JPH07249392A - Tube scanner and actuator having this scanner - Google Patents

Tube scanner and actuator having this scanner

Info

Publication number
JPH07249392A
JPH07249392A JP6037393A JP3739394A JPH07249392A JP H07249392 A JPH07249392 A JP H07249392A JP 6037393 A JP6037393 A JP 6037393A JP 3739394 A JP3739394 A JP 3739394A JP H07249392 A JPH07249392 A JP H07249392A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
voltage
actuator
scanner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6037393A
Other languages
Japanese (ja)
Inventor
Toru Fujii
藤井  透
Kiyoshi Kimoto
輝代志 木本
Masatoshi Suzuki
正敏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6037393A priority Critical patent/JPH07249392A/en
Publication of JPH07249392A publication Critical patent/JPH07249392A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an actuator having larger displacement corresponding to voltage applied by power source than that of conventional one. CONSTITUTION:In a tube scanner 10 having a cylindrical piezoelectric device 1, and electrodes 2, 3 arranged on the inner and outer circumferential surfaces of the device 1, each electrode is divided into plural in the corresponding positions on inner circumferential sides 3a-3d and outer circumferential sides 2a-2d, and electrodes forming plural pairs are formed with electrodes on inner circumferential side and outer circumferential side facing by interposing the piezoelectric device 1. An actuator is constituted with the tube scanner 10 and a power source for applying voltage to electrodes 2a-2d and 3a-3d of the scanner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電素子を用いたアク
チュエータおよびそれに使用されるチューブスキャナに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an actuator using a piezoelectric element and a tube scanner used therein.

【0002】[0002]

【従来の技術】図5は、従来の3次元移動用のアクチュ
エータに使用されていたチューブスキャナの構成を示す
概略図である。このチューブスキャナは、円筒状に形成
された圧電セラミックス60の外周面にX方向走査用の
電極61a、61bおよびY方向走査用の電極62a、
62bが、それぞれX方向同士、Y方向同士で対向する
ように設けられている。また、圧電セラミックス60の
内周面には、これら各電極61a、61b、62a、6
2bに対して共通電極63が設けられている。変位させ
る物体は、通常、圧電セラミックス60からなる円筒の
一方の底面付近に設置され、他方の底面は図示していな
い部材に固定されている。
2. Description of the Related Art FIG. 5 is a schematic diagram showing the structure of a tube scanner used in a conventional actuator for three-dimensional movement. This tube scanner has electrodes 61a and 61b for scanning in the X direction and electrodes 62a for scanning in the Y direction on the outer peripheral surface of a piezoelectric ceramic 60 formed in a cylindrical shape.
62b are provided so as to face each other in the X direction and in the Y direction. The electrodes 61a, 61b, 62a, 6 are formed on the inner peripheral surface of the piezoelectric ceramic 60.
A common electrode 63 is provided for 2b. The object to be displaced is usually installed near one bottom surface of a cylinder made of piezoelectric ceramic 60, and the other bottom surface is fixed to a member (not shown).

【0003】アクチュエータ(物体)をX、Y方向に変
位させる時は、電源(図示せず)を制御して、それぞれ
の方向の各電極間に大きさが同じで符号の異なる電位を
印加する。これにより、圧電セラミックス60が屈曲し
て所望の方向の変位が得られる。また、Z方向に変位さ
せる時は、正負どちらか一方の電圧を設定してこの電圧
を、X、Y全ての外周面の各電極と共通電極63との間
にそれぞれ等しく印加することで圧電セラミックス60
をZ方向に伸縮させる(G.Binnig and D.P.E.Smith,Re
v.Sci.Instrum.Vol.57,P1688(1986) 参照)。このよう
なチューブスキャナを備えたアクチュエータは、所望の
性能が得られる上、その構成の単純さから来るコストの
低さから、特に走査型プローブ顕微鏡においてプローブ
(探針)を3次元走査させる手段として使用されてい
る。
When the actuator (object) is displaced in the X and Y directions, a power source (not shown) is controlled to apply electric potentials having the same magnitude but different signs between the respective electrodes in the respective directions. As a result, the piezoelectric ceramic 60 bends and a displacement in a desired direction is obtained. Further, when displacing in the Z direction, either positive or negative voltage is set, and this voltage is equally applied between the respective electrodes on the outer peripheral surfaces of all X and Y and the common electrode 63, whereby the piezoelectric ceramics. 60
Expands and contracts in the Z direction (G.Binnig and DPESmith, Re
v.Sci.Instrum.Vol.57, P1688 (1986)). An actuator equipped with such a tube scanner has a desired performance and is low in cost due to its simple structure. Therefore, it is used as a means for three-dimensionally scanning a probe (probe) in a scanning probe microscope. It is used.

