, and measuring method of scanning tunnel microscope Download PDF

Info

Publication number
JP2007147347A
JP2007147347A JP2005339781A JP2005339781A JP2007147347A JP 2007147347 A JP2007147347 A JP 2007147347A JP 2005339781 A JP2005339781 A JP 2005339781A JP 2005339781 A JP2005339781 A JP 2005339781A JP 2007147347 A JP2007147347 A JP 2007147347A
Authority
JP
Japan
Prior art keywords
measured
sample
probe
cantilever
sharp portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005339781A
Other languages
Japanese (ja)
Inventor
Toshihiro Shimizu
稔弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005339781A priority Critical patent/JP2007147347A/en
Publication of JP2007147347A publication Critical patent/JP2007147347A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/02Multiple-type SPM, i.e. involving more than one SPM techniques
    • G01Q60/04STM [Scanning Tunnelling Microscopy] combined with AFM [Atomic Force Microscopy]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • G01Q60/16Probes, their manufacture, or their related instrumentation, e.g. holders

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe capable of suppressing disturbance of a band structure even when a measuring sample is brought close to a sharpened part so as to be stabilized in a contact mode of AFM, a cantilever beam, a scanning probe microscope, and a measuring method of a scanning tunnel microscope. <P>SOLUTION: A gold thin film 104 formed to cover the sharpened part 103 is furthermore covered with a tunnel insulating film 105 comprising a silicon oxide or the like. Even when the distance between the sharpened part 103 and the measuring sample 201 becomes extremely short in the contact mode of AFM, measurement can be performed without disturbing the band structure of the measuring sample 201, since an insulating object as much as a portion of the tunnel insulating film 105 is interposed between the gold thin film 104 covering the sharpened part 103 and the measuring sample 201. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、探針、片持ち梁、走査型プローブ顕微鏡、及び走査型トンネル顕微鏡の測定
方法に関する。
The present invention relates to a probe, a cantilever, a scanning probe microscope, and a measuring method of a scanning tunnel microscope.

被測定試料の表面形状を測定するための装置として、原子間力顕微鏡(以下AFMとも
言う)が知られている。AFMとは、被測定試料の表面での原子の並びから受ける原子間
力を検出できるよう形成された尖鋭部を探針の先端に設け、尖鋭部を被測定試料と近接さ
せることで受ける原子間力を制御信号として尖鋭部と被測定試料との距離を制御しながら
被測定試料の表面を走査する装置である。
An atomic force microscope (hereinafter also referred to as AFM) is known as an apparatus for measuring the surface shape of a sample to be measured. AFM is an interatomic force that is received by providing a sharp point at the tip of the probe so that the interatomic force received from the arrangement of atoms on the surface of the sample to be measured can be detected and bringing the sharp part close to the sample to be measured. This is a device that scans the surface of the sample to be measured while controlling the distance between the sharp portion and the sample to be measured using force as a control signal.

特に、探針の尖鋭部を被測定試料と近接させて測定する方法を接触モードの測定と呼び
、尖鋭部と被測定試料との間はトンネル電流が流れる程度に接近する。
In particular, a method in which the sharp portion of the probe is measured close to the sample to be measured is called contact mode measurement, and the sharp portion and the sample to be measured are close enough to allow a tunnel current to flow.

AFMを用いることで得られる制御信号を基として、被測定試料の表面形状を知る技術
が公知とされている。例えば特許文献1として、AFMでおよその位置合わせを行い、更
に尖鋭部と被測定試料との間に流れるトンネル電流値を一定にするよう尖鋭部と被測定試
料との距離を制御し、被測定試料の表面形状を測定する技術が公知とされている。
A technique for knowing the surface shape of a sample to be measured based on a control signal obtained by using an AFM is known. For example, as disclosed in Patent Document 1, approximate positioning is performed by AFM, and the distance between the sharp portion and the sample to be measured is controlled so that the tunnel current value flowing between the sharp portion and the sample to be measured is constant. A technique for measuring the surface shape of a sample is known.

さらに、尖鋭部と被測定試料との間に電位を与え、電位を掃引することで尖鋭部と被測
定試料との間に流れるトンネル電流と電位との関係を知る技術が例えば、特許文献2、3
、4で公知とされている。
Further, for example, Patent Document 2 discloses a technique in which a potential is applied between a sharp portion and a sample to be measured, and the potential is swept to know a relationship between a tunnel current flowing between the sharp portion and the sample to be measured and the potential. 3
4 is known.

測定により得られたトンネル電流と電位との関係から被測定試料の電子分布を知ること
ができ、例えばトンネル電流が流れ始める電位から、尖鋭部と、被測定試料の特定の位置
との間での仕事関数差を知ることができる。ここで、尖鋭部に仕事関数が既知の金属を用
いた場合には被測定試料の特定の位置での仕事関数を知ることが可能となる。
The electron distribution of the sample to be measured can be known from the relationship between the tunnel current and the potential obtained by the measurement. For example, from the potential at which the tunnel current begins to flow, between the sharp point and a specific position of the sample to be measured. You can know the work function difference. Here, when a metal having a known work function is used for the sharp portion, it is possible to know the work function at a specific position of the sample to be measured.

特開昭62−130302号公報JP-A-62-130302 特開平3−210465号公報JP-A-3-210465 特開平3−277903号公報JP-A-3-277903 特開平4−361110号公報JP-A-4-361110

しかしながら、上記した特許文献1の技術では、被測定試料に絶縁性のパーティクルが
付着していた場合等には、絶縁性のパーティクルにはトンネル電流が流れないため、尖鋭
部はトンネル電流を維持させるようパーティクルに接近し、場合によっては衝突してしま
うおそれがある。
However, in the technique of Patent Document 1 described above, when an insulating particle adheres to the sample to be measured, the tunnel current does not flow through the insulating particle, so the sharp portion maintains the tunnel current. There is a risk of approaching the particle and colliding in some cases.

また、尖鋭部がAFMの接触モードで制御可能な程度に被測定試料と接近すると、尖鋭
部から被測定試料に流れ込むトンネル電流が過大となり、被測定試料のバンド構造が乱さ
れてしまい、被測定試料のバンド構造や仕事関数を知ることが困難になるという問題を有
している。
In addition, if the sharp part approaches the sample to be measured to such an extent that it can be controlled in the AFM contact mode, the tunnel current flowing from the sharp part to the sample to be measured becomes excessive, and the band structure of the sample to be measured is disturbed. There is a problem that it is difficult to know the band structure and work function of the sample.

上記した特許文献2、3、4の技術では被測定試料と尖鋭部との間にトンネル電流が流
れるという記述しか例示されておらず、探針の構造については全く開示されていない。そ
のため、特許文献2、3、4の技術を用いても、被測定試料のバンド構造の乱れを抑えて
測定することは困難である。
In the techniques of Patent Documents 2, 3, and 4 described above, only a description that a tunnel current flows between the sample to be measured and the sharp portion is illustrated, and the structure of the probe is not disclosed at all. Therefore, even if the techniques of Patent Documents 2, 3, and 4 are used, it is difficult to perform measurement while suppressing disturbance of the band structure of the sample to be measured.

そこで、本発明では従来のこのような問題を解決し、AFMの接触モードで安定するよ
うに被測定試料と尖鋭部とが近接した場合でもバンド構造の乱れを抑えられる探針、片持
ち梁、走査型プローブ顕微鏡、及び走査型トンネル顕微鏡の測定方法を提供することを目
的としている。
Therefore, in the present invention, a probe, a cantilever, and the like that can solve such a conventional problem and suppress the disturbance of the band structure even when the sample to be measured and the sharp part are close to each other so as to be stable in the contact mode of AFM. It aims at providing the measuring method of a scanning probe microscope and a scanning tunnel microscope.

