JPH02261072A - Piezoelectric actuator - Google Patents

Piezoelectric actuator

Info

Publication number
JPH02261072A
JPH02261072A JP1080165A JP8016589A JPH02261072A JP H02261072 A JPH02261072 A JP H02261072A JP 1080165 A JP1080165 A JP 1080165A JP 8016589 A JP8016589 A JP 8016589A JP H02261072 A JPH02261072 A JP H02261072A
Authority
JP
Japan
Prior art keywords
piezoelectric
electrodes
discs
piezoelectric actuator
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1080165A
Other languages
Japanese (ja)
Inventor
Akira Sasaki
彰 佐々木
Masahiro Miyao
宮尾 正大
Kenji Ishikawa
賢司 石川
Kenji Murakami
健司 村上
Tetsuya Suzuki
徹也 鈴木
Naoya Nishino
西野 直也
Ikkan Murakami
村上 一貫
Shuichi Fukuoka
修一 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
FDK Corp
Original Assignee
Shizuoka University NUC
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, FDK Corp filed Critical Shizuoka University NUC
Priority to JP1080165A priority Critical patent/JPH02261072A/en
Publication of JPH02261072A publication Critical patent/JPH02261072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To keep a combined distortion quantity constant by using discs having circular center holes as a piezoelectric member. CONSTITUTION:A piezo-actuator is constituted of laminated piezoelectric discs 41-4n. The discs 41-4n have circular holes H in the central parts of them, they are put between plate-like electrodes 50-5n, and they are connected with band electrodes 61-62 in every other one. As a result, distortion quantity reaches the maximum at the intermediate section between an internal diameter and an external diameter, and the part stretches in the shape of a circle, so that a driven body can be positioned with high degree of accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、積層された圧電性部祠の歪を合成した伸縮
動作により被駆動体を駆動する圧電アクチュエータに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a piezoelectric actuator that drives a driven body by an expansion and contraction operation that combines the strains of stacked piezoelectric parts.

〔従来の技術〕[Conventional technology]

近年、走査型トンネル顕微鏡(STM)が固体表面の実
空間の形態を原子のスケールの分解能で観察できる装置
として注目されている。この走査型トンネル顕微鏡は、
1nm以下になるまで金属の針を固体表面に近付け、針
と固体表面の間に数V以下の電圧をかけると、その間の
真空障壁を通して数nAのトンネル電流が流れる。この
トンネル電流は電圧の極性に応じて、試料の価電子帯に
比例したり、試料の伝導帯の空準位の状態密度に比例し
たりする。従って、トンネル電圧をv1トンネル電流を
1 とし、dI  /dV  をVr        
    r        rrの関数として測定する
と試料のバンド構造の状態密度の情報が得られる。
In recent years, a scanning tunneling microscope (STM) has attracted attention as a device that can observe the morphology of a solid surface in real space with atomic-scale resolution. This scanning tunneling microscope
When a metal needle is brought close to a solid surface until the distance is 1 nm or less and a voltage of several volts or less is applied between the needle and the solid surface, a tunnel current of several nA flows through the vacuum barrier between them. Depending on the polarity of the voltage, this tunneling current is proportional to the valence band of the sample or to the density of states of vacant levels in the conduction band of the sample. Therefore, the tunnel voltage is v1, the tunnel current is 1, and dI /dV is Vr
Measurement as a function of r rr provides information on the density of states of the band structure of the sample.

この装置は針に対して試料を広い範囲に移動できる粗動
機構と、針を三次元に走査できる微動機構とを備えてい
る。このうち、粗動機構としてはPZT (チタン酸ジ
ルコン酸鉛)やPLZT (チタン酸ジルコン酸ランタ
ン酸鉛)など圧電性の板を伸縮させて二次元歩行させる
機構が、微動機構としては圧電性の板をXYZ方向に直
交させた「トライボッド」と呼ばれる機構がそれぞれ用
いられる。
This device is equipped with a coarse movement mechanism that allows the sample to be moved over a wide range relative to the needle, and a fine movement mechanism that allows the needle to scan in three dimensions. Among these, coarse movement mechanisms include mechanisms that expand and contract piezoelectric plates such as PZT (lead zirconate titanate) and PLZT (lead lanthanate zirconate titanate) to allow two-dimensional walking, while fine movement mechanisms use piezoelectric plates. A mechanism called a "tri-bod" in which plates are arranged perpendicular to the X, Y, and Z directions is used.

