JPH04329832A - Production of grain-oriented silicon steel sheet excellent in surface characteristic - Google Patents

Production of grain-oriented silicon steel sheet excellent in surface characteristic

Info

Publication number
JPH04329832A
JPH04329832A JP3124526A JP12452691A JPH04329832A JP H04329832 A JPH04329832 A JP H04329832A JP 3124526 A JP3124526 A JP 3124526A JP 12452691 A JP12452691 A JP 12452691A JP H04329832 A JPH04329832 A JP H04329832A
Authority
JP
Japan
Prior art keywords
silicon steel
rolling
slab
heating
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3124526A
Other languages
Japanese (ja)
Other versions
JP3076084B2 (en
Inventor
Takehiko Minato
武彦 港
Yoshiaki Iida
飯田 嘉明
Hisanaga Shimomukai
央修 下向
Fumihiko Takeuchi
竹内 文彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP03124526A priority Critical patent/JP3076084B2/en
Publication of JPH04329832A publication Critical patent/JPH04329832A/en
Application granted granted Critical
Publication of JP3076084B2 publication Critical patent/JP3076084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a method advantageously suited for the improvement in the surface characteristics of a grain-oriented silicon steel sheet used mainly for iron core material for electrical equipment, such as transformer. CONSTITUTION:Prior to the execution of hot rolling for a continuously cast slab of a silicon-containing steel having a composition containing at least 0.01-0.06% sol.Al and 0.0030-0.0120% N as inhibitor forming components, the slab is heated up to 1000-1300 deg.C, rolled at <=2% reduction of area, and heated up to a temp. in a high temp. region of >=1300 deg.C, by which micropores formed in the vicinity of inclusions entrapped in the course of continuous casting can be effectively crushed and the nuclei of cracking can be removed. By this method, a product free from surface defects can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、主にトランスやその
他の電気機器の鉄心材料として使用される方向性けい素
鋼板における表面性状の改善に有利に適合する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method advantageously suited for improving the surface properties of grain-oriented silicon steel sheets, which are mainly used as core materials for transformers and other electrical equipment.

【0002】この種電気機器の鉄心材料としては、磁気
特性に優れること、具体的には磁場の強さ800 A/
mにおける磁束密度B8 (T)が高く、また50Hz
の交流磁束密度1.7 Tにおける鉄損特性W17/5
0 (W/kg)が低いことが要求される。このため方
向性けい素鋼板は、2次再結晶を利用して{110}<
001>方位いわゆるゴス方位の結晶粒を発達させたも
のである。そして磁気特性の優れた材料を得るには、磁
化容易軸である<001>軸を圧延方向に高度に揃える
ことが必要であり、適当な圧延と熱処理を組合せた諸工
程によって、ゴス方位に2次再結晶粒を安定して発達さ
せることが重要である。 特にインヒビターと呼ばれるAlN 又はMnS,Mn
Se等の析出物を均一かつ微細に分散させることが肝要
である。
[0002] Iron core materials for this type of electrical equipment must have excellent magnetic properties, specifically magnetic field strength of 800 A/
The magnetic flux density B8 (T) at m is high and 50Hz
Iron loss characteristics W17/5 at AC magnetic flux density 1.7 T
0 (W/kg) is required. For this reason, grain-oriented silicon steel sheets utilize secondary recrystallization to
001> orientation, the so-called Goss orientation, is developed. In order to obtain a material with excellent magnetic properties, it is necessary to highly align the <001> axis, which is the axis of easy magnetization, in the rolling direction. It is important to stably develop secondary recrystallized grains. In particular, AlN, which is called an inhibitor, or MnS, Mn
It is important to uniformly and finely disperse precipitates such as Se.