<構成1>上記課題を解決するために本発明の探針は、探針と被測定試料間に働く原子
間力を制御信号として前記探針と前記被測定試料との距離を制御する距離制御部を有し、
前記探針と前記被測定試料との間に、電圧を掃引するように印加することで発生するトン
ネル電流と、印加電圧との関係を測定する測定装置に用いられる探針であって、前記探針
は前記被測定試料に近接する側の端部に、導電部と前記導電部を包むよう配置された絶縁
部からなる尖鋭部を有し、前記導電部は、導体、又は導体を被覆されてなり、前記導電部
と前記被測定試料との間に流れる前記トンネル電流が検出されるよう形成され、前記絶縁
部は前記測定装置から前記導電部に印加された電圧に対し、前記トンネル電流が前記測定
装置により測定し得る電流強度が得られる厚さを有し、且つ前記被測定試料のバンド構造
に与える影響を抑制しうる厚さを有しており、加えて前記原子間力を制御信号として帰還
制御を行う場合に副次的に発生する応力による磨耗に対して耐性がある絶縁皮膜を用いて
形成され、且つ前記探針には前記測定装置により印加された電圧を前記尖鋭部の導電部に
導くための導電機構が形成されてなることを特徴とする。
<Configuration 1> In order to solve the above-described problem, the probe of the present invention is a distance control that controls the distance between the probe and the sample to be measured using an atomic force acting between the probe and the sample to be measured as a control signal. Part
A probe used in a measuring apparatus for measuring the relationship between a tunnel current generated by applying a voltage so as to sweep a voltage between the probe and the sample to be measured, and the applied voltage. The needle has a pointed portion made up of a conductive portion and an insulating portion disposed so as to wrap the conductive portion at an end close to the sample to be measured, and the conductive portion is covered with a conductor or a conductor. The tunneling current flowing between the conductive part and the sample to be measured is formed to be detected, and the insulating part is applied to the conductive part from the measuring device with respect to the voltage applied to the conductive part. It has a thickness at which current intensity that can be measured by a measuring device can be obtained, and has a thickness that can suppress the influence on the band structure of the sample to be measured. In addition, the atomic force is used as a control signal. A secondary issue occurs when feedback control is performed. The probe is formed using an insulating film that is resistant to wear due to stress, and the probe is formed with a conductive mechanism for guiding the voltage applied by the measuring device to the conductive portion of the sharp portion. It is characterized by that.

この構成によれば、前記尖鋭部の前記導電部と前記被測定試料との間に、前記測定装置
から前記導電部に印加された電圧に対し、前記トンネル電流の強度が前記測定装置により
測定し得る厚さを有し、且つ前記被測定試料のバンド構造に与える影響を抑制しうる厚さ
を有する前記絶縁部を設けているため、測定精度を保ち、且つ前記被測定試料のバンド構
造に与える影響を抑えて前記被測定試料の前記バンド構造を抽出できる探針を構成するこ
とができる。
According to this configuration, the measurement device measures the strength of the tunnel current with respect to the voltage applied to the conductive portion from the measurement device between the conductive portion of the sharp portion and the sample to be measured. Since the insulating portion has a thickness that can be obtained and has a thickness that can suppress the influence on the band structure of the sample to be measured, the measurement accuracy is maintained and the band structure of the sample to be measured is given. A probe that can extract the band structure of the sample to be measured while suppressing the influence can be configured.

また、絶縁部は副次的に発生する応力による磨耗に対して耐性がある絶縁皮膜を用いて
いるため、測定に起因する探針の磨耗量が抑えられ、再現性の高い測定を行うことができ
る探針を得ることができる。
In addition, since the insulation part uses an insulating film that is resistant to wear due to secondary stress, the amount of probe wear due to measurement can be suppressed, and measurements with high reproducibility can be performed. A possible probe can be obtained.

<構成2>また、上記した本発明の探針は、前記絶縁皮膜は、酸化シリコン、窒化シリ
コン、酸化ハフニウム又はチオール系自己組織化膜からなることを特徴とする。
<Configuration 2> In the probe of the present invention described above, the insulating film is made of silicon oxide, silicon nitride, hafnium oxide, or a thiol-based self-assembled film.

この構成によれば、耐磨耗特性に優れ且つ容易に形成可能な前記絶縁皮膜を形成するこ
とができ、再現性の高い測定を行える探針を得ることができる。
According to this configuration, it is possible to form the insulating film that has excellent wear resistance and can be easily formed, and a probe that can perform highly reproducible measurement can be obtained.

<構成3>また、上記した本発明の探針は、前記導体は、表面状態が大気中で安定して
いる貴金属である金、ルテニウム又は白金からなることを特徴とする。
<Configuration 3> In the probe of the present invention described above, the conductor is made of gold, ruthenium, or platinum which is a noble metal whose surface state is stable in the atmosphere.

この構成によれば、金、ルテニウム又は白金は表面状態が大気中でも安定しているため
、前記導体の表面に寄生生成物が出来にくいため、仕事関数の値をより精密に算出しうる
探針を得ることができる。
According to this configuration, since the surface state of gold, ruthenium or platinum is stable even in the atmosphere, it is difficult to form a parasitic product on the surface of the conductor, and therefore a probe capable of calculating the value of the work function more accurately is provided. Obtainable.

<構成4>また、上記した本発明の片持ち梁は、前記原子間力により撓むよう弾性を有
する片持ち梁であって、前記片持ち梁の固定端部は前記片持ち梁を支える支持体と固定さ
れ、前記片持ち梁の自由端部は前記尖鋭部を備えた前記探針を固定してなり、又前記尖鋭
部と前記被測定試料間に働く前記原子間力を、前記原子間力により生じる前記片持ち梁の
撓み量として検出するための撓み検出部を備えてなり、更に前記片持ち梁は導体、又は導
体を被覆されてなり、前記支持体と前記探針とは電気的に接続されていることを特徴とす
る。
<Configuration 4> The above-described cantilever according to the present invention is a cantilever having elasticity so as to bend by the atomic force, and the fixed end of the cantilever supports the cantilever. The free end portion of the cantilever is fixed to the probe having the sharp portion, and the atomic force acting between the sharp portion and the sample to be measured is converted to the atomic force. A bend detection unit for detecting the amount of bend caused by the cantilever, and the cantilever is covered with a conductor or a conductor, and the support and the probe are electrically connected to each other. It is connected.

この構成を用いることで、前記尖鋭部と前記被測定試料間に働く前記原子間力を、前記
原子間力により生じる前記片持ち梁の撓み量として検出することができる。測定が困難な
前記原子間力を測定が容易な撓み量に変換して抽出することができるため、前記尖鋭部を
備えた前記探針と前記被測定試料との距離を制御する前記距離制御部へ前記原子間力を制
御信号として与えることができる。
By using this configuration, the interatomic force acting between the sharp portion and the sample to be measured can be detected as the amount of bending of the cantilever caused by the interatomic force. The distance control unit that controls the distance between the probe having the sharp portion and the sample to be measured because the atomic force that is difficult to measure can be converted into a deflection amount that can be easily measured and extracted. The atomic force can be given as a control signal.