ところで、圧電性板の両面に電極を設けてこれに電圧を
印加する構成の圧電素子1個の歪は僅かであるため、必
要とする変位量を得るには、複数の圧電素子を積層する
必要かある。本明細書ではこの積層体を圧電アクチュエ
ータと呼ぶ。
By the way, since the strain of a single piezoelectric element, which has electrodes on both sides of a piezoelectric plate and applies a voltage to them, is slight, it is necessary to stack multiple piezoelectric elements in order to obtain the required amount of displacement. There is. In this specification, this laminate is referred to as a piezoelectric actuator.

第3図(a) 、 (b)は粗動機構および微動機構の
いずれにも用いることのできる従来の圧電アクチュエー
タの平面図および縦断面図である。ここで、多数の圧電
性円板11〜1nがそれぞれ板状の電極20〜2nて挟
まれるような形で積層されると共に、一つおきの電極2
0. 22.・・・が帯状電極31により、電極21.
23・・・2nが帯状電極32によりそれぞれ共通接続
されている。そして、これらの帯状電極31.32に図
示省略の電源を接続すれば、隣接する電極間にそれぞれ
等しい電圧が印加され、圧電性円板11〜1nがそれぞ
れ歪むと共に、これらの歪が合成されて軸方向全体で大
きく伸縮する。こればよって変位量の大きい駆動機構が
得られる。
FIGS. 3(a) and 3(b) are a plan view and a vertical cross-sectional view of a conventional piezoelectric actuator that can be used in both a coarse movement mechanism and a fine movement mechanism. Here, a large number of piezoelectric disks 11 to 1n are stacked such that they are sandwiched between plate-shaped electrodes 20 to 2n, and every other electrode 2
0. 22. . . is connected to the electrode 21 by the strip electrode 31.
23 . . . 2n are commonly connected by a strip electrode 32. When a power supply (not shown) is connected to these strip electrodes 31 and 32, equal voltages are applied between adjacent electrodes, and the piezoelectric disks 11 to 1n are respectively distorted, and these distortions are combined. Largely expands and contracts in the entire axial direction. This provides a drive mechanism with a large amount of displacement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に、圧電性円板の両面に電極を装着し、これらの電
極間に電圧を印加すると、中心部の歪量がその周囲の歪
量より大きく、電極装着面はほぼ球面状に変形する。従
って、第3図に示した圧電アクチュエータに電圧を印加
すれば、第4図に示すように、軸芯部が点接触する状態
で各歪量が加算される。このとき、被駆動体に対して圧
電性円板11が点F。で、圧電性円板11.12が点F
1で、圧電性円板12.13が点F2て、圧電性円板1
3.14が点F3で、・・・それぞれ点接触するように
なっておれば、すなわち、同一の軸芯上で点接触する構
成になっ、ておれば、十分に大きな変位量を確保するこ
とができ、しかも、被駆動体10の位置決め精度も高め
られる。
Generally, when electrodes are attached to both sides of a piezoelectric disk and a voltage is applied between these electrodes, the amount of strain at the center is greater than the amount of strain around the center, and the electrode attachment surface is deformed into a substantially spherical shape. Therefore, when a voltage is applied to the piezoelectric actuator shown in FIG. 3, each amount of strain is added in a state where the axes are in point contact, as shown in FIG. 4. At this time, the piezoelectric disk 11 is at point F with respect to the driven body. So, the piezoelectric disks 11 and 12 are at point F
1, piezoelectric disk 12.13 is at point F2, piezoelectric disk 1
3.14 is point F3...If they are in point contact, that is, if they are configured to make point contact on the same axis, a sufficiently large amount of displacement can be secured. Moreover, the positioning accuracy of the driven body 10 can also be improved.