【0003】0003

【従来の技術】上記の用途に供する方向性けい素鋼板の
製造において出発材となるスラブは、主に生産性の向上
から、その他の低級鋼と同様に連続鋳造法にて得られた
ものを用いる傾向にある。しかしながら連続鋳造法は、
鋳造中に Al2O3, SiO2, MgO,CaO
 等の介在物が鋼中に巻込まれることから、けい素鋼板
の製造において特に、AlN をインヒビターとする場
合に、得られたスラブを高温加熱するとAlN が分解
してN2ガスが発生し、このN2ガスは介在物付近の微
小空洞に集まり、高温で抗張力の低下したスラブ中に割
れが導入さらに進展され、最終的にはへげやふくれに代
表される表面欠陥として鋼板に残ることになる。従って
AlやNの含有量を制限する必要があるが、インヒビタ
ーとして機能させるには所定量の含有が要求される。
[Prior Art] Slabs, which are the starting material in the production of grain-oriented silicon steel sheets for the above-mentioned uses, are obtained by continuous casting, similar to other low-grade steels, mainly to improve productivity. There is a tendency to use However, the continuous casting method
During casting Al2O3, SiO2, MgO, CaO
Since inclusions such as The gas collects in microcavities near the inclusions, and cracks are introduced into the slab, whose tensile strength has decreased at high temperatures, which further propagate, and eventually remain on the steel plate as surface defects such as burrs and blisters. Therefore, it is necessary to limit the content of Al and N, but a predetermined amount is required to function as an inhibitor.

【0004】一方特公昭50−37009号公報には、
AlN をインヒビターとして使用する一方向性けい素
鋼板において、スラブに適当な分塊圧延を施すことによ
って磁気特性を改善する方法が示されている。この手法
は、スラブ高温加熱時の粒成長を抑えることを目的とし
たものであり、表面欠陥の防止については何ら触れられ
ていない。
On the other hand, in Japanese Patent Publication No. 50-37009,
A method of improving the magnetic properties of grain-oriented silicon steel sheets using AlN as an inhibitor by subjecting the slab to appropriate blooming has been shown. This method is aimed at suppressing grain growth during high-temperature heating of the slab, and does not mention anything about preventing surface defects.

【0005】[0005]

【発明が解決しようとする課題】この発明は、インヒビ
ター形成成分として有効なAl及びN量を減らすことな
しに、スラブ加熱時に発生する割れを防止し、へげやふ
くれ等の表面欠陥のない優れた表面性状を有する一方向
性けい素鋼板を製造する方法について提案することを目
的とする。
[Problems to be Solved by the Invention] The present invention aims to prevent cracks that occur during slab heating without reducing the amount of Al and N, which are effective as inhibitor-forming components, and to prevent surface defects such as baldness and blistering. The purpose of this study is to propose a method for manufacturing unidirectional silicon steel sheets with a surface texture of

【0006】[0006]

【課題を解決するための手段】発明者らが上記の表面欠
陥の発生原因について検討したところ、連続鋳造時に生
成した介在物(柱状組織と等軸品組織境界面付近)付近
の微少空洞に、スラブの高温加熱工程でAlN から分
解したN2 ガスが集まり、ここを起点として、高温に
晒され抗張力の低下したスラブ中に割れが発生すること
が、表面欠陥の発生原因であることを究明し、さらにそ
の対策としてスラブを1000〜1300℃の高温域に
加熱したのち2%以上の圧下率で圧延し、次いで130
0℃以上の高温加熱を施すことが、表面欠陥の発生を抑
制するのに有効であることを見出した。
[Means for Solving the Problems] When the inventors investigated the cause of the above-mentioned surface defects, it was found that micro cavities near the inclusions (near the boundary between the columnar structure and the equiaxed structure) generated during continuous casting. We determined that the cause of surface defects is that N2 gas decomposed from AlN gathers during the high-temperature heating process of the slab, and cracks occur in the slab, which has been exposed to high temperatures and whose tensile strength has decreased, starting from this point. Furthermore, as a countermeasure, the slab is heated to a high temperature range of 1000 to 1300°C, then rolled at a reduction rate of 2% or more, and then
It has been found that heating at a high temperature of 0° C. or higher is effective in suppressing the occurrence of surface defects.