そのため、前記撓み量を制御する帰還制御が可能となり、前記尖鋭部と前記被測定試料
との距離を制御することができる。更に、同時に前記尖鋭部と前記被測定試料との間の距
離を計測することができる。
Therefore, feedback control for controlling the deflection amount is possible, and the distance between the sharp portion and the sample to be measured can be controlled. Furthermore, the distance between the sharp part and the sample to be measured can be measured simultaneously.

また、前記片持ち梁は導体、又は導体を被覆されてなり、前記支持体と前記探針とを電
気的に接続してなるため、前記支持体から前記探針に電圧が伝えられる。前記探針は、前
記尖鋭部へ電圧を伝えるための前記導電機構を有しているため、前記支持体に電圧を印加
することで、前記尖鋭部に電圧を伝達することができる。
In addition, the cantilever is covered with a conductor or a conductor, and the support and the probe are electrically connected, so that a voltage is transmitted from the support to the probe. Since the probe has the conductive mechanism for transmitting a voltage to the sharp portion, the voltage can be transmitted to the sharp portion by applying a voltage to the support.

<構成5>また、上記した本発明の片持ち梁は、前記撓み検出部は、前記自由端部側に
あり前記探針の裏面に位置する光反射部を設け、光線を前記光反射部に照射し、前記光反
射部により反射された前記光線の投影位置を検出することで前記片持ち梁の変形量を抽出
する光てこであることを特徴とする。
<Structure 5> Further, in the above-described cantilever according to the present invention, the deflection detecting unit is provided with a light reflecting unit located on the free end side and positioned on the back surface of the probe, and a light beam is provided to the light reflecting unit. It is an optical lever that extracts the amount of deformation of the cantilever by irradiating and detecting the projection position of the light beam reflected by the light reflecting portion.

この構成によれば、前記片持ち梁の前記自由端部側に設けられた前記光線の前記反射手
段に前記光線を照射し、前記光反射部により反射された前記光線の前記投影位置を検出す
る前記光てこを用いることで、前記片持ち梁の動作に影響を与えることなく前記片持ち梁
の変形量として表される前記尖鋭部と前記被測定試料との距離を抽出する片持ち梁を得る
ことができる。
According to this configuration, the light beam is applied to the light reflecting means provided on the free end portion side of the cantilever, and the projection position of the light beam reflected by the light reflecting unit is detected. By using the optical lever, a cantilever beam that extracts the distance between the sharp portion and the sample to be measured expressed as the deformation amount of the cantilever beam without affecting the operation of the cantilever beam is obtained. be able to.

<構成6>また、上記した本発明の走査型プローブ顕微鏡は、構成4に記載の片持ち梁
を用いた走査型プローブ顕微鏡であって、前記尖鋭部と前記被測定試料間に働く前記原子
間力を制御信号として前記尖鋭部と前記被測定試料との距離を各測定点において少なくと
も測定中は前記距離が保持されるよう制御可能であって、且つ前記被測定試料の表面方向
に沿って前記尖鋭部と前記被測定試料とが相対的に移動可能であることを特徴とする。
<Configuration 6> The above-described scanning probe microscope of the present invention is a scanning probe microscope using the cantilever according to Configuration 4, wherein the interatomic force acting between the sharp portion and the sample to be measured It is possible to control the distance between the sharp part and the sample to be measured at each measurement point so that the distance is maintained at least during the measurement using force as a control signal, and along the surface direction of the sample to be measured. The sharp portion and the sample to be measured are relatively movable.

この構成によれば、前記片持ち梁に固定された前記探針の前記尖鋭部と、前記被測定試
料間に働く前記原子間力を制御信号として、前記尖鋭部と前記被測定試料との距離を測定
中は制御又は固定した状態を保ち、非測定の場合は前記被測定試料の表面方向に沿って前
記尖鋭部と前記被測定試料とが相対的に移動可能であるため、前記被測定試料内にある測
定すべき領域の電流−電圧特性測定を行う局所電流−電圧特性測定装置を得ることができ
る。
According to this configuration, the sharp portion of the probe fixed to the cantilever and the distance between the sharp portion and the sample to be measured using the atomic force acting between the sample to be measured as a control signal. During measurement, the controlled or fixed state is maintained, and in the case of non-measurement, the sharp portion and the sample to be measured are relatively movable along the surface direction of the sample to be measured. It is possible to obtain a local current-voltage characteristic measuring apparatus that measures current-voltage characteristics in a region to be measured.

<構成7>また、上記した本発明の走査型プローブ顕微鏡を用いた測定方法は、構成4
に記載の片持ち梁に固定された前記探針を用いて、前記測定点の少なくとも一部の測定点
について前記尖鋭部と前記被測定試料との間に流れるトンネル電流を測定し、被測定試料
の局所的なバンド構造を抽出することを特徴とする。
<Configuration 7> The measurement method using the above-described scanning probe microscope of the present invention is configured as Configuration 4
And measuring the tunnel current flowing between the sharp portion and the sample to be measured at least a part of the measurement points, using the probe fixed to the cantilever It is characterized by extracting a local band structure.

この測定方法によれば、前記被測定試料の局所状態密度又はバンドギャップを調べるた
めに前記尖鋭部と前記被測定試料との間の電位を振り、前記電位に対応するトンネル電流
を測定する。前記トンネル電流は、ポテンシャルエネルギーがトンネル電流を発信する側
と同じポテンシャルエネルギーを受信する側が有していて、且つ受信する側のポテンシャ
ルエネルギーにあたる準位に空きがある場合、前記空きの準位密度に比例した量だけ流れ
ることができる。従って、この測定方法を用いることで一点若しくは多点で局所状態密度
又はバンドギャップを調べることができる。
According to this measuring method, in order to investigate the local state density or band gap of the sample to be measured, the potential between the sharp portion and the sample to be measured is swung, and the tunnel current corresponding to the potential is measured. The tunnel current has a side where the potential energy has the same potential energy as the side that transmits the tunnel current, and there is an empty level corresponding to the potential energy on the receiving side. It can flow a proportional amount. Therefore, by using this measurement method, the local state density or the band gap can be examined at one point or multiple points.

<構成8>また、上記した本発明の走査型プローブ顕微鏡を用いた測定方法は、前記尖
鋭部と前記被測定試料との距離を制御する信号を用いて前記被測定試料の表面形状を同時
に測定することを特徴とする。
<Structure 8> Further, the measurement method using the scanning probe microscope of the present invention described above simultaneously measures the surface shape of the sample to be measured using a signal for controlling the distance between the sharp portion and the sample to be measured. It is characterized by doing.

この測定方法によれば、前記被測定試料の形状と、バンド構造との相関を得ることがで
きる。
According to this measuring method, the correlation between the shape of the sample to be measured and the band structure can be obtained.

以下、本発明を具体化した実施例について図面に従って説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施形態1)
図1(a)は、本発明に係る探針を備えた片持ち梁の構造を説明するための斜視図、図
1(b)は本発明に係る片持ち梁の拡大断面図である。以下、図1(a)及び図1(b)
を用いて探針、片持ち梁及び支持体の構造について説明する。
(Embodiment 1)
FIG. 1A is a perspective view for explaining the structure of a cantilever having a probe according to the present invention, and FIG. 1B is an enlarged sectional view of the cantilever according to the present invention. Hereinafter, FIG. 1 (a) and FIG. 1 (b).
The structure of the probe, the cantilever and the support will be described with reference to FIG.

図1(a)に示されるように、酸化シリコンからなる厚さ1μm、長さ150μm、幅
20μm程度の寸法を有する片持ち梁101は、厚さ500μm程度のシリコン単結晶か
らなる支持体102と接合されている。
As shown in FIG. 1A, a cantilever 101 having a thickness of about 1 μm, a length of about 150 μm, and a width of about 20 μm made of silicon oxide has a support 102 made of a silicon single crystal having a thickness of about 500 μm. It is joined.