【0004】[0004]

【発明が解決しようとする課題】前述のアクチュエータ
の変位量は、チューブスキャナの内側(内周面)に設置
された電極と外側(外周面)に設置された電極との間の
電位差に依存する。従って、アクチュエータの変位量を
大きくするときは、前記電極間に印加する電圧も高い値
に設定していた。そのため、電源を始め、高電圧に対応
した回路を設ける必要が生じ、駆動回路の製造コストが
高くなるという問題があった。また、前記高電圧の電源
は大型で広い設置スペースが必要になるという問題もあ
った。本発明は、このような問題を解決することを目的
とする。
The displacement amount of the above-mentioned actuator depends on the potential difference between the electrode installed on the inner side (inner peripheral surface) and the outer electrode (outer peripheral surface) of the tube scanner. . Therefore, when the displacement amount of the actuator is increased, the voltage applied between the electrodes is also set to a high value. Therefore, there is a problem in that it is necessary to provide a power supply and a circuit corresponding to a high voltage, which increases the manufacturing cost of the drive circuit. In addition, the high-voltage power source is large and requires a large installation space. The present invention aims to solve such problems.

【0005】[0005]

【課題を解決するための手段】上記目的のために、第1
発明(請求項1記載の発明)では、円筒状に形成された
圧電素子と、該素子の内周面および外周面に各々設置さ
れた電極とを備えたチューブスキャナにおいて、前記各
電極を内周側と外側側とでそれぞれ対応する位置で複数
に分割して、該対応する内周側と外側側との電極で複数
の対をなす電極(電極対)を構成した。
For the above-mentioned purpose, the first
According to the invention (the invention according to claim 1), in a tube scanner including a piezoelectric element formed in a cylindrical shape and electrodes provided on an inner peripheral surface and an outer peripheral surface of the element, the inner circumference of each electrode is provided. The side and the outer side are divided into a plurality of portions at corresponding positions, and a plurality of pairs of electrodes (electrode pairs) are formed by the corresponding electrodes on the inner peripheral side and the outer side.

【0006】また、第2発明(請求項2記載の発明)で
は、前記チューブスキャナと該スキャナの電極に電圧を
印加する電源とでアクチュエータを構成した。第3発明
(請求項3記載の発明)では、前記チューブスキャナの
内周側の各電極と該電極に対応する外周側の電極とが複
数の電極対を構成し、前記電源が、各電極対のそれぞれ
の電極に互いに逆極性の電圧を印加するように構成し
た。
In the second invention (the invention according to claim 2), an actuator is constituted by the tube scanner and a power source for applying a voltage to the electrodes of the scanner. In a third invention (an invention according to claim 3), each electrode on the inner peripheral side of the tube scanner and an electrode on the outer peripheral side corresponding to the electrode constitute a plurality of electrode pairs, and the power source comprises each electrode pair. The electrodes having opposite polarities are applied to the respective electrodes.

