JPH04332482A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH04332482A
JPH04332482A JP3130687A JP13068791A JPH04332482A JP H04332482 A JPH04332482 A JP H04332482A JP 3130687 A JP3130687 A JP 3130687A JP 13068791 A JP13068791 A JP 13068791A JP H04332482 A JPH04332482 A JP H04332482A
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
lithium
electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3130687A
Other languages
Japanese (ja)
Inventor
Takayuki Yamahira
隆幸 山平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3130687A priority Critical patent/JPH04332482A/en
Publication of JPH04332482A publication Critical patent/JPH04332482A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent precipitation of lithium in a negative pole, and obtain good charge/discharge cycles for a battery comprising a negative pole formed of cokes, a positive pole, and nonaqueous electrolyte including lithium salt. CONSTITUTION:A battery is composed of a negative pole 1 and a positive pole 2 formed of cokes, and nonaqueous electrolyte obtained by dissolving lithium salt in nonaqueous solvent. The quantity of the electrolyte is set to 3.0mul or more and less than 5.5mul per mAh of a discharge capacity of the battery. When the electrolyte quantity per mAh of the discharge capacity is less than 3.0mul, a volume or the negative pole 1 to get in contact with the electrolyte is reduced to precipitate lithium on the surface of the negative pole at the time of charging to generate an inner shortcircuit. On the other hand, if the electrolyte quantity exceeds 5.5mul, a inconvenience of leak of the electrolyte in a process of caulking a battery cell 5 occurs. By setting the electrolyte quantity to be in a proper range, therefore, precipitation of lithium can be prevented, and good charge/discharge cycles can be achieved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非水電解液二次電池に
関するものであり、特に炭素質材料を負極とする非水電
解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode.

【0002】0002

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型化、軽量化を次々と実現させている。それ
に伴い、移動用電源としての電池に対しても益々小型・
軽量且つ高エネルギー密度のものが求められている。
2. Description of the Related Art The remarkable progress in electronic technology in recent years has led to successive miniaturization and weight reduction of electronic devices. Along with this, batteries as mobile power sources are becoming smaller and smaller.
Light weight and high energy density are required.

【0003】従来、二次電池としては鉛電池,ニッケル
・カドミウム電池等の水溶液系二次電池が主流であった
。しかし、これらの電池はサイクル特性には優れるもの
の、電池重量やエネルギー密度、自己放電の点では十分
満足できるものとは言えない。
[0003] Conventionally, aqueous solution secondary batteries such as lead batteries and nickel-cadmium batteries have been mainstream as secondary batteries. However, although these batteries have excellent cycle characteristics, they are not fully satisfactory in terms of battery weight, energy density, and self-discharge.

【0004】そこで、最近、上述のニッケルカドミウム
電池等に代わる二次電池としてリチウムあるいはリチウ
ム合金を負極に用いた非水電解液二次電池の研究・開発
が盛んに行われている。この非水電解液二次電池は高エ
ネルギー密度を有し、自己放電も少なく、しかも軽量で
あるという移動用電源として適した特徴を有するもので
ある。
[0004]Recently, therefore, research and development of non-aqueous electrolyte secondary batteries using lithium or lithium alloys as negative electrodes has been actively conducted as a secondary battery to replace the above-mentioned nickel-cadmium batteries and the like. This non-aqueous electrolyte secondary battery has high energy density, little self-discharge, and is lightweight, making it suitable as a mobile power source.

【0005】しかしながら、この非水電解液二次電池に
おいては、充放電サイクルの繰り返しに伴ってリチウム
が充電時にデンドライト状に結晶成長し、この結晶成長
したリチウムが正極に到達して内部ショートを引き起こ
す可能性を有しているため、十分なサイクル寿命が得ら
れず、このことが実用化への大きな障害となっている。
However, in this non-aqueous electrolyte secondary battery, lithium crystals grow in a dendrite shape during charging due to repeated charge/discharge cycles, and this crystal-grown lithium reaches the positive electrode, causing an internal short circuit. Because of this potential, a sufficient cycle life cannot be obtained, which is a major obstacle to practical application.