【0007】すなわちこの発明は、インヒビター形成成
分として、少なくともsol.Al:0.01〜0.0
6wt%(以下単に%と示す)及びN:0.0030〜
0.0120%を含有する含けい素鋼の連続鋳造スラブ
を、熱間圧延して熱延板とした後、この熱延板に1回法
又は2回法の冷間圧延を施したのち、脱炭焼鈍ついで最
終仕上げ焼鈍を施す一連の工程によって方向性けい素鋼
板を製造するに当たり、上記スラブに熱間圧延を施すに
先立ち、1000℃〜1300℃の温度域に加熱したの
ち2%以上の圧下率で圧延し、次いで1300℃以上の
高温域に加熱することを特徴とする表面性状の優れた一
方向性けい素鋼板の製造方法である。
That is, the present invention provides at least sol. Al: 0.01~0.0
6wt% (hereinafter simply referred to as %) and N: 0.0030~
A continuously cast slab of silicon-containing steel containing 0.0120% is hot-rolled to form a hot-rolled plate, and then the hot-rolled plate is cold-rolled in one or two passes. In manufacturing grain-oriented silicon steel sheets through a series of steps including decarburization annealing and final finish annealing, the slab is heated to a temperature range of 1000°C to 1300°C, and then 2% or more of This is a method for manufacturing a unidirectional silicon steel sheet with excellent surface properties, which is characterized by rolling at a reduction rate and then heating to a high temperature range of 1300° C. or higher.

【0008】この発明の素材である含けい素鋼としては
、上記したインヒビター形成成分を含む、従来公知の成
分組成のものいずれもが適合するが、代表組成を掲げる
と次のとおりである。 C:0.01〜0.12% Cは、熱間圧延、冷間圧延中の組織の均一微細化のみら
なず、ゴス方位の発達に有用な元素であり、少なくとも
0.01%以上の含有が好ましい。しかしながら0.1
2%を超えて含有されるとかえってゴス方位に乱れが生
じるので上限は0.12%程度が好ましい。 Si:2.0 〜4.5 % Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与す
るが、4.5 %を上回ると冷延性が損なわれ、一方2
.0 %に満たないと比抵抗が低下するだけでなく、2
次再結晶・純化のために行われる最終高温焼鈍中にα−
γ変態によって結晶方位のランダム化を生じ、十分な鉄
損改善効果が得られないので、Si量は 2.0〜4.
5 %程度とするのが好ましい。 Mn:0.02〜0.15% Mnは、熱間脆化を防止するため少なくとも0.02%
程度を必要とするが、あまりに多すぎると磁気特性を劣
化させるので、上限は0.12%程度に定めるのが好ま
しい。
[0008] As the silicon-containing steel which is the material of the present invention, any of the conventionally known compositions containing the above-mentioned inhibitor-forming components are suitable, but typical compositions are as follows. C: 0.01-0.12% C is an element that is useful not only for uniform refinement of the structure during hot rolling and cold rolling, but also for the development of Goss orientation. Containment is preferred. However, 0.1
If the content exceeds 2%, the Goss orientation will be disturbed, so the upper limit is preferably about 0.12%. Si: 2.0 to 4.5% Si increases the specific resistance of the steel sheet and effectively contributes to reducing iron loss, but if it exceeds 4.5%, cold rollability is impaired;
.. If it is less than 0%, not only the specific resistance will decrease, but also 2
During the final high temperature annealing for the next recrystallization and purification, α−
Since γ transformation causes randomization of crystal orientation and a sufficient iron loss improvement effect cannot be obtained, the amount of Si is 2.0 to 4.
It is preferable to set it to about 5%. Mn: 0.02-0.15% Mn is at least 0.02% to prevent hot embrittlement
It is preferable to set the upper limit at about 0.12%, since too much content deteriorates the magnetic properties.