【0007】第4発明(請求項4記載の発明)では、前
記圧電素子が形成する円筒の軸対称の位置にある2組の
電極対において、一方の電極対の外周側の電極に印加さ
れる電圧と他方の電極対の内周側の電極に印加される電
圧および一方の電極対の内周側の電極に印加される電圧
と他方の電極対の外周側の電極に印加される電圧とが、
それぞれ同じ極性となるように構成した。
In the fourth invention (the invention according to claim 4), in two sets of electrode pairs located at axially symmetrical positions of the cylinder formed by the piezoelectric element, the voltage is applied to the electrodes on the outer peripheral side of one electrode pair. The voltage and the voltage applied to the electrode on the inner circumference side of the other electrode pair, the voltage applied to the electrode on the inner circumference side of the one electrode pair, and the voltage applied to the electrode on the outer circumference side of the other electrode pair are ,
The polarities were the same.

【0008】[0008]

【作用】従来のアクチュエータのチューブスキャナは、
外側(外周面)の電極だけが、変位方向(例えばXY方
向)に応じて分割されており、内側(内周面)の電極は
変位方向に関係なく共通化されていた。また、円筒体の
軸方向と直交する方向(前記XY方向)に変位させると
きは、内側の電極の電位は固定(接地)されていた。
[Function] The conventional actuator tube scanner is
Only the outer (outer peripheral surface) electrode is divided according to the displacement direction (for example, the XY direction), and the inner (inner peripheral surface) electrode is shared regardless of the displacement direction. Further, the potential of the inner electrode was fixed (grounded) when it was displaced in the directions (the XY directions) orthogonal to the axial direction of the cylindrical body.

【0009】これに対して第1発明のチューブスキャナ
は、内側の電極も外側の電極と対応するようにそれぞれ
分割してある。そして、第2、3、4発明のアクチュエ
ータは、前記チューブスキャナの圧電素子を介して対向
する内側と外側の電極(両者で電極対を構成する)間に
それぞれ所望の電位差を与えることができる。そのた
め、従来と同じ電圧の電源を用いた場合、内側の電極の
電位と外側の電極の電位が逆の極性(+または−)とな
るように設定すれば、これら電極間の電位差を、最大で
従来の2倍にまで高めることができる。また、所望の最
大変位量を従来と同一とすると、電源が印加する電圧は
従来の半分で済むことになる。つまり、電源が印加する
電圧に対応する変位量を従来より大きくすることができ
る。
On the other hand, in the tube scanner of the first aspect of the invention, the inner electrode is divided so as to correspond to the outer electrode. The actuators of the second, third, and fourth inventions can each apply a desired potential difference between the inner and outer electrodes (both form an electrode pair) facing each other via the piezoelectric element of the tube scanner. Therefore, when a power supply with the same voltage as the conventional one is used, if the potential of the inner electrode and the potential of the outer electrode are set to have opposite polarities (+ or −), the potential difference between these electrodes can be maximized. It can be doubled up to the conventional level. Further, if the desired maximum displacement amount is the same as the conventional one, the voltage applied by the power supply can be half that of the conventional one. That is, the amount of displacement corresponding to the voltage applied by the power supply can be made larger than before.

【0010】[0010]