【0006】そこで、高エネルギー密度でしかもサイク
ル寿命の長い非水電解液二次電池として、負極に炭素材
料を使用した非水電解液二次電池が提案されている。こ
の非水電解液二次電池は、リチウムの炭素層間化合物が
電気化学的に容易に形成できることを利用したものであ
り、このような非水電解液二次電池に対して充電を行う
と、予め炭素材料に担持させたリチウム,正極活物質の
結晶構造中のリチウムあるいは電解液中に溶解している
リチウム等が負極の炭素層間へドープされる。そして、
リチウムがドープされた炭素材料はリチウム電極として
機能し、放電に伴ってリチウムを炭素層間から放出する
こととなる。
[0006] Therefore, a non-aqueous electrolyte secondary battery using a carbon material for the negative electrode has been proposed as a non-aqueous electrolyte secondary battery with high energy density and long cycle life. This non-aqueous electrolyte secondary battery takes advantage of the fact that carbon intercalation compounds of lithium can be easily formed electrochemically, and when such a non-aqueous electrolyte secondary battery is charged, Lithium supported on a carbon material, lithium in the crystal structure of a positive electrode active material, lithium dissolved in an electrolyte, or the like is doped between the carbon layers of the negative electrode. and,
The carbon material doped with lithium functions as a lithium electrode, and lithium is released from between the carbon layers during discharge.

【0007】この非水電解液二次電池は、高エネルギー
密度であるとともに上述のリチウムを負極とする非水電
解液二次電池と異なり、リチウムの結晶成長が生じない
ため、充放電サイクルの繰り返しに耐える。このため、
ビデオ・カメラやラップ・トップ・パソコン等の比較的
消費電力の大きい機器の電源として期待され、それに対
応すべく負極となる炭素材料の種類,電極の構造等につ
いて検討が行われている。
[0007] This nonaqueous electrolyte secondary battery has a high energy density, and unlike the above-mentioned nonaqueous electrolyte secondary battery that uses lithium as a negative electrode, lithium crystal growth does not occur, so repeated charging and discharging cycles are not required. withstand For this reason,
It is expected to be used as a power source for devices with relatively high power consumption such as video cameras, laptops, and personal computers, and studies are being conducted on the type of carbon material that will become the negative electrode and the structure of the electrode.

【0008】そして、たとえば電極構造としては負極,
セパレータ,正極,セパレータの順に4層に積層した積
層電極を渦巻き型に多数回巻回させた渦巻き式電極構造
が電極面積が大きく、重負荷による使用にも耐えること
から採用されている。
[0008] For example, the electrode structure includes a negative electrode,
A spiral electrode structure, in which a stacked electrode consisting of four layers of separator, positive electrode, and separator are laminated in this order, is wound many times in a spiral shape is used because it has a large electrode area and can withstand use under heavy loads.

【0009】また、負極となる炭素材料としては、石油
コークス,ピッチコークス等のコークス類、熱分解炭素
類、ガラス状炭素等が提案されているが、このうち特に
コークス類は、石油ピッチや石炭ピッチを不活性ガス中
で焼成するだけで単純に製造でき、安価で入手できるこ
とから注目されている。
[0009] Furthermore, coke such as petroleum coke and pitch coke, pyrolytic carbon, and glassy carbon have been proposed as carbon materials for the negative electrode. It is attracting attention because it can be produced simply by firing pitch in an inert gas and is available at low cost.

【0010】0010

【発明が解決しようとする課題】ところで、上述のよう
な負極に炭素質材料を用いた非水電解液二次電池におい
ては、充放電サイクルの進行に伴って、放電容量が低下
してしまい、良好なサイクル特性が長期間にわたって維
持できないことがある。この放電容量の低下に影響する
要素のひとつとして、非水電解液二次電池内に含まれる
非水電解液の体積(非水電解液量)が挙げられる。
[Problems to be Solved by the Invention] However, in a nonaqueous electrolyte secondary battery using a carbonaceous material for the negative electrode as described above, the discharge capacity decreases as the charge/discharge cycle progresses. Good cycle characteristics may not be maintained for long periods of time. One of the factors that influences this reduction in discharge capacity is the volume of the nonaqueous electrolyte (amount of nonaqueous electrolyte) contained in the nonaqueous electrolyte secondary battery.

【0011】たとえば、電池内の非水電解液量が少ない
と、電極の一部に非水電解液に接触しない部分が生じる
。この部分は充放電反応に関与しないため、電極全体が
電解液に接触している場合と比べて電極の電流密度が高
くなる。その結果、充電時においてリチウムが負極のリ
チウムドープ能力を超えて供給される場合が起き易くな
り、これにより、負極に金属リチウムが析出し、セパレ
ータを貫通して正極まで到達し、内部短絡が発生するこ
ととなる。
For example, if the amount of non-aqueous electrolyte in the battery is small, there will be a portion of the electrode that does not come into contact with the non-aqueous electrolyte. Since this portion does not participate in the charge/discharge reaction, the current density of the electrode is higher than when the entire electrode is in contact with the electrolyte. As a result, during charging, lithium is likely to be supplied in excess of the lithium doping capacity of the negative electrode, which causes metallic lithium to precipitate on the negative electrode, penetrate the separator, and reach the positive electrode, causing an internal short circuit. I will do it.