シリコン単結晶からなる探針100は、一端が支持体102に固定されている片持ち梁
101の他端側に配置されている。
The probe 100 made of silicon single crystal is disposed on the other end side of the cantilever 101 whose one end is fixed to the support 102.

そして、一端が片持ち梁101と固定された探針100の他端には尖鋭部103が形成
されている。尖鋭部103の先端角度は10°程度であり、微細構造の観測に優れた構造
を有している。
A sharpened portion 103 is formed at the other end of the probe 100 whose one end is fixed to the cantilever 101. The tip angle of the sharp portion 103 is about 10 °, and has a structure excellent in observation of a fine structure.

また、片持ち梁101の、探針100を固定している領域の裏面は、光反射部106と
して機能する。光反射部106に例えばレーザ光線を照射し、その反射光の振れを検出す
ることで、原子間力による片持ち梁101の撓みを片持ち梁101の動作に殆ど影響を与
えることなく抽出することができる。
Further, the back surface of the region of the cantilever 101 where the probe 100 is fixed functions as the light reflecting portion 106. For example, the deflection of the cantilever beam 101 due to the atomic force is extracted with little influence on the operation of the cantilever beam 101 by irradiating the light reflection unit 106 with, for example, a laser beam and detecting the fluctuation of the reflected light. Can do.

また図1(b)に示されるように探針100、片持ち梁101、支持体102、尖鋭部
103には支持体102に印加された電位が片持ち梁101、探針100を経由して尖鋭
部103に伝達されるよう、金薄膜104で覆われている。金薄膜104を用いた場合に
は、膜厚として10nm〜100nm程度の膜厚を有することが好ましい。10nm以上
の膜厚であれば電気的な寄生抵抗値はトンネル電流の測定に対して無視し得る程度の値に
抑えることができる。また、100nm以下の膜厚であれば片持ち梁101の撓み動作に
与える影響を抑えることができるため好ましい。なお、金薄膜の形成方法としては、例え
ばスパッタ法等を用いることができる。
In addition, as shown in FIG. 1B, the potential applied to the support 102 is passed through the cantilever 101 and the probe 100 to the probe 100, the cantilever 101, the support 102, and the sharpened portion 103. It is covered with a thin gold film 104 so as to be transmitted to the sharp portion 103. When the gold thin film 104 is used, the film thickness is preferably about 10 nm to 100 nm. If the film thickness is 10 nm or more, the electrical parasitic resistance value can be suppressed to a value that can be ignored for the measurement of the tunnel current. A film thickness of 100 nm or less is preferable because the influence on the bending operation of the cantilever 101 can be suppressed. In addition, as a formation method of a gold thin film, a sputtering method etc. can be used, for example.

図1(b)に示されるように尖鋭部103に位置する金薄膜104は、例えば酸化シリ
コン膜からなるトンネル絶縁膜105により覆われている。トンネル絶縁膜105は、支
持体102に印加された電位が直接被測定試料に印加されることによる被測定試料中のバ
ンドの曲がりを抑制するよう設けられている。トンネル絶縁膜105の厚みは、被測定試
料のバンド構造の曲がりを抑制し、且つトンネル電流の測定を行う場合にトンネル電流値
を測定困難な値にまで落とすことがないよう選択され、例えば1nmから2nm程度の膜
厚を選ぶことができる。
As shown in FIG. 1B, the gold thin film 104 located at the sharp point 103 is covered with a tunnel insulating film 105 made of, for example, a silicon oxide film. The tunnel insulating film 105 is provided so as to suppress the bending of the band in the sample to be measured due to the potential applied to the support 102 being directly applied to the sample to be measured. The thickness of the tunnel insulating film 105 is selected so as to suppress the bending of the band structure of the sample to be measured and not to drop the tunnel current value to a value that is difficult to measure when the tunnel current is measured. A film thickness of about 2 nm can be selected.

尖鋭部103を有する探針100を用いてトンネル電流・電圧測定(以下STMと言う
)を行うことで、被測定試料のバンド構造に与える電気的な影響を抑制することができ、
被測定試料のバンド構造を忠実に反映したSTMを行うことができる。
By performing tunnel current / voltage measurement (hereinafter referred to as STM) using the probe 100 having the sharp point 103, the electrical influence on the band structure of the sample to be measured can be suppressed,
STM that faithfully reflects the band structure of the sample to be measured can be performed.

本実施形態では、トンネル絶縁膜105として酸化シリコン膜を用いているが、これは
窒化シリコン、酸化ハフニウム又はチオール系自己組織化膜等、接触モードでのAFM測
定に副次的に発生する応力による磨耗に対して耐性がある絶縁皮膜であれば特に制約はな
く、トンネル絶縁膜105に用いている酸化シリコン膜に代えて用いることができる。
In this embodiment, a silicon oxide film is used as the tunnel insulating film 105, but this is due to stress generated secondary to AFM measurement in a contact mode, such as silicon nitride, hafnium oxide, or a thiol-based self-assembled film. The insulating film is not particularly limited as long as it is resistant to wear, and can be used instead of the silicon oxide film used for the tunnel insulating film 105.

また本実施形態では、支持体102から尖鋭部103に電位を伝えられるよう用いてい
る金薄膜104を用いているが、これは金薄膜に代えて金同様表面状態が大気中で安定し
ている貴金属であるルテニウム又は白金等の薄膜を用いても良い。
In the present embodiment, the gold thin film 104 is used so that the potential can be transmitted from the support 102 to the sharp portion 103. However, in this embodiment, the surface state is stable in the atmosphere like gold instead of the gold thin film. A thin film such as ruthenium or platinum which is a noble metal may be used.

また、探針100を形成する材質は単結晶シリコンに限定される事は無く、例えば窒化
シリコン等の材料を用いても良い。
Further, the material forming the probe 100 is not limited to single crystal silicon, and for example, a material such as silicon nitride may be used.

(実施形態2)
図2は、実施形態1で説明した探針、片持ち梁、及び支持体を用いたAFM/STMの
構成図である。以下、図2を用いてAFM/STMの構成を説明する。なお、Z軸は被測
定試料の測定面に対して法線方向に取っている。
(Embodiment 2)
FIG. 2 is a configuration diagram of the AFM / STM using the probe, the cantilever, and the support described in the first embodiment. Hereinafter, the configuration of the AFM / STM will be described with reference to FIG. The Z axis is taken in the normal direction with respect to the measurement surface of the sample to be measured.

被測定試料201は、X、Y、Z各方向に移動可能な導電性を有するステージ202上
に配置される。ステージ202は、X、Y、Z方向に対して独立に変位可能なピエゾ駆動
装置203上に配置されている。
The sample 201 to be measured is arranged on a stage 202 having conductivity that can move in the X, Y, and Z directions. The stage 202 is disposed on a piezo drive device 203 that can be independently displaced in the X, Y, and Z directions.

Z軸サーボ回路208は、レーザ光源206と、4分割フォトダイオード等の検出素子
を有する光学系207からの信号を制御信号として動作し、片持ち梁101の撓み量を一
定に保つようステージ202の高さを制御する。この制御方法はAFM測定装置の構成及
び動作として公知のものである。
The Z-axis servo circuit 208 operates using a signal from the laser light source 206 and an optical system 207 having a detection element such as a quadrant photodiode as a control signal, so that the deflection amount of the cantilever 101 is kept constant. Control the height. This control method is known as the configuration and operation of the AFM measuring apparatus.