【実施例】図1は本発明のチューブスキャナの一例を示
す概略構成図であり、図1aはチューブスキャナの平面
図、図1bは斜視図である。チューブスキャナ10は、
円筒状に形成された圧電セラミックス1と、圧電セラミ
ックス1の外周面に、この外周面を円筒の軸方向に沿っ
て4等分する領域にそれぞれに1個ずつ計4個設けられ
た外側電極2a〜2dと、圧電セラミックス1の内周面
に、外側電極2a〜2dと対応するように互いに分離し
て設置された4個の内側電極3a〜3dとを備えてい
る。ここでは、外側電極2aと内側電極3aおよび外側
電極2cと内側電極3cの2組の電極対がX方向変位用
の電極を構成し、外側電極2bと内側電極3bおよび外
側電極2dと内側電極3dの2組の電極対がY方向変位
用の電極を構成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic structural view showing an example of a tube scanner of the present invention, FIG. 1a is a plan view of the tube scanner, and FIG. 1b is a perspective view. The tube scanner 10
The piezoelectric ceramic 1 formed in a cylindrical shape, and the outer electrode 2a provided on the outer peripheral surface of the piezoelectric ceramic 1 in such a manner that one outer peripheral surface is divided into four equal parts along the axial direction of the cylinder. .About.2d and four inner electrodes 3a to 3d, which are separately provided on the inner peripheral surface of the piezoelectric ceramic 1 so as to correspond to the outer electrodes 2a to 2d. Here, two pairs of electrodes, that is, the outer electrode 2a and the inner electrode 3a and the outer electrode 2c and the inner electrode 3c constitute an electrode for X-direction displacement, and the outer electrode 2b and the inner electrode 3b and the outer electrode 2d and the inner electrode 3d. The two pairs of electrodes constitute a Y-direction displacement electrode.

【0011】図2は、本発明のアクチュエータの構成を
示す概略図である。このアクチュエータは、図1のチュ
ーブスキャナ10と、このスキャナ10の各外側電極2
a〜2dおよび内側電極3a〜3dに各々接続され、こ
れら各電極に所定の電圧(+Aボルト〜−Aボルト)を
印加する計8個の両極性の電源4a〜4hとで構成され
ている。各電源4a〜4hは、それぞれ内側電極と外側
電極とに逆相で電圧が印可されるように設定される。ま
た、その際、内側電極が+Aボルト、外側電極が−Aボ
ルトの状態から、内側電極が−Aボルト、外側電極が+
Aボルトの状態まで任意に印可電圧の値を変化させるこ
とができる。なお、変位させる物体(図示せず)は図1
に示す圧電セラミックス1の一方の底面付近に設置され
る。また、圧電セラミックス1の他方の底面は、ベース
(図示せず)に固定されて使用される。
FIG. 2 is a schematic view showing the structure of the actuator of the present invention. This actuator comprises a tube scanner 10 of FIG. 1 and each outer electrode 2 of this scanner 10.
a to 2d and inner electrodes 3a to 3d, and a total of eight bipolar power supplies 4a to 4h for applying a predetermined voltage (+ A volt to −A volt) to each of these electrodes. Each of the power supplies 4a to 4h is set so that voltages are applied to the inner electrode and the outer electrode in opposite phases. At that time, from the state where the inner electrode is + A volt and the outer electrode is -A volt, the inner electrode is -A volt and the outer electrode is + A volt.
The value of the applied voltage can be arbitrarily changed up to the state of A volt. Note that the object to be displaced (not shown) is as shown in FIG.
The piezoelectric ceramics 1 shown in FIG. The other bottom surface of the piezoelectric ceramic 1 is fixed to a base (not shown) for use.