しかしながら、圧電性円板11〜I n s電極21〜
2nそれぞれの形状および結合の状態は均一化させ難く
、従って、同一の軸芯上で点接触させることは不可能に
近かった。このため、従来の圧電アクチュエータにあっ
ては歪を合成した変位量が一定せず、これを走査型トン
ネル顕微鏡に適用した場合には、針に対する位置決め精
度が低下し、その分だけ分解能が低下してしまうという
問題点があった。
However, the piezoelectric disk 11~Ins electrode 21~
It is difficult to make the shape and bonding state of each 2n uniform, and therefore it is almost impossible to make point contact on the same axis. For this reason, with conventional piezoelectric actuators, the amount of displacement resulting from the synthesis of strain is not constant, and when applied to a scanning tunneling microscope, the positioning accuracy with respect to the needle decreases, and the resolution decreases accordingly. There was a problem with this.

この発明は上記の問題点を解決するためになされたもの
で、変位量を一定に保持することかでき、これによって
、被駆動体の位置決め精度を大幅に向上させることので
きる圧電アクチュエータを得ることを目的とする。
This invention was made in order to solve the above problems, and provides a piezoelectric actuator that can maintain a constant amount of displacement and thereby greatly improve the positioning accuracy of a driven object. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、複数の圧電性部材を積層すると共に、これ
らの圧電性部材の歪を合成した伸縮動作により被駆動体
を駆動する圧電アクチュエータにおいて、前記圧電性部
材として円形の中心孔を有する円板を用いたことを特徴
とするものである。
The present invention provides a piezoelectric actuator in which a plurality of piezoelectric members are laminated and a driven body is driven by an expansion/contraction operation that combines the strains of these piezoelectric members, in which the piezoelectric member is a disk having a circular center hole. It is characterized by the use of

〔作 用〕[For production]

この発明においては、積層される圧電性部材として円形
の中心孔を有する円板を用いているため、内径と外径の
ほぼ中間部で歪量か最も大きくなり、しかも、歪量の大
きい部分が円形に連なるため、圧電性部材相互間、なら
びに、圧電性部材と被駆動体の間で、それぞれ円に沿っ
た線接触を行なわせることができ、これによって合成歪
量を一定に保持することができる。
In this invention, since disks having a circular center hole are used as piezoelectric members to be laminated, the amount of strain is greatest at approximately the midpoint between the inner diameter and the outer diameter, and the portion with the largest amount of strain is Because they are connected in a circular manner, line contact along the circle can be made between the piezoelectric members and between the piezoelectric member and the driven body, and thereby the amount of combined strain can be kept constant. can.

〔実施例〕〔Example〕

第1図(a) 、 (b)はこの発明の一実施例の平面
図および縦断面図である。同図において、中心部に円形
の孔Hを有する多数の圧電性円板41〜4nがそれぞれ
板状の電極50〜5nで挟まれるような形で積層される
と共に、一つおきの電極50、 52.・・・が帯状電
極61により、電極51゜53・・・5nが帯状電極6
2によりそれぞれ共通接続されている。この場合、電極
50〜5nとしては、導電性ペースト、蒸着による金属
膜、あるいは、予め打ち抜き成型した金属板のいずれを
用いてもよいが、帯状電極61.62としては導電性ペ
ーストを用いると好都合である。
FIGS. 1(a) and 1(b) are a plan view and a longitudinal sectional view of an embodiment of the present invention. In the figure, a large number of piezoelectric discs 41 to 4n each having a circular hole H in the center are stacked such that they are sandwiched between plate-shaped electrodes 50 to 5n, and every other electrode 50, 52. ... are the strip electrodes 61, and the electrodes 51, 53, . . . 5n are the strip electrodes 6.
2 are commonly connected to each other. In this case, as the electrodes 50 to 5n, any of a conductive paste, a metal film formed by vapor deposition, or a metal plate punched and formed in advance may be used, but it is convenient to use a conductive paste as the strip electrodes 61 and 62. It is.