【0012】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、充放電の繰り返しによっ
ても内部短絡が発生し難く、良好なサイクル特性を示す
非水電解液二次電池を提供することを目的とする。
The present invention has been proposed in view of the above-mentioned conventional circumstances, and provides a non-aqueous electrolyte secondary battery that is unlikely to cause internal short circuits even after repeated charging and discharging and exhibits good cycle characteristics. The purpose is to provide

【0013】[0013]

【課題を解決するための手段】電池において負極および
正極は、実際に電解液に接触している部分のみが充放電
反応に関与する。したがって、炭素材料であるコークス
類を負極とする非水電解液二次電池において、負極の非
水電解液に接触している部分が放電容量に対して少ない
と、充電時において負極内にリチウムが担持しきれず、
負極表面に金属リチウムが析出して内部短絡が発生する
こととなる。このような内部短絡を防ぐためには、負極
の電解液に接触している部分が放電容量に対して十分な
体積であることが要求され、そのためには、非水電解液
の量が放電容量に対して適当に調節されていることが重
要であると考えられる。
[Means for Solving the Problems] In a battery, only the portions of the negative electrode and the positive electrode that are actually in contact with the electrolyte participate in the charge/discharge reaction. Therefore, in a non-aqueous electrolyte secondary battery that uses coke, which is a carbon material, as the negative electrode, if the portion of the negative electrode that is in contact with the non-aqueous electrolyte is small relative to the discharge capacity, lithium will accumulate in the negative electrode during charging. Unable to carry it all,
Metallic lithium is deposited on the surface of the negative electrode, causing an internal short circuit. In order to prevent such internal short circuits, the part of the negative electrode that is in contact with the electrolyte must have a volume sufficient for the discharge capacity. It is believed that it is important to appropriately adjust the

【0014】本発明の非水電解液二次電池は、このよう
な観点から提案されたものであり、コークス類から主と
して構成される負極と、正極と、リチウム塩を非水溶媒
に溶解した非水電解液とを夫々具備する非水電解液二次
電池において、前記非水電解液量が電池の放電容量1m
Ah当たり3.0μl以上でかつ5.5μl以下である
ことを特徴とする。
The non-aqueous electrolyte secondary battery of the present invention was proposed from this viewpoint, and includes a negative electrode mainly composed of coke, a positive electrode, and a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent. In a non-aqueous electrolyte secondary battery comprising an aqueous electrolyte, the amount of the non-aqueous electrolyte is 1 m of discharge capacity of the battery.
It is characterized by being 3.0 μl or more and 5.5 μl or less per Ah.

【0015】本発明の非水電解液二次電池において、非
水電解液量は、充放電サイクル特性および製造時の作業
性の点から、放電容量1mAh当たり3.0μl〜5.
5μlとされる。すなわち、放電容量1mAh当たりの
非水電解液量が、3.0μl未満の場合には、充放電サ
イクルの進行に伴って負極表面にリチウムが析出し、内
部短絡が発生する。一方、1mAh当たりの非水電解液
量が、5.5μlを越える場合には、電池缶をかしめる
際に電解液が電池缶から溢れ出すといった作業上の不都
合が生ずる。
In the nonaqueous electrolyte secondary battery of the present invention, the amount of nonaqueous electrolyte is 3.0 μl to 5.0 μl per 1 mAh of discharge capacity from the viewpoint of charge/discharge cycle characteristics and workability during manufacturing.
The volume is 5 μl. That is, when the amount of nonaqueous electrolyte per 1 mAh of discharge capacity is less than 3.0 μl, lithium is deposited on the surface of the negative electrode as the charge/discharge cycle progresses, causing an internal short circuit. On the other hand, if the amount of non-aqueous electrolyte per 1 mAh exceeds 5.5 μl, there will be operational inconveniences such as the electrolyte overflowing from the battery can when the battery can is caulked.

【0016】上記非水電解液二次電池において負極を構
成するコークス類としては、たとえば、石油コークス、
ピッチコークス、石炭コークス等が挙げられる。これら
コークス類は、(002)面の面間隔d002 が3.
40≦d002 ≦3.55程度である。これらのコー
クス類は、石油ピッチ,石炭ピッチ等を真空中あるいは
不活性ガス中で焼成することによって得られる。
Examples of coke constituting the negative electrode in the non-aqueous electrolyte secondary battery include petroleum coke,
Examples include pitch coke and coal coke. These cokes have a (002) plane spacing d002 of 3.
40≦d002≦3.55. These cokes are obtained by calcining petroleum pitch, coal pitch, etc. in vacuum or inert gas.