CPU210からの信号に基づき、電圧源204より支持体102に印加された、例え
ば三角波状に変調された電圧は、片持ち梁101を経由して、探針100、尖鋭部103
を通して被測定試料201に印加される。当該電圧が印加された場合の電流値は電流計2
05により検出され、CPU210に伝達され記憶及び処理が為される。CPU210は
電圧値と電流値を元として信号処理を行い、CRT211に信号処理結果などを表示させ
る。
Based on a signal from the CPU 210, a voltage applied to the support 102 from the voltage source 204, for example, modulated in a triangular wave shape, passes through the cantilever 101 and the probe 100 and the sharp portion 103.
And is applied to the sample 201 to be measured. The current value when the voltage is applied is ammeter 2.
05 is detected and transmitted to the CPU 210 for storage and processing. The CPU 210 performs signal processing based on the voltage value and the current value, and causes the CRT 211 to display the signal processing result and the like.

X,Y走査回路209は、上記した測定を規定された面内について測定するためにCP
U210からの信号に基づき、ピエゾ駆動装置203をX,Y方向に駆動することでステ
ージ202上の被測定試料201をX,Y方向に駆動する。
The X, Y scanning circuit 209 is used to measure the above-mentioned measurement in the defined plane.
Based on the signal from U210, the measurement target 201 on the stage 202 is driven in the X and Y directions by driving the piezo driving device 203 in the X and Y directions.

上記した構成を用いることで印加電圧と、トンネル電流と、X,Y座標との関係を面内
分布として得ることが可能となる。
By using the above-described configuration, it is possible to obtain the relationship between the applied voltage, the tunnel current, and the X and Y coordinates as an in-plane distribution.

(実施形態3)
実施形態2で説明した構成を用いて各測定点におけるトンネル電流の測定方法を以下に
説明する。同様の測定を規定された面内で多数回行うので、1点分の測定方法について説
明する。図4は、本測定方法を実行するためのフローチャートである。なお、Z軸は被測
定試料の測定面に対して法線方向に取っている。
(Embodiment 3)
A tunnel current measurement method at each measurement point will be described below using the configuration described in the second embodiment. Since the same measurement is performed many times within a defined plane, a measurement method for one point will be described. FIG. 4 is a flowchart for executing this measurement method. The Z axis is taken in the normal direction with respect to the measurement surface of the sample to be measured.

まず工程1として、レーザ光源206と光学系207からの信号をZ軸サーボ回路20
8で処理し制御信号として片持ち梁101の撓み量を一定に保つようステージ202の高
さを制御する。この処置により、尖鋭部103と被測定試料201の距離は規定された面
内について一定に保たれる。
First, as step 1, signals from the laser light source 206 and the optical system 207 are sent to the Z-axis servo circuit 20.
The height of the stage 202 is controlled so that the amount of bending of the cantilever 101 is kept constant as a control signal. By this treatment, the distance between the sharp portion 103 and the sample 201 to be measured is kept constant within the defined plane.

次に工程2として、後述する電圧の印加による電磁気力による変位を避けるためZ軸サ
ーボ回路208のサーボを停止し、ステージ202の高さを一定値に保持する。この処置
により、後述する電圧の印加による電磁気力に起因する尖鋭部103と被測定試料201
との間の距離の変化を抑えることができる。なお、この工程は必須のものではなく、測定
条件等によっては省略し、サーボを掛けた状態で以降の工程を行うことができる。
Next, as step 2, the servo of the Z-axis servo circuit 208 is stopped and the height of the stage 202 is held at a constant value in order to avoid displacement due to electromagnetic force due to application of a voltage described later. By this treatment, the sharp portion 103 and the sample 201 to be measured are caused by the electromagnetic force due to the application of a voltage described later.
The change of the distance between can be suppressed. This step is not essential, and may be omitted depending on the measurement conditions and the like, and the subsequent steps can be performed with the servo applied.

次に工程3として、尖鋭部103に例えば三角波状に変調された電圧を印加し、尖鋭部
103と被測定試料201との間に流れるトンネル電流を測定する。
Next, as step 3, a voltage modulated in a triangular wave shape, for example, is applied to the sharp portion 103, and a tunnel current flowing between the sharp portion 103 and the sample 201 to be measured is measured.

ここで、トンネル電流を測定し処理することで得られる物理量の一例として有機発光体
の最小空分子軌道を求める例について説明する。
Here, the example which calculates | requires the minimum unoccupied molecular orbital of an organic light-emitting body is demonstrated as an example of the physical quantity obtained by measuring and processing a tunnel current.

図3(a)及び図3(b)は、導電性基板301上に有機発光体302を被覆した被測
定試料201を用い尖鋭部103と被測定試料201との間に電圧を掛けた場合のバンド
図である。図3(a)に示すように、導電性基板301上に形成された有機発光体302
のバンド構造は、最高被占分子軌道(図3にはHOMOとして記載)と最小空分子軌道(
図3にはLUMOとして記載)を含んでいる。
FIGS. 3A and 3B show the case where a voltage is applied between the sharp portion 103 and the sample 201 to be measured using the sample 201 to be measured in which the organic light-emitting body 302 is coated on the conductive substrate 301. It is a band diagram. As shown in FIG. 3A, the organic light emitter 302 formed on the conductive substrate 301.
The band structure of the highest occupied molecular orbital (described as HOMO in FIG. 3) and the smallest unoccupied molecular orbital (
3 is described as LUMO).

尖鋭部103に電子のポテンシャルエネルギーを上げるよう電圧を印加していくと、尖
鋭部103を被覆した金薄膜104からトンネル絶縁膜105を介してトンネル電流eが
有機発光体302中にトンネル現象により流れ込むようになる。トンネル電流は、同一の
エネルギー準位を有する状態に流れ込むので、トンネル電流が流れ始めた電圧を有機発光
体302の最小空分子軌道のポテンシャルエネルギーとして扱うことができる。
When a voltage is applied to the sharp portion 103 so as to increase the potential energy of electrons, a tunnel current e flows from the gold thin film 104 covering the sharp portion 103 into the organic light emitter 302 through the tunnel insulating film 105 due to a tunnel phenomenon. It becomes like this. Since the tunnel current flows into a state having the same energy level, the voltage at which the tunnel current starts to flow can be treated as the potential energy of the minimum empty molecular orbital of the organic light emitter 302.

金薄膜104は、フェルミ準位(図面ではF.L.と示す)未満のエネルギーに対応し
た準位は電子により埋められ、フェルミ準位以上のエネルギーに対応した準位には電子が
存在しない典型的な金属の電子分布を有している。
In the gold thin film 104, a level corresponding to energy lower than the Fermi level (shown as FL in the drawing) is filled with electrons, and no electron exists in a level corresponding to energy higher than the Fermi level. It has a typical metal electron distribution.

図3(a)では、測定に対して被測定試料201に与える影響を軽減するため尖鋭部1
03の金薄膜104を覆うようにトンネル絶縁膜105を介在させた場合のバンド図を示
している。印加された電圧が直接被測定試料201に掛かることによる分子軌道の乱れを
抑制するようトンネル絶縁膜105を形成しているため、有機発光体302中の分子軌道
情報を高い精度を持って求めることを可能としている。
In FIG. 3A, in order to reduce the influence of the measurement on the sample 201 to be measured, the sharp portion 1 is used.
A band diagram in the case where a tunnel insulating film 105 is interposed so as to cover the gold thin film 104 of FIG. Since the tunnel insulating film 105 is formed so as to suppress the disorder of the molecular orbitals when the applied voltage is directly applied to the sample 201 to be measured, the molecular orbital information in the organic light emitter 302 is obtained with high accuracy. Is possible.