なお、電極50〜5nは中心孔を有する圧電性円板41
〜4nの形に倣って環状に形成されている。従って、こ
れに電圧を印加した場合には、第1図(a)の−点鎖線
Aに沿った部分が最も多く歪むことになる。
Note that the electrodes 50 to 5n are piezoelectric disks 41 having a center hole.
It is formed into a ring shape following the shape of ~4n. Therefore, when a voltage is applied to this, the portion along the dashed line A in FIG. 1(a) will be distorted the most.

第2図はその変形状態(帯状電極は除去)を強調して示
した縦断面図である。すなわち、圧電性円板41〜4n
は中心孔Hを有しているため、内径と外径のほぼ中間部
におけるA。、A1・・・A4点の歪量がそれぞれ最も
大きくなり、これらの点を連ねて得られる円に沿って圧
電性円板41〜4nの相互間、ならびに、圧電性円板4
1と被駆動体10の間で線接触することになる。
FIG. 2 is a vertical cross-sectional view emphasizing the deformed state (the strip electrode is removed). That is, the piezoelectric disks 41 to 4n
has a central hole H, so A at approximately the midpoint between the inner diameter and the outer diameter. , A1...A4 points are the largest, and along the circle obtained by connecting these points, the distortion is
1 and the driven body 10 are in line contact.

このように、円に沿った線接触であれば、圧電性円板4
1〜4n、電極51〜5nそれぞれの形状が若干具なっ
たとしても、あるいは、その結合状態が変わったとして
も、歪の方向および大きさが揃えられ、合成歪量を一定
に保持することかできる。
In this way, if there is a line contact along a circle, the piezoelectric disk 4
Even if the shapes of electrodes 1 to 4n and electrodes 51 to 5n change slightly, or even if their bonding states change, the direction and magnitude of the strain can be aligned and the amount of combined strain can be kept constant. can.

かくして、この実施例を走査型トンネル顕微鏡(STM
)の駆動機構に適用すれば、針の位置決め精度を格段に
向上させ得ると同時に、分解能を高めることができる。
Thus, this example can be applied to a scanning tunneling microscope (STM).
), the needle positioning accuracy can be greatly improved and at the same time, the resolution can be improved.

この場合、円形の中心孔Hを有する円板を用いるので、
従来の装置に比べて重量、電気容量および応力集中を軽
減することができるという付随的な効果もある。
In this case, since a disk with a circular center hole H is used,
Ancillary benefits include reduced weight, capacitance and stress concentrations compared to conventional devices.

なお、上記実施例では走査型トンネル顕微鏡に適用する
ことを前提として説明したが、本発明はこれに限定され
るものではなく、例えば、IC製造時のレーザービーム
の移動装置にも適用できることは言うまでもない。
Although the above embodiments have been explained on the premise that the present invention is applied to a scanning tunneling microscope, the present invention is not limited thereto, and it goes without saying that it can also be applied to, for example, a laser beam moving device during IC manufacturing. stomach.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかなようにこの発明によれば、
圧電性部材として円形の中心孔を有する円板を用いてい
るため、内径と外径のほぼ中間部における円形に連なる
部分で線接触させることかでき、これによって合成歪量
を一定に保持することができるという効果がある。
As is clear from the above explanation, according to this invention,
Since a disk with a circular center hole is used as the piezoelectric member, line contact can be made at the circular part approximately halfway between the inner and outer diameters, thereby keeping the amount of combined strain constant. It has the effect of being able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)はこの発明の一実施例の平面
図および縦断面図、第2図は同実施例の動作を説明する
ために圧電性円板の変形状態を示した縦断面図、第3図
(a) 、 (b)は従来の圧電アクチュエータの平面
図および縦断面図、第4図はこの圧電アクチュエータの
動作を説明するため′に圧電性円板の変形状態を示した
縦断面図である。 41〜4n・・・圧電性円板、50〜5n・・・電極、
61.62・・・帯状電極、H・・・孔。
FIGS. 1(a) and (b) are a plan view and a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view showing the deformed state of the piezoelectric disk in order to explain the operation of the embodiment. 3(a) and 3(b) are a plan view and a vertical sectional view of a conventional piezoelectric actuator, and FIG. 4 shows a deformed state of a piezoelectric disk in order to explain the operation of this piezoelectric actuator. FIG. 41-4n...piezoelectric disk, 50-5n...electrode,
61.62...Strip electrode, H...hole.