【0017】さらには、石油ピッチ等を炭素化する際に
リン化合物、あるいはホウ素化合物を添加することによ
り、リチウムに対するドープ量を大きなものとした炭素
質材料も使用可能である。
Furthermore, it is also possible to use a carbonaceous material in which the amount of lithium doped is increased by adding a phosphorus compound or a boron compound when carbonizing petroleum pitch or the like.

【0018】一方、正極材料としては十分な量のリチウ
ムを含んだ材料を使用するのが好ましく、例えば一般式
LiMO2 (ただしMはCo、Niの少なくとも一種
を表す。)で表される複合金属酸化物や、リチウムを含
んだ層間化合物等が使用される。このうち、特に、Li
CoO4 、LiCo0.8 Ni0.2 O2 は、
高電圧、高エネルギー密度,良好なサイクル特性を得る
上で有利である。
On the other hand, it is preferable to use a material containing a sufficient amount of lithium as the positive electrode material, such as a composite metal oxide represented by the general formula LiMO2 (where M represents at least one of Co and Ni). lithium-containing interlayer compounds, etc. are used. Among these, Li
CoO4, LiCo0.8 Ni0.2 O2 are
It is advantageous in obtaining high voltage, high energy density, and good cycle characteristics.

【0019】また、電解液としては、例えばリチウム塩
を電解質とし、これを有機溶媒に溶解した電解液が用い
られる。ここで有機溶媒としては、特に限定されるもの
ではないが、例えばプロピレンカーボネート、エチレン
カーボネート、1,2−ジメトキシエタン、1,2−ジ
エトキシエタン、γ−ブチロラクトン、テトラヒドロフ
ラン、1,3−ジオキソラン、4−メチル−1,3−ジ
オキソラン、ジエチルエーテル、スルホラン、メチルス
ルホラン、アセトニトリル、プロピオニトリル等の単独
もしくは二種類以上の混合溶媒が使用でき、電解質も従
来より公知のものがいずれも使用でき、LiClO2 
、LiAsF6、LiPF6 、LiBF4 、LiB
(C6 H5 )4 、LiCl、LiBr、CH3 
SO3 Li、CF3 SO3 Li等がある。
Further, as the electrolytic solution, for example, an electrolytic solution prepared by using a lithium salt as an electrolyte and dissolving it in an organic solvent is used. Examples of the organic solvent here include, but are not limited to, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, Single or mixed solvents such as 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, and propionitrile can be used, and any conventionally known electrolytes can be used. LiClO2
, LiAsF6, LiPF6, LiBF4, LiB
(C6 H5)4, LiCl, LiBr, CH3
There are SO3 Li, CF3 SO3 Li, etc.

【0020】[0020]

【作用】本発明の非水電解液二次電池は、負極として安
価なコークス類を使用している。したがって、低コスト
で製造され、生産性が向上する。また、上記非水電解液
二次電池では、非水電解液量が電池の放電容量1mAh
当たり3.0μl以上でかつ5.5μl以下とされてい
る。コークス類を負極とする非水電解液二次電池におい
て、単位放電容量に対する非水電解液量を上述の範囲と
すると、実際に電極として機能する電極の体積(電解液
に接触している電極の体積)が放電容量に対して十分な
ものとなる。したがって、充電時において、負極表面に
リチウムが析出することなく、良好なサイクル特性が得
られることとなる。
[Operation] The non-aqueous electrolyte secondary battery of the present invention uses inexpensive coke as the negative electrode. Therefore, it can be manufactured at low cost and productivity can be improved. In addition, in the above non-aqueous electrolyte secondary battery, the amount of non-aqueous electrolyte is 1 mAh, which has a discharge capacity of 1 mAh.
3.0 μl or more and 5.5 μl or less per volume. In a non-aqueous electrolyte secondary battery that uses coke as the negative electrode, if the amount of non-aqueous electrolyte per unit discharge capacity is within the above range, the volume of the electrode that actually functions as an electrode (the volume of the electrode that is in contact with the electrolyte) is volume) is sufficient for the discharge capacity. Therefore, during charging, good cycle characteristics can be obtained without lithium being deposited on the surface of the negative electrode.

【0021】[0021]

【実施例】以下に、本発明の好適な実施例について実験
結果に基づいて説明する。
EXAMPLES Preferred examples of the present invention will be described below based on experimental results.

【0022】実験例1 図1に本実施例で作成した円筒形非水電解液二次電池を
示す。
Experimental Example 1 FIG. 1 shows a cylindrical non-aqueous electrolyte secondary battery prepared in this example.