【0009】インヒビターとしては、いわゆる上記のA
lN 系のほかに、MnS,MnSe系がある。まずA
lN 系の場合は、 sol.Al:0.01〜0.06% N:0.0030〜0.0120% Al及びNは、方向性けい素鋼板の2次再結晶を制御す
るインヒビターとして有力な元素である。抑制力確保の
観点からは、少なくともAlは0.01%及びNは0.
0030%を必要とするが、Alは0.060 %及び
Nは0.0120%を超えるとその効果が損なわれるの
で、その下限はそれぞれAl:0.01%及びN:0.
0030%、上限はAl:0.06%及びN:0.01
20%とする。またMnS,MnSe系の場合は、Se
, Sのうちから選ばれる少なくとも1種:0.005
 〜0.060 %Se, Sの範囲についても、上述
したAlN 系の場合と同様な理由により、上記の範囲
に定めた。なお上記したMnS, MnSe 系及びA
lN系はそれぞれ併用が可能である。
[0009] As the inhibitor, the so-called A
In addition to the IN type, there are MnS and MnSe types. First A
In the case of lN system, sol. Al: 0.01-0.06% N: 0.0030-0.0120% Al and N are powerful elements as inhibitors that control secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of securing suppressive force, Al and N should be at least 0.01% and 0.01%, respectively.
0.030% is required, but the effect is impaired if Al exceeds 0.060% and N exceeds 0.0120%, so the lower limits are Al: 0.01% and N: 0.01%, respectively.
0030%, upper limit is Al: 0.06% and N: 0.01
It shall be 20%. In addition, in the case of MnS and MnSe, Se
, at least one selected from S: 0.005
The range of ~0.060% Se, S was also set to the above range for the same reason as in the case of the AlN system described above. In addition, the above-mentioned MnS, MnSe system and A
Each of the IN systems can be used in combination.

【0010】インヒビター成分としては上記したS, 
Se, Alの他、Cu, Ni, Sn, Cr、G
e, Sb, Mo, Zn, Te, BiおよびP
なども有利に適合するので、それぞれ少量併せて含有さ
せることもできる。ここに上記成分の好適添加範囲はそ
れぞれ、Cu, Ni, Sn,Cr:0.01〜0.
15%、Ge, Sb, Mo, Zn, Te, B
i:0.005〜0.1%、P:0.01〜0.2%で
あり、これらの各インヒビター成分についても、単独使
用および複合使用いずれもが可能である。
[0010] As the inhibitor component, the above-mentioned S,
In addition to Se and Al, Cu, Ni, Sn, Cr, and G
e, Sb, Mo, Zn, Te, Bi and P
Since they are also advantageously compatible, they can also be contained together in small amounts. Here, the preferred addition ranges of the above components are Cu, Ni, Sn, and Cr: 0.01 to 0.0.
15%, Ge, Sb, Mo, Zn, Te, B
i: 0.005-0.1%, P: 0.01-0.2%, and each of these inhibitor components can be used alone or in combination.

【0011】[0011]

【作用】さて上記の成分組成になるけい素鋼スラブは、
所定成分に溶製された溶鋼から、連続鋳造により製造さ
れる。そしてこのけい素鋼スラブは、1000〜130
0℃の温度域に加熱した後2%以上の圧下率で圧延し、
次いで1300℃以上の高温域に加熱した後に、熱間圧
延を施す。
[Function] Now, the silicon steel slab with the above composition is
Manufactured by continuous casting from molten steel melted to a specified composition. And this silicon steel slab has 1000 to 130
After heating to a temperature range of 0 ° C., rolling with a reduction ratio of 2% or more,
Next, after heating to a high temperature range of 1300° C. or higher, hot rolling is performed.

【0012】ここで熱間圧延に先立つ1回目