図3(b)では、尖鋭部103からトンネル絶縁膜105を除いた探針100を用いた
場合のバンド図を示している。尖鋭部103の表面部に形成されている金薄膜104が直
接有機発光体302と接触するため、有機発光体302のバンド構造が歪められてしまう
。そのため有機発光体302と金薄膜104との間に流れるトンネル電流は求められず、
有機発光体302中に形成された三角状のポテンシャル303をトンネルするトンネル電
流が観測されてしまうため、最小空分子軌道等の測定が著しく困難となる。
FIG. 3B shows a band diagram in the case of using the probe 100 in which the tunnel insulating film 105 is removed from the sharp portion 103. Since the gold thin film 104 formed on the surface portion of the sharpened portion 103 is in direct contact with the organic light emitter 302, the band structure of the organic light emitter 302 is distorted. Therefore, the tunnel current flowing between the organic light emitter 302 and the gold thin film 104 is not required,
Since a tunnel current tunneling through the triangular potential 303 formed in the organic light-emitting body 302 is observed, measurement of the minimum unoccupied molecular orbital becomes extremely difficult.

次に工程4として、トンネル電流の測定を終えた後、ピエゾ駆動装置203を駆動させ
て探針100を持ち上げ、次の測定点がある場合には(「全ての測定点について測定終了
?」でNOの場合)次の測定点に探針100を移動させ、ステップ1の動作を行わせる。
そして全ての測定点を測定した場合(「全ての測定点について測定終了?」でYESの場
合)、測定を終了する。
Next, as Step 4, after the measurement of the tunnel current is completed, the piezo drive device 203 is driven to lift the probe 100, and when there are next measurement points ("Measurement end for all measurement points?" In the case of NO), the probe 100 is moved to the next measurement point, and the operation of Step 1 is performed.
When all the measurement points are measured (when “YES at all measurement points?”), The measurement ends.

ここで、被測定試料201と尖鋭部103との間の距離を一定に保つようZ軸サーボ回
路208を制御する信号には被測定試料201の表面形状の信号が繰り込まれているため
、CPU210によりZ軸サーボ回路208からの信号を処理することでSTM信号と同
時にAFM信号を得ることができる。
Here, since the signal of the surface shape of the sample 201 to be measured is carried in the signal for controlling the Z-axis servo circuit 208 so as to keep the distance between the sample 201 to be measured and the sharp portion 103 constant, the CPU 210. By processing the signal from the Z-axis servo circuit 208, an AFM signal can be obtained simultaneously with the STM signal.

次に、上述した実施形態1〜3の効果について説明する。   Next, effects of the above-described first to third embodiments will be described.

(1)探針100の尖鋭部103を金薄膜104で覆い、更にトンネル絶縁膜105で
覆うため、被測定試料201と尖鋭部103とをAFMの接触モードで近接させた場合に
被測定試料201のバンド構造の乱れを抑えて測定することができる。
(1) Since the pointed portion 103 of the probe 100 is covered with the gold thin film 104 and further covered with the tunnel insulating film 105, the sample 201 to be measured is placed when the sample 201 to be measured and the pointed portion 103 are brought close to each other in the AFM contact mode. The measurement can be performed while suppressing the disturbance of the band structure.

(2)トンネル絶縁膜105の材質として、酸化シリコンを用いることで測定に起因す
る探針の磨耗量が抑えられ、再現性の高い測定を行うことができる。また、酸化シリコン
に代えて窒化シリコン、酸化ハフニウム又はチオール系自己組織化膜を用いても同様の効
果が得られる。
(2) By using silicon oxide as the material of the tunnel insulating film 105, the wear amount of the probe due to the measurement can be suppressed, and measurement with high reproducibility can be performed. The same effect can be obtained by using silicon nitride, hafnium oxide, or a thiol self-assembled film instead of silicon oxide.

(3)探針100の尖鋭部103を表面状態が大気中で安定している貴金属である金薄
膜104で覆ったため、表面電位が安定しており、トンネル電流と、印加電圧との関係を
再現性良く調査することができる。また、金薄膜104に代えてルテニウム又は白金の薄
膜を用いても同様の効果が得られる。
(3) Since the sharp portion 103 of the probe 100 is covered with a gold thin film 104, which is a noble metal whose surface state is stable in the atmosphere, the surface potential is stable, and the relationship between the tunnel current and the applied voltage is reproduced. We can investigate well. The same effect can be obtained by using a ruthenium or platinum thin film instead of the gold thin film 104.

(4)探針100を弾性を有する片持ち梁101に固定することで、探針100に形成
された尖鋭部103に係る原子間力を測定可能な撓み量に変換して抽出することができる
。そのため尖鋭部103と被測定試料201との距離で定まる原子間力を直接制御する帰
還制御が可能となり、印加電圧と、トンネル電流との関係を再現性良く調査することがで
きる。また、原子間力を直接制御する帰還制御信号を処理することで同時に、被測定試料
201の表面形状を調査することができる。
(4) By fixing the probe 100 to the cantilever 101 having elasticity, the atomic force relating to the sharp portion 103 formed on the probe 100 can be converted into a measurable amount of deflection and extracted. . Therefore, feedback control that directly controls the atomic force determined by the distance between the sharp portion 103 and the sample 201 to be measured is possible, and the relationship between the applied voltage and the tunnel current can be investigated with high reproducibility. Further, by processing the feedback control signal that directly controls the atomic force, the surface shape of the sample 201 to be measured can be investigated at the same time.

(5)片持ち梁101の、探針100を固定している領域の裏面を、光反射部106と
して機能させ、例えばレーザ光線を照射し、その反射光の振れを検出することで、原子間
力による片持ち梁101の撓みを片持ち梁101の動作に殆ど影響を与えることなく抽出
することができる。
(5) The back surface of the region where the probe 100 is fixed to the cantilever 101 is caused to function as the light reflecting unit 106, for example, by irradiating a laser beam and detecting the shake of the reflected light. The bending of the cantilever 101 due to the force can be extracted with little influence on the operation of the cantilever 101.

(6)X,Y方向に走査可能なステージ202に被測定試料201を載せて、トンネル
絶縁膜105を表面に有する尖鋭部103を備えた探針100を用いてX,Y方向に走査
するようステージ202を駆動し、印加電圧とトンネル電流との関係を測定することで、
被測定試料201のバンド構造の乱れを抑えて面内分布を計測することができる。
(6) The sample 201 to be measured is placed on the stage 202 that can be scanned in the X and Y directions, and is scanned in the X and Y directions using the probe 100 having the sharp portion 103 having the tunnel insulating film 105 on the surface. By driving the stage 202 and measuring the relationship between the applied voltage and the tunnel current,
The in-plane distribution can be measured while suppressing the disturbance of the band structure of the sample 201 to be measured.

(a)は第1の実施形態に係る探針を備えた片持ち梁の構造を説明するための斜視図。(b)は第1の実施形態に係る片持ち梁の断面図。(A) is a perspective view for demonstrating the structure of the cantilever provided with the probe which concerns on 1st Embodiment. (B) is sectional drawing of the cantilever according to the first embodiment. 第2の実施形態に係るAFM/STMの構成図。The block diagram of AFM / STM which concerns on 2nd Embodiment. (a)はトンネル絶縁層を形成した場合のバンド図、(b)はトンネル絶縁層を形成しない場合のバンド図。(A) is a band diagram when a tunnel insulating layer is formed, and (b) is a band diagram when a tunnel insulating layer is not formed. 第3の実施形態に係る測定方法を実行するためのフローチャート。The flowchart for performing the measuring method which concerns on 3rd Embodiment.