【0023】まず、負極1は次のようにして作製した。 出発原料として石油ピッチを用い、これを焼成して粗粒
状のピッチコークスを得た。この粗粒状のピッチコーク
スを粉砕し、平均粒径40μmの粉末とし、続いて、こ
の粉末を不活性ガス中、1000℃にて再焼成して不純
物を除去し、コークス材料粉末を得た。このようにして
得たコークス材料粉末を負極活物質担持体とし、このコ
ークス材料粉末を90重量部、結着材としてポリフッ化
ビニリデン(PVDF)10重量部とを混合し、負極合
剤を調製した。この負極合剤を、溶剤であるN−メチル
−2−ピロリドンに分散させてスラリー(ペースト状)
にした。次に、この負極合剤スラリーを厚さ10μmの
帯状の銅箔である負極集電体の両面に塗布し、溶剤を乾
燥後、ローラープレス機により圧縮成型して帯状負極1
を得た。なお、成型後の負極合剤の膜厚は両面共に10
5μmで同一であり、帯状の負極の幅は41.5mm、
長さは635mmとした。
First, the negative electrode 1 was manufactured as follows. Petroleum pitch was used as a starting material and was calcined to obtain coarse pitch coke. This coarse-grained pitch coke was pulverized into a powder with an average particle size of 40 μm, and then this powder was re-fired at 1000° C. in an inert gas to remove impurities to obtain a coke material powder. The coke material powder thus obtained was used as a negative electrode active material carrier, and 90 parts by weight of this coke material powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed to prepare a negative electrode mixture. . This negative electrode mixture is dispersed in the solvent N-methyl-2-pyrrolidone to form a slurry (paste).
I made it. Next, this negative electrode mixture slurry was applied to both sides of a negative electrode current collector, which is a strip-shaped copper foil with a thickness of 10 μm, and after drying the solvent, compression molding was performed using a roller press machine to form a strip-shaped negative electrode 1.
I got it. The film thickness of the negative electrode mixture after molding is 10 mm on both sides.
The width of the strip-shaped negative electrode is 41.5 mm,
The length was 635 mm.

【0024】次に、正極2は次のようにして作製した。 炭酸リチウム0.5モルと炭酸コバルト1モルとを混合
して900℃の空気中で5時間焼成することによってL
iCoO2 を得た。このLiCoO2 を正極活物質
とし、このLiCoO2 91重量部、導電剤としての
グラファイト6重量部と結着剤としてのポリフッ化ビニ
リデン3重量部と12合し、正極合剤とした。この正極
合剤を溶剤N−メチルピロリドンに分散させてスラリー
(ペースト状)にした。次に、この正極合剤を、厚さ2
0μmの帯状のアルミニウム箔である正極集電体の両面
に均一に塗布して乾燥し、この乾燥後に圧縮成型して帯
状正極2を得た。なお、成型後の合剤膜厚は両面共に8
0μmで同一であり、帯状正極の幅は39.5mm、長
さは605mmとした。
Next, the positive electrode 2 was produced as follows. By mixing 0.5 mole of lithium carbonate and 1 mole of cobalt carbonate and calcining the mixture in air at 900°C for 5 hours, L
iCoO2 was obtained. This LiCoO2 was used as a positive electrode active material, and 91 parts by weight of this LiCoO2, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were combined to form a positive electrode mixture. This positive electrode mixture was dispersed in a solvent N-methylpyrrolidone to form a slurry (paste). Next, apply this positive electrode mixture to a thickness of 2
It was uniformly coated on both sides of a positive electrode current collector, which is a strip-shaped aluminum foil of 0 μm, and dried. After drying, compression molding was performed to obtain a strip-shaped positive electrode 2. The thickness of the mixture film after molding is 8 on both sides.
The strip positive electrode had a width of 39.5 mm and a length of 605 mm.

【0025】以上のように作製した帯状負極1と、帯状
正極2と、厚さが25μmで幅が44mmの微多孔性ポ
リプロピレンフィルムより成るセパレータ3を負極、セ
パレータ、正極、セパレータの順に4層に積層させ、こ
の4層構造の積層電極体をその長さ方向に沿って負極を
内側にして渦巻型に多数回巻回し、最外周セパレータ最
終端部をテープで固定し、渦巻式電極を作製した。なお
、この渦巻式電極の、中心部の中空部分の内径は3.5
mm、外径は19.7mmであった。
The strip-shaped negative electrode 1, the strip-shaped positive electrode 2, and the separator 3 made of a microporous polypropylene film with a thickness of 25 μm and a width of 44 mm were formed into four layers in the order of negative electrode, separator, positive electrode, and separator. This four-layered laminated electrode body was wound in a spiral shape many times along its length with the negative electrode inside, and the final end of the outermost separator was fixed with tape to produce a spiral electrode. . In addition, the inner diameter of the hollow part at the center of this spiral electrode is 3.5
mm, and the outer diameter was 19.7 mm.