【0012】次に、本実施例のアクチュエータの制御方
法について説明する。アクチュエータを、圧電セラミッ
クス1の円筒の軸方向と直交する方向(XまたはY方
向)に変位させる場合、従来同様に、変位方向に応じた
対向する2組の電極対の内側電極と外側電極に、圧電セ
ラミック1の伸び縮みが逆になるように電圧を印加すれ
ばよい。例えば、X方向に変位させる場合、X方向変位
用の電極対を構成する外側電極2aと内側電極3aにそ
れぞれ接続された電源4a、4bにおいて、電源4aは
−Aボルトを、電源4bは+Aボルトを各々接続された
電極に印加する。また、残りのX方向変位用の電極対を
構成する外側電極2cと内側電極3cにそれぞれ接続さ
れた電源4e、4fにおいては、電源4eは−Aボルト
を、電源4fは+Aボルトを各々接続された電極に印加
する。これにより、X方向変位用の電極に対応する部位
の圧電セラミックス1が、印加された電圧の極性に応じ
て伸び縮みしてX方向に屈曲するのでX方向の変位が得
られる。なお、変位量は印加する電圧の値を変えること
で調整できる。Y方向の変位は、X方向と同様に電極に
印加する電圧を設定すればよいので説明を省略する。ま
た、円筒の軸方向(Z方向)に変位させる場合は、従来
と同様、全ての電極に同じ電圧を印加することで、圧電
セラミックス1を伸縮させればよい。
Next, a method of controlling the actuator of this embodiment will be described. When the actuator is displaced in a direction (X or Y direction) orthogonal to the axial direction of the cylinder of the piezoelectric ceramics 1, as in the conventional case, the inner electrode and the outer electrode of the two pairs of electrode pairs facing each other according to the displacement direction, The voltage may be applied so that the expansion and contraction of the piezoelectric ceramic 1 are reversed. For example, in the case of displacing in the X direction, in the power supplies 4a and 4b respectively connected to the outer electrode 2a and the inner electrode 3a forming the electrode pair for displacing in the X direction, the power supply 4a is -A volt and the power supply 4b is + A volt. Is applied to each connected electrode. Further, in the power supplies 4e and 4f connected to the outer electrode 2c and the inner electrode 3c that form the remaining electrode pair for X-direction displacement, -A volt is connected to the power supply 4e and + A volt is connected to the power supply 4f. Applied to the electrode. As a result, the piezoelectric ceramics 1 at the portion corresponding to the X-direction displacement electrode expands and contracts according to the polarity of the applied voltage and bends in the X direction, so that displacement in the X direction is obtained. The amount of displacement can be adjusted by changing the value of the applied voltage. As for the displacement in the Y direction, the voltage applied to the electrodes may be set similarly to the displacement in the X direction, and thus the description thereof will be omitted. Further, when the piezoelectric ceramics 1 is displaced in the axial direction (Z direction) of the cylinder, the piezoelectric ceramics 1 may be expanded and contracted by applying the same voltage to all the electrodes as in the conventional case.

【0013】以上のように、本実施例のアクチュエータ
は、内側電極と外側電極との電位差を最大2Aボルトま
で設定することができる。つまり、最大印加電圧がAボ
ルトの従来と同一の電源を用いた場合を想定すると、内
側電極が固定(例えば0V)されて外側電極だけを−A
〜+Aボルトの範囲で変化させる従来のアクチュエータ
に比べて、内側電極と外側電極との電位差は最大で2倍
となる。その結果、最大で従来の2倍の変位量を得るこ
とができる。また、所望の最大変位量を従来と同一とす
ると、内側電極と外側電極とにそれぞれ極性が逆の絶対
値(A/2)ボルトの電圧を印加すればよいので、従来
の半分の電圧(−A/2〜+A/2ボルト)を印加する
電源を用意すれば済む。
As described above, in the actuator of this embodiment, the potential difference between the inner electrode and the outer electrode can be set up to 2 A volt at the maximum. In other words, assuming a case where the same power supply as in the conventional case in which the maximum applied voltage is A volt is used, the inner electrode is fixed (for example, 0 V) and only the outer electrode is -A.
The maximum potential difference between the inner electrode and the outer electrode is twice as large as that of the conventional actuator that changes in the range of + A volts. As a result, it is possible to obtain a displacement amount that is twice as large as the conventional displacement amount. Further, assuming that the desired maximum displacement amount is the same as the conventional one, it is only necessary to apply a voltage of absolute value (A / 2) volt whose polarities are opposite to each other to the inner electrode and the outer electrode. It suffices to prepare a power supply for applying (A / 2 to + A / 2 volt).