符号の説明Explanation of symbols

100…探針、101…片持ち梁、102…支持体、103…尖鋭部、104…導電部
としての金薄膜、105…絶縁皮膜としてのトンネル絶縁膜、106…光反射部、201
…被測定試料、202…ステージ、203…ピエゾ駆動装置、204…電圧源、205…
電流計、206…レーザ光源、207…光学系、208…Z軸サーボ回路、209…X,
Y走査回路、210…CPU、211…CRT、301…導電性基板、302…有機発光
体、303…三角状のポテンシャル。
DESCRIPTION OF SYMBOLS 100 ... Probe, 101 ... Cantilever, 102 ... Support body, 103 ... Sharp part, 104 ... Gold thin film as a conductive part, 105 ... Tunnel insulating film as an insulating film, 106 ... Light reflecting part, 201
... Sample to be measured, 202 ... Stage, 203 ... Piezo drive, 204 ... Voltage source, 205 ...
Ammeter, 206 ... Laser light source, 207 ... Optical system, 208 ... Z-axis servo circuit, 209 ... X,
Y scanning circuit 210 ... CPU 211 ... CRT 301 ... conductive substrate 302 ... organic light emitter 303 ... triangular potential

Claims (8)

探針と被測定試料間に働く原子間力を制御信号として前記探針と前記被測定試料との距
離を制御する距離制御部を有し、前記探針と前記被測定試料との間に、電圧を掃引するよ
うに印加することで発生するトンネル電流と印加電圧との関係を測定する測定装置に用い
られる探針であって、
前記探針は前記被測定試料に近接する側の端部に、導電部と、前記導電部を包むよう配
置された絶縁部からなる尖鋭部を有し、
前記導電部は、導体、又は導体を被覆されてなり、前記導電部と前記被測定試料との間
に流れる前記トンネル電流が検出されるよう形成され、
前記絶縁部は前記測定装置から前記導電部に印加された電圧に対し、前記トンネル電流
が前記測定装置により測定し得る電流強度が得られる厚さを有し、且つ前記被測定試料の
バンド構造に与える影響を抑制しうる厚さを有しており、加えて前記原子間力を制御信号
として帰還制御を行う場合に副次的に発生する応力による磨耗に対して耐性がある絶縁皮
膜を用いて形成され、
且つ前記探針には前記測定装置により印加された電圧を前記尖鋭部の導電部に導くため
の導電機構が形成されてなることを特徴とする探針。
A distance control unit that controls the distance between the probe and the sample to be measured using an atomic force acting between the probe and the sample to be measured as a control signal, and between the probe and the sample to be measured, A probe used in a measuring device for measuring a relationship between a tunnel current generated by applying voltage so as to sweep and an applied voltage,
The probe has, at an end portion on the side close to the sample to be measured, a conductive portion and a sharp portion including an insulating portion arranged so as to wrap the conductive portion,
The conductive portion is a conductor, or a conductor is coated, and is formed so that the tunnel current flowing between the conductive portion and the sample to be measured is detected,
The insulating part has a thickness that allows the tunnel current to be measured by the measuring apparatus with respect to the voltage applied to the conductive part from the measuring apparatus, and has a band structure of the sample to be measured. Using an insulating film that has a thickness that can suppress the effect on the effect, and in addition, is resistant to wear due to secondary stresses when feedback control is performed using the interatomic force as a control signal. Formed,
The probe further comprises a conductive mechanism for guiding the voltage applied by the measuring device to the conductive portion of the sharp portion.
前記絶縁皮膜は、酸化シリコン、窒化シリコン、酸化ハフニウム又はチオール系自己組
織化膜からなることを特徴とする請求項1に記載の探針。
2. The probe according to claim 1, wherein the insulating film is made of silicon oxide, silicon nitride, hafnium oxide, or a thiol self-assembled film.
前記導体は、表面状態が大気中で安定している貴金属である金、ルテニウム又は白金か
らなることを特徴とする請求項1に記載の探針。
The probe according to claim 1, wherein the conductor is made of gold, ruthenium, or platinum, which is a noble metal whose surface state is stable in the atmosphere.
請求項1に記載の距離制御部に用いられる、前記原子間力により撓むよう弾性を有する
片持ち梁であって、前記片持ち梁の固定端部は前記片持ち梁を支える支持体と固定され、
前記片持ち梁の自由端部は前記尖鋭部を備えた前記探針を固定してなり、又前記尖鋭部と
前記被測定試料間に働く前記原子間力を、前記原子間力により生じる前記片持ち梁の撓み
量として検出するための撓み検出部を備えてなり、更に前記片持ち梁は導体、又は導体を
被覆されてなり、前記支持体と前記探針とは電気的に接続されていることを特徴とする片
持ち梁。
The cantilever used for the distance control unit according to claim 1 and having elasticity so as to bend by the atomic force, wherein a fixed end of the cantilever is fixed to a support that supports the cantilever. ,
The free end portion of the cantilever is formed by fixing the probe having the sharp portion, and the atomic force acting between the sharp portion and the sample to be measured is generated by the atomic force. A bend detection unit for detecting the bend amount of the cantilever is provided, the cantilever is covered with a conductor or a conductor, and the support and the probe are electrically connected. Cantilever characterized by that.
前記撓み検出部は、前記自由端部側にあり前記探針の裏面に位置する光反射部を設け、
光線を前記光反射部に照射し、前記光反射部により反射された前記光線の投影位置を検出
することで前記片持ち梁の変形量を抽出する光てこであることを特徴とする請求項4に記
載の片持ち梁。
The deflection detection unit is provided with a light reflection unit located on the free end side and located on the back surface of the probe,
5. An optical lever that extracts a deformation amount of the cantilever by irradiating the light reflecting portion with a light beam and detecting a projection position of the light beam reflected by the light reflecting portion. Cantilever as described in.
請求項4に記載の片持ち梁を用いた走査型プローブ顕微鏡であって、前記尖鋭部と前記
被測定試料間に働く前記原子間力を制御信号として前記尖鋭部と前記被測定試料との距離
を各測定点において少なくとも測定中は前記距離が保持されるよう制御可能であって、且
つ前記被測定試料の表面方向に沿って前記尖鋭部と前記被測定試料とが相対的に移動可能
であることを特徴とする走査型プローブ顕微鏡。
5. A scanning probe microscope using the cantilever according to claim 4, wherein a distance between the sharp portion and the sample to be measured with the atomic force acting between the sharp portion and the sample to be measured as a control signal. Can be controlled so that the distance is maintained at least during measurement at each measurement point, and the sharp portion and the sample to be measured are relatively movable along the surface direction of the sample to be measured. A scanning probe microscope characterized by the above.
請求項4に記載の片持ち梁に固定された前記探針を用いて、前記測定点の少なくとも一
部の測定点について前記尖鋭部と前記被測定試料との間に流れるトンネル電流を測定し、
被測定試料の局所的なバンド構造を抽出することを特徴とする走査型プローブ顕微鏡を用
いた測定方法。
Using the probe fixed to the cantilever according to claim 4, measure a tunnel current flowing between the sharp portion and the sample to be measured at least a part of the measurement points,
A measurement method using a scanning probe microscope, wherein a local band structure of a sample to be measured is extracted.
前記尖鋭部と前記被測定試料との距離を制御する信号を用いて前記被測定試料の表面形
状を同時に測定することを特徴とする請求項7に記載の走査型プローブ顕微鏡を用いた測
定方法。
8. The measuring method using a scanning probe microscope according to claim 7, wherein a surface shape of the sample to be measured is simultaneously measured using a signal for controlling a distance between the sharp portion and the sample to be measured.
JP2005339781A 2005-11-25 2005-11-25 Probe, cantilever beam, scanning probe microscope, and measuring method of scanning tunnel microscope Withdrawn JP2007147347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339781A JP2007147347A (en) 2005-11-25 2005-11-25 Probe, cantilever beam, scanning probe microscope, and measuring method of scanning tunnel microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339781A JP2007147347A (en) 2005-11-25 2005-11-25 Probe, cantilever beam, scanning probe microscope, and measuring method of scanning tunnel microscope