Claims (1)

【特許請求の範囲】[Claims] 複数の圧電性部材を積層すると共に、これらの圧電性部
材の歪を合成した伸縮動作により被駆動体を駆動する圧
電アクチュエータにおいて、前記圧電性部材として円形
の中心孔を有する円板を用いたことを特徴とする圧電ア
クチュエータ。
In a piezoelectric actuator in which a plurality of piezoelectric members are laminated and a driven body is driven by an expansion and contraction operation that combines the strains of these piezoelectric members, a disk having a circular center hole is used as the piezoelectric member. A piezoelectric actuator featuring:
JP1080165A 1989-03-30 1989-03-30 Piezoelectric actuator Pending JPH02261072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1080165A JPH02261072A (en) 1989-03-30 1989-03-30 Piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1080165A JPH02261072A (en) 1989-03-30 1989-03-30 Piezoelectric actuator

Publications (1)

Publication Number Publication Date
JPH02261072A true JPH02261072A (en) 1990-10-23

Family

ID=13710709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1080165A Pending JPH02261072A (en) 1989-03-30 1989-03-30 Piezoelectric actuator

Country Status (1)

Country Link
JP (1) JPH02261072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867193A (en) * 1993-07-30 1999-02-02 Nec Corporation Ink-jet printing head having pieozoelectric blocks with electrodes on ends perpendicular to axial direction of bores
US20130342080A1 (en) * 2011-04-05 2013-12-26 Honda Motor Co., Ltd. Laminated piezoelectric body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867193A (en) * 1993-07-30 1999-02-02 Nec Corporation Ink-jet printing head having pieozoelectric blocks with electrodes on ends perpendicular to axial direction of bores
US20130342080A1 (en) * 2011-04-05 2013-12-26 Honda Motor Co., Ltd. Laminated piezoelectric body

Similar Documents

Publication Publication Date Title
Gao et al. Piezoelectric actuators and motors: materials, designs, and applications
US6118637A (en) Piezoelectric assembly for micropositioning a disc drive head
US4613782A (en) Actuator
US6359370B1 (en) Piezoelectric multiple degree of freedom actuator
US6859345B2 (en) Bending microactuator having a two-piece suspension design
US6807030B1 (en) Enclosed piezoelectric microactuators coupled between head and suspension
US7911115B2 (en) Monolithic electroactive polymers
CN106604887B (en) Three Degree Of Freedom MEMS piston tube electrostatic microactuator
US5089740A (en) Displacement generating apparatus
US6653763B2 (en) Dual stage actuator systems for high density hard disk drives using annular rotary piezoelectric actuators
US8139280B2 (en) MEMS hierarchically-dimensioned deformable mirror
DE602004010024T2 (en) Bimorph driven vibrating micromirror
EP0578228A2 (en) Microactuator
EP0867043A1 (en) Metal-electroactive ceramic composite transducers
US5693997A (en) Non-tilting plate actuator for use in a micropositioning device
US8791623B2 (en) Piezoelectric actuator and piezoelectric actuator array
US20170316797A1 (en) Multi-Layer Shear Mode PZT Microactuator for a Disk Drive Suspension, and Method of Manufacturing Same
US11614634B2 (en) Piezoelectric MEMS actuator for compensating unwanted movements and manufacturing process thereof
JPH02261072A (en) Piezoelectric actuator
US6278223B1 (en) Differential type piezoelectric actuator
US20020118910A1 (en) Light deflector and method for driving light deflector
JPH0724951Y2 (en) Drive
JPS61285424A (en) Optical beam deflector
JPH02261071A (en) Piezoelectric actuator
JPH0438152B2 (en)