【0014】図3は、電源を片電源(0〜+Aボルトの
範囲で印加可能)とした場合のアクチュエータの構成を
示す概略図である。なお、図3では、1組の電極対に接
続された電源のみを図示してある。電源6には、電源電
圧を最も有効に使うために、最大電圧Aの2分の1(+
A/2)ボルトのオフセットを加える。また、一方の側
の電極に向かう回路上には反転増幅器5を設置してあ
る。そして、可変電源7と増幅器8によって内側電極2
a〜2dと外側電極3a〜3dとで逆極性になるように
各電極に電圧を印加することで、電極への出力がオフセ
ット電圧を中心として逆に振れるようにした。これによ
り、内側電極が+Aボルト、外側電極0ボルトの状態か
ら内側電極0ボルト、外側電極+Aボルトの状態まで各
電極に印可する電圧を制御できる。可変電源7は、電源
6をもとに、その電位を降圧させることで構成できるの
で、図3の構成では、内側と外側の1対の電極に対して
1つの電源を用意すれば足りる。そのため、図2の構成
に比べると電源の数が半分になり、駆動回路の構成が簡
単になるという効果を奏する。
FIG. 3 is a schematic diagram showing the structure of the actuator when the power source is a single power source (applicable in the range of 0 to + A volt). In FIG. 3, only the power source connected to one pair of electrodes is shown. In order to use the power supply voltage most effectively, the power supply 6 has a half (+) of the maximum voltage A.
A / 2) Add a bolt offset. Further, an inverting amplifier 5 is installed on the circuit which goes to the electrode on one side. Then, the inner electrode 2 is controlled by the variable power source 7 and the amplifier 8.
By applying a voltage to each electrode so that the a to 2d and the outer electrodes 3a to 3d have opposite polarities, the output to the electrodes is made to swing in reverse with the offset voltage as the center. As a result, the voltage applied to each electrode can be controlled from the state where the inner electrode is + A volt and the outer electrode is 0 volt to the state where the inner electrode is 0 volt and the outer electrode is + A volt. The variable power source 7 can be configured by reducing the potential of the power source 6 based on the power source 6. Therefore, in the configuration of FIG. 3, it is sufficient to prepare one power source for the pair of inner and outer electrodes. Therefore, the number of power sources is halved compared to the configuration of FIG. 2, and the configuration of the drive circuit is simplified.

【0015】図4は、円筒の軸方向と、この軸方向に直
交する方向の2つの方向に変位するように構成したチュ
ーブスキャナの構成を示す図である。電圧の印加は、前
述と同様に設定して行えばよい。この場合、チューブス
キャナは一軸方向に変位する。
FIG. 4 is a diagram showing the construction of a tube scanner which is constructed so as to be displaced in two directions, the axial direction of a cylinder and the direction orthogonal to this axial direction. The voltage may be applied in the same manner as described above. In this case, the tube scanner is displaced uniaxially.

【0016】[0016]

【発明の効果】以上のように、本発明によれば、電源が
印加する電圧に対応する変位量が従来より大きくなる。
そのため、所望の変位量を従来と同一にした場合、電源
の電圧を従来の半分に設定することも可能となる。その
結果、高電圧の電源や、高電圧に対応した回路を設ける
ことによって生じるアクチュエータ(駆動回路)の製造
コストを低くできる。また、電源の電圧が低くなるので
電源の小型化も可能となり、その設置場所の自由度が増
す。さらに、電圧が低くなるので安全性が向上するとい
う効果も奏する。
As described above, according to the present invention, the amount of displacement corresponding to the voltage applied by the power source becomes larger than in the conventional case.
Therefore, when the desired displacement amount is the same as the conventional one, it is possible to set the voltage of the power source to half the conventional voltage. As a result, it is possible to reduce the manufacturing cost of the actuator (driving circuit) generated by providing the high-voltage power supply and the circuit corresponding to the high voltage. Moreover, since the voltage of the power supply is lowered, the power supply can be downsized, and the degree of freedom of the installation location is increased. Further, since the voltage is lowered, there is an effect that the safety is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明のチューブスキャナの構成の一例を
示すもので、図1aは平面図、図1bは斜視図である。
1A and 1B show an example of the configuration of a tube scanner of the present invention, FIG. 1A is a plan view, and FIG. 1B is a perspective view.