Publications (1)

Publication Number Publication Date
JP2007147347A true JP2007147347A (en) 2007-06-14

Family

ID=38208930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339781A Withdrawn JP2007147347A (en) 2005-11-25 2005-11-25 Probe, cantilever beam, scanning probe microscope, and measuring method of scanning tunnel microscope

Country Status (1)

Country Link
JP (1) JP2007147347A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086759A1 (en) * 2009-01-30 2010-08-05 International Business Machines Corporation High-speed scanning probe microscope
CN102495043A (en) * 2011-12-14 2012-06-13 中国科学院苏州纳米技术与纳米仿生研究所 Device and method for measuring surface defect of semiconductor material
KR20200027566A (en) * 2017-08-03 2020-03-12 브루커 나노, 아이엔씨. Drift resistant probes for thermally stable, scanning probe microscopes and manufacturing methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130302A (en) * 1985-11-26 1987-06-12 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method and device for forming image of surface of sample
JPH03210465A (en) * 1990-01-12 1991-09-13 Yokogawa Electric Corp Scanning type tunneling spectral apparatus
JPH03277903A (en) * 1990-03-27 1991-12-09 Seizo Morita Scanning type probe microscope
JPH04361110A (en) * 1991-06-07 1992-12-14 Nippon Telegr & Teleph Corp <Ntt> Interatomic force microscope/scanning type tunnel microscope and controlling method thereof
JPH0850872A (en) * 1994-08-08 1996-02-20 Canon Inc Sample surface observation method, interatomic force microscope, fine working method, and fine working device
JPH0854403A (en) * 1994-08-09 1996-02-27 Nissin Electric Co Ltd Conductive cantilever structure of compound microscope
JPH0921829A (en) * 1995-07-06 1997-01-21 Nikon Corp Probe for measuring capacity, capacity measuring device using the same and scanning capacity microscope
JPH10132829A (en) * 1996-10-29 1998-05-22 Nikon Corp Measuring method by use of scanning type probe microscope

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130302A (en) * 1985-11-26 1987-06-12 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method and device for forming image of surface of sample
JPH03210465A (en) * 1990-01-12 1991-09-13 Yokogawa Electric Corp Scanning type tunneling spectral apparatus
JPH03277903A (en) * 1990-03-27 1991-12-09 Seizo Morita Scanning type probe microscope
JPH04361110A (en) * 1991-06-07 1992-12-14 Nippon Telegr & Teleph Corp <Ntt> Interatomic force microscope/scanning type tunnel microscope and controlling method thereof
JPH0850872A (en) * 1994-08-08 1996-02-20 Canon Inc Sample surface observation method, interatomic force microscope, fine working method, and fine working device
JPH0854403A (en) * 1994-08-09 1996-02-27 Nissin Electric Co Ltd Conductive cantilever structure of compound microscope
JPH0921829A (en) * 1995-07-06 1997-01-21 Nikon Corp Probe for measuring capacity, capacity measuring device using the same and scanning capacity microscope
JPH10132829A (en) * 1996-10-29 1998-05-22 Nikon Corp Measuring method by use of scanning type probe microscope

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086759A1 (en) * 2009-01-30 2010-08-05 International Business Machines Corporation High-speed scanning probe microscope
CN102301245A (en) * 2009-01-30 2011-12-28 国际商业机器公司 High-speed scanning probe microscope
JP2012516438A (en) * 2009-01-30 2012-07-19 インターナショナル・ビジネス・マシーンズ・コーポレーション High speed scanning probe microscope
US8327461B2 (en) 2009-01-30 2012-12-04 International Business Machines Corporation High-speed scanning probe microscope
CN102495043A (en) * 2011-12-14 2012-06-13 中国科学院苏州纳米技术与纳米仿生研究所 Device and method for measuring surface defect of semiconductor material
KR20200027566A (en) * 2017-08-03 2020-03-12 브루커 나노, 아이엔씨. Drift resistant probes for thermally stable, scanning probe microscopes and manufacturing methods
JP2020530113A (en) * 2017-08-03 2020-10-15 ブルカー ナノ インコーポレイテッドBruker Nano,Inc. Thermally stable drift-resistant probe and manufacturing method for scanning probe microscope
JP7179826B2 (en) 2017-08-03 2022-11-29 ブルカー ナノ インコーポレイテッド Thermally stable and drift resistant probe for scanning probe microscope and method of manufacture
US11644480B2 (en) 2017-08-03 2023-05-09 Bruker Nano, Inc. Thermally stable, drift resistant probe for a scanning probe microscope and method of manufacture
KR102630924B1 (en) 2017-08-03 2024-01-30 브루커 나노, 아이엔씨. Thermally stable, drift-resistant probes and manufacturing methods for scanning probe microscopy

Similar Documents

Publication Publication Date Title
JP2915554B2 (en) Barrier height measurement device
US10119990B2 (en) Scanning probe microscope and method for examining a surface with a high aspect ratio
JP6309697B2 (en) Method for imaging features using a scanning probe microscope
US9575090B2 (en) Force measurement with real-time baseline determination
EP3047335A1 (en) Scanning probe nanolithography system and method
US7187166B2 (en) Electrical property evaluation apparatus
KR102559746B1 (en) Method and system for detecting structures on or below the surface of a sample using a probe comprising a cantilever and a probe tip
JP2007147347A (en) Probe, cantilever beam, scanning probe microscope, and measuring method of scanning tunnel microscope
WO2010013628A1 (en) Film thickness evaluation device and film thickness evaluation method
JP2002156409A (en) Measuring sonde for detecting electrical signal in integrated circuit, method for using the measuring sonde, method for manufacturing the measuring sonde and measuring system by the measuring sonde
JP4553240B2 (en) Photodetection device and photodetection method
JPH0412547A (en) Film thickness distribution measuring device
JP2011064514A (en) Scanning probe microscope and surface inspection method
US8327461B2 (en) High-speed scanning probe microscope
JP4497665B2 (en) Probe scanning control device, scanning probe microscope using the scanning control device, probe scanning control method, and measurement method using the scanning control method
Voigtländer et al. Cantilevers and Detection Methods in Atomic Force Microscopy
Zhang et al. Measurement of electrical properties of materials under the oxide layer by microwave-AFM probe
JPH0850872A (en) Sample surface observation method, interatomic force microscope, fine working method, and fine working device
JP3450460B2 (en) Scanning probe microscope
JP2789244B2 (en) Method of forming microprobe
JP2004122333A (en) Control device of scanning probe, working device and method using control device and observation device
JP2006276027A (en) Scanning probe microscope
JPH09329605A (en) Scanning probe microscope
JP2006337379A (en) Scanning probe microscope
JPH10213749A (en) Surface observing method by scanning type probe microscope

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101215