【0026】上述のように作製した渦巻式電極を、ニッ
ケルめっきを施した鉄製の電池缶5に収納した。また、
渦巻式電極上下両面には絶縁板4を配設し、負極および
正極の集電を行うためにアルミニウム製正極リードを正
極集電体から導出して電池蓋7に、ニッケル製負極リー
ド11を負極集電体から導出して電池缶5に溶接した。 その後、電池缶5の中にプロピレンカーボネートとジエ
チルカーボネートとの等容量混合溶媒中にLiPF6 
を1モル/lの割合で溶解した非水電解液を2.0ml
注入して、渦巻式電極に含浸させた。
The spiral electrode produced as described above was housed in a nickel-plated iron battery can 5. Also,
Insulating plates 4 are arranged on both the upper and lower sides of the spiral electrode, and in order to collect current from the negative and positive electrodes, an aluminum positive electrode lead is led out from the positive electrode current collector and attached to the battery lid 7, and a nickel negative electrode lead 11 is connected to the negative electrode. It was led out from the current collector and welded to the battery can 5. After that, LiPF6 was placed in a mixed solvent of equal volume of propylene carbonate and diethyl carbonate in the battery can 5.
2.0 ml of a non-aqueous electrolyte dissolved at a rate of 1 mol/l
injected to impregnate the spiral electrode.

【0027】そして、アスファルトで表面を塗布した絶
縁封口ガスケットを介して電池缶5をかしめることによ
り、電池蓋7を固定し、電池内の気密性を保持させた。 以上のようにして、直径20mm、高さ50mmの円筒
型非水電解液二次電池(電池A)を作製した。
Then, the battery can 5 was caulked through an insulating sealing gasket whose surface was coated with asphalt, thereby fixing the battery lid 7 and maintaining the airtightness inside the battery. As described above, a cylindrical nonaqueous electrolyte secondary battery (battery A) having a diameter of 20 mm and a height of 50 mm was produced.

【0028】実験例2〜実験例7 電池缶内に注入する非水電解液量を表1に示す量に変え
た以外は、実施例1と同様にして非水電解液二次電池(
電池B〜電池G)を作製した。
Experimental Examples 2 to 7 Non-aqueous electrolyte secondary batteries (
Batteries B to G) were produced.

【0029】なお、ここで、電池A〜G組立時の電池缶
をかしめる工程において、電池Gの場合、電池蓋上に非
水電解液の溢れが見られた。
[0029] In the case of battery G, non-aqueous electrolyte overflowed onto the battery lid during the process of caulking the battery can during assembly of batteries A to G.

【0030】このようにして作製された電池A〜電池G
について、充放電サイクルを繰り返し行い、10サイク
ル目の放電容量(初期容量)および100サイクル目の
放電容量を測定し、10サイクル目の放電容量(初期容
量)に対する100サイクル目の放電容量の比から容量
維持率を算出し、サイクル特性を評価した。なお、この
とき充放電サイクルは、充電上限電圧を4.1Vに設定
し、1Aの定電流で2時間の充電した後、6.0Ωの定
負荷で、終止電圧2.75Vまで放電させることによっ
て行った。
Batteries A to G manufactured in this way
, the charge and discharge cycles were repeated, the discharge capacity at the 10th cycle (initial capacity) and the discharge capacity at the 100th cycle were measured, and the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 10th cycle (initial capacity) was calculated. The capacity retention rate was calculated and the cycle characteristics were evaluated. At this time, the charge/discharge cycle is performed by setting the charging upper limit voltage to 4.1V, charging at a constant current of 1A for 2 hours, and then discharging to a final voltage of 2.75V at a constant load of 6.0Ω. went.

【0031】表1に各電池の初期容量、非水電解液注入
量および初期容量の能力を1000mAhとしたときの
1mAh当たりの非水電解液量について示す。
Table 1 shows the initial capacity of each battery, the amount of nonaqueous electrolyte injected, and the amount of nonaqueous electrolyte per 1 mAh when the capacity of the initial capacity is 1000 mAh.

【表1】[Table 1]

【0032】また、図2に電池の放電容量1mAhあた
りの電解液量と100サイクル経過時のおける容量維持
率との関係を示す。
Further, FIG. 2 shows the relationship between the amount of electrolyte per 1 mAh of battery discharge capacity and the capacity retention rate after 100 cycles.