【図2】は、本発明のアクチュエータの構成の一例を示
す概略図である。
FIG. 2 is a schematic diagram showing an example of a configuration of an actuator of the present invention.

【図3】は、本発明のアクチュエータの構成の一例を示
す概略図である。
FIG. 3 is a schematic diagram showing an example of a configuration of an actuator of the present invention.

【図4】は、本発明のアクチュエータの構成の一例を示
すもので、図4aは平面図、図4bは斜視図である。
4A and 4B show an example of a structure of an actuator of the present invention, FIG. 4A is a plan view, and FIG. 4B is a perspective view.

【図5】は、従来のチューブスキャナの構成を示す概略
斜視図である。
FIG. 5 is a schematic perspective view showing the configuration of a conventional tube scanner.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 圧電セラミック 2 外側電極 3 内側電極 4 電源 5 反転増幅器 6 電源 10 チューブスキャナ 1 Piezoelectric Ceramic 2 Outer Electrode 3 Inner Electrode 4 Power Supply 5 Inverting Amplifier 6 Power Supply 10 Tube Scanner

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 円筒状に形成された圧電素子と、該素子
の内周面および外周面に各々設置された電極とを有する
チューブスキャナにおいて、 前記各電極が内周側と外周側とでそれぞれ対応する位置
で複数に分割され、前記圧電素子を挟んで対向する内周
側と外周側の電極で複数の対をなす電極が形成されるこ
とを特徴とするチューブスキャナ。
1. A tube scanner having a piezoelectric element formed in a cylindrical shape and electrodes provided on an inner peripheral surface and an outer peripheral surface of the element, respectively, wherein each electrode is provided on an inner peripheral side and an outer peripheral side, respectively. A tube scanner characterized in that it is divided into a plurality of parts at corresponding positions, and a plurality of pairs of electrodes are formed by electrodes on the inner peripheral side and the outer peripheral side facing each other with the piezoelectric element interposed therebetween.
【請求項2】 請求項1記載のチューブスキャナと該ス
キャナの各電極に電圧を印加する電源とを備えたことを
特徴とするアクチュエータ。
2. An actuator comprising the tube scanner according to claim 1 and a power source for applying a voltage to each electrode of the scanner.
【請求項3】 前記チューブスキャナの電極は、内周側
の各電極と該電極に対応する外周側の電極とで複数の電
極対を構成し、前記電源は、各電極対のそれぞれの電極
に互いに逆極性の電圧を印加することを特徴とする請求
項2記載のアクチュエータ。
3. An electrode of the tube scanner comprises a plurality of electrode pairs, each electrode on the inner peripheral side and an electrode on the outer peripheral side corresponding to the electrode, and the power source is arranged on each electrode of each electrode pair. The actuator according to claim 2, wherein voltages having mutually opposite polarities are applied.
【請求項4】 前記圧電素子が形成する円筒の軸対称の
位置にある2組の電極対において、一方の電極対の外周
側の電極に印加される電圧と他方の電極対の内周側の電
極に印加される電圧および一方の電極対の内周側の電極
に印加される電圧と他方の電極対の外周側の電極に印加
される電圧とが、それぞれ同じ極性であることを特徴と
する請求項3記載のアクチュエータ。
4. In two pairs of electrodes located at axially symmetrical positions of a cylinder formed by the piezoelectric element, a voltage applied to an electrode on the outer peripheral side of one electrode pair and a voltage applied to the inner peripheral side of the other electrode pair. The voltage applied to the electrodes, the voltage applied to the electrodes on the inner circumference side of the one electrode pair, and the voltage applied to the electrodes on the outer circumference side of the other electrode pair have the same polarity. The actuator according to claim 3.
JP6037393A 1994-03-08 1994-03-08 Tube scanner and actuator having this scanner Pending JPH07249392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6037393A JPH07249392A (en) 1994-03-08 1994-03-08 Tube scanner and actuator having this scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6037393A JPH07249392A (en) 1994-03-08 1994-03-08 Tube scanner and actuator having this scanner

Publications (1)

Publication Number Publication Date
JPH07249392A true JPH07249392A (en) 1995-09-26

Family

ID=12496294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6037393A Pending JPH07249392A (en) 1994-03-08 1994-03-08 Tube scanner and actuator having this scanner

Country Status (1)

Country Link
JP (1) JPH07249392A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058780B2 (en) * 2008-02-12 2011-11-15 Sii Nanotechnology Inc. Circular cylinder type piezoelectric actuator and piezoelectric element and scanning probe microscope using those
US8115367B2 (en) * 2007-11-26 2012-02-14 Sii Nanotechnology Inc. Piezoelectric actuator provided with a displacement meter, piezoelectric element, and positioning device
US8159114B2 (en) 2007-11-01 2012-04-17 Qinetiq Limited Transducer
EP2096688A3 (en) * 2008-02-29 2013-01-09 University of Washington Piezoelectric substrate, fabrication and related methods
JP2013078809A (en) * 2011-09-30 2013-05-02 Murata Mfg Co Ltd Gripping tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159114B2 (en) 2007-11-01 2012-04-17 Qinetiq Limited Transducer
US8659209B2 (en) 2007-11-01 2014-02-25 Qinetiq Limited Transducer
US8115367B2 (en) * 2007-11-26 2012-02-14 Sii Nanotechnology Inc. Piezoelectric actuator provided with a displacement meter, piezoelectric element, and positioning device
US8058780B2 (en) * 2008-02-12 2011-11-15 Sii Nanotechnology Inc. Circular cylinder type piezoelectric actuator and piezoelectric element and scanning probe microscope using those
EP2096688A3 (en) * 2008-02-29 2013-01-09 University of Washington Piezoelectric substrate, fabrication and related methods
US8957484B2 (en) 2008-02-29 2015-02-17 University Of Washington Piezoelectric substrate, fabrication and related methods
JP2013078809A (en) * 2011-09-30 2013-05-02 Murata Mfg Co Ltd Gripping tool

Similar Documents

Publication Publication Date Title
US6359370B1 (en) Piezoelectric multiple degree of freedom actuator
JP3272661B2 (en) Electrostatic actuator using alternating voltage patterns
JP2839543B2 (en) Displacement generator
JPH05219760A (en) Electrostatic actuator
JPH0440951B2 (en)
CA2244765A1 (en) Piezoelectric transformer
JPH07249392A (en) Tube scanner and actuator having this scanner
JP2000324862A5 (en)
JP2839526B2 (en) Electrostatic actuator
CN110829884B (en) Composite dynamic and static coupling piezoelectric actuator and driving method thereof
JP5275734B2 (en) Ultrasonic motor
JPH03112374A (en) Piezoelectric actuator
JPH11259133A (en) Piezoelectric fine adjustment mechanism
CN112217415A (en) Frame type three-degree-of-freedom piezoelectric resonance self-actuating mechanism and excitation method thereof
JPH067042B2 (en) Piezoelectric element fine movement mechanism
CN110661445A (en) Parallel three-degree-of-freedom piezoelectric resonance self-actuating mechanism and excitation method thereof
JPH05122949A (en) Linear actuator
JPS633664A (en) Piezoelectric linear motor
JPH0132748Y2 (en)
JP3672751B2 (en) Piezoelectric element drive mechanism
JP5296469B2 (en) Ultrasonic motor
JPH06106029B2 (en) Ultrasonic motor
JPS6356621A (en) Inching device
JPH0724951Y2 (en) Drive
JP2716423B2 (en) Vibration generator