【0033】図2から明らかなように、1mAh当たり
の電解液量が3.0μl未満の電池(電池A,電池B)
では、容量維持率が低く、十分なサイクル特性が得られ
ない。これに対し、1mAh当りの電解液量が3.0μ
l以上の電池(電池C〜電池G)は、容量維持率が85
%を超えており、良好なサイクル特性が得られる。、ま
た、このうち特に、1mAh当りの電解液量が3.7m
l以上の電池(電池D〜電池G)は、容量の維持率が9
0%を超えており、より良好なサイクル特性が達成され
る。
As is clear from FIG. 2, the batteries (Battery A, Battery B) have an electrolyte volume of less than 3.0 μl per mAh.
However, the capacity retention rate is low and sufficient cycle characteristics cannot be obtained. On the other hand, the amount of electrolyte per 1mAh is 3.0μ
1 or more batteries (Batteries C to Batteries G) have a capacity retention rate of 85
%, good cycle characteristics can be obtained. , among these, the amount of electrolyte per 1 mAh is 3.7 m
Batteries with a capacity of 1 or more (Batteries D to Batteries G) have a capacity maintenance rate of 9
It exceeds 0%, and better cycle characteristics are achieved.

【0034】したがって、これらの結果から、コークス
類を負極とする非水電解液二次電池において、良好なサ
イクル特性を得るためには、放電容量1mAh当たりの
非水電解液量が3.0mAh以上であることが必要であ
ることが示された。しかし、電解液の量があまり多くな
ると電池缶をかしめる際に、電解液が電池缶からあふれ
るといった不都合が生ずる。したがって、サイクル特性
および作業性の点から、非水電解液量は3.0μl〜5
.0μlであることが好適である。
Therefore, from these results, in order to obtain good cycle characteristics in a non-aqueous electrolyte secondary battery using coke as a negative electrode, the amount of non-aqueous electrolyte per 1 mAh of discharge capacity must be 3.0 mAh or more. It was shown that it is necessary. However, if the amount of electrolyte is too large, there will be an inconvenience that the electrolyte will overflow from the battery can when the battery can is caulked. Therefore, from the viewpoint of cycle characteristics and workability, the amount of non-aqueous electrolyte should be 3.0 μl to 5 μl.
.. Preferably, the volume is 0 μl.

【0035】次に、上述の結果をより確かなものとする
ために、電池A〜Gと同様な構成の非水電解液二次電池
を各100個づつ作成し、それぞれの非水電解液二次電
池について充電時に於ける内部ショートの発生率を調査
した。図3に電池の放電容量1mAhあたりの電解液量
と内部ショート発生率との関係を示す。
Next, in order to make the above results more reliable, 100 non-aqueous electrolyte secondary batteries each having the same configuration as Batteries A to G were prepared, and each non-aqueous electrolyte secondary battery was We investigated the incidence of internal short circuits during charging of secondary batteries. FIG. 3 shows the relationship between the amount of electrolyte per 1 mAh of battery discharge capacity and the internal short circuit occurrence rate.

【0036】図3からわかるように、1mAh当りの電
解液量が2.5ml以上の場合、内部ショート発生率が
低く、さらに、1mAh当りの電解液量が3.0ml以
上の電池では、内部ショートが発生せず、より好ましい
結果が得られた。
As can be seen from FIG. 3, when the amount of electrolyte per 1 mAh is 2.5 ml or more, the rate of occurrence of internal short circuit is low, and furthermore, in batteries with the amount of electrolyte per 1 mAh of 3.0 ml or more, internal short circuit occurs. No occurrence occurred, and more favorable results were obtained.

【0037】なお、本実施例の電池は、渦巻型の巻回電
極体を用いた円筒形非水電解液二次電池であったが、本
発明はこれに限定されるものではなく、例えば、角筒型
などであってもよく、またボタン型あるいはコイン型の
非水電解液二次電池にも適用し得る。
Although the battery of this example was a cylindrical non-aqueous electrolyte secondary battery using a spirally wound electrode body, the present invention is not limited thereto; for example, It may be of a rectangular cylinder type or the like, and can also be applied to a button-type or coin-type non-aqueous electrolyte secondary battery.

【0038】[0038]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池は、負極として安価なコークス
類を使用しているので、製造コストが低く、高い生産性
が得られる。また、非水電解液量を放電容量に対して適
度な量となるように規制しているので、負極に担持しき
れなかったリチウムが析出することによる内部短絡が防
止され、良好な充放電サイクル特性を得ることができる
。したがって、本発明によれば、生産性,エネルギー密
度,サイクル寿命のいずれにおいても優れ、ラップ・ト
ップ・パソコン等に適用される機器用電源として好適な
非水電解液二次電池を得ることが可能となる。
[Effects of the Invention] As is clear from the above explanation, the nonaqueous electrolyte secondary battery of the present invention uses inexpensive coke as the negative electrode, so manufacturing costs are low and high productivity can be achieved. It will be done. In addition, since the amount of non-aqueous electrolyte is regulated to be an appropriate amount for the discharge capacity, internal short circuits due to precipitation of lithium that cannot be supported on the negative electrode are prevented, and a good charge-discharge cycle is achieved. characteristics can be obtained. Therefore, according to the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery that is excellent in productivity, energy density, and cycle life and is suitable as a power source for devices applied to laptops, personal computers, etc. becomes.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の非水電解液二次電池の一例を示す概略
的な縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view showing an example of a non-aqueous electrolyte secondary battery of the present invention.

【図2】非水電解液二次電池の放電容量1mAh当たり
の非水電解液量と電池容量維持率を関係を示す特性図で
ある。
FIG. 2 is a characteristic diagram showing the relationship between the amount of non-aqueous electrolyte per 1 mAh of discharge capacity of a non-aqueous electrolyte secondary battery and the battery capacity maintenance rate.

【図3】非水電解液二次電池の放電容量1mAh当たり
の非水電解液量と内部ショート発生率の関係を示す特性
図である。
FIG. 3 is a characteristic diagram showing the relationship between the amount of non-aqueous electrolyte per 1 mAh of discharge capacity of a non-aqueous electrolyte secondary battery and the internal short circuit occurrence rate.

【符号の説明】[Explanation of symbols]

1・・・負極 2・・・正極 3・・・セパレータ 4・・・絶縁板 5・・・電池缶 6・・・封口ガスケット 7・・・電池蓋 9・・・負極集電体 10・・・正極集電体 11・・・負極リード 12・・・正極リード 1...Negative electrode 2...Positive electrode 3...Separator 4...Insulating board 5...Battery can 6... Sealing gasket 7...Battery cover 9... Negative electrode current collector 10... Positive electrode current collector 11... Negative lead 12...Positive lead

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  コークス類から主として構成される負
極と、正極と、リチウム塩を非水溶媒に溶解した非水電
解液とを夫々具備する非水電解液二次電池において、前
記非水電解液量が電池の放電容量1mAh当たり3.0
μl以上でかつ5.5μl以下であることを特徴とする
非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a negative electrode mainly composed of coke, a positive electrode, and a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte is The amount is 3.0 per 1mAh of battery discharge capacity.
A non-aqueous electrolyte secondary battery characterized in that the electrolyte is at least μl and at most 5.5 μl.
JP3130687A 1991-05-02 1991-05-02 Nonaqueous electrolyte secondary battery Pending JPH04332482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3130687A JPH04332482A (en) 1991-05-02 1991-05-02 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3130687A JPH04332482A (en) 1991-05-02 1991-05-02 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH04332482A true JPH04332482A (en) 1992-11-19

Family

ID=15040221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3130687A Pending JPH04332482A (en) 1991-05-02 1991-05-02 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH04332482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149619A (en) * 2005-11-30 2007-06-14 Sony Corp Battery
US7955731B2 (en) 2006-08-14 2011-06-07 Sony Corporation Nonaqueous electrolyte secondary cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149619A (en) * 2005-11-30 2007-06-14 Sony Corp Battery
US7955731B2 (en) 2006-08-14 2011-06-07 Sony Corporation Nonaqueous electrolyte secondary cell

Similar Documents

Publication Publication Date Title
CA2055305C (en) Nonaqueous electrolyte secondary battery
JP3918311B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP5360871B2 (en) Non-aqueous electrolyte lithium ion secondary battery
KR20030081160A (en) Battery
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
JP3196226B2 (en) Non-aqueous electrolyte secondary battery
JPH07235291A (en) Secondary battery
JPH087926A (en) Nonaqueous electrolytic secondary cell
JPH06349493A (en) Secondary battery
KR100576221B1 (en) Negative active material for large capacity rechargeable lithium battery and large capacity rechargeable lithium battery comprising thereof
KR20220046267A (en) Anodeless lithium secondary battery and preparing method thereof
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JP2965674B2 (en) Lithium secondary battery
US20020197531A1 (en) Negative electrode active material and nonaqueous electrolyte battery
JP3720959B2 (en) Secondary battery electrode material
JPH10270079A (en) Nonaqueous electrolyte battery
JP3501365B2 (en) Non-aqueous electrolyte secondary battery
JPH04332482A (en) Nonaqueous electrolyte secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP3577799B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3179459B2 (en) Non-aqueous electrolyte secondary battery
JP4737949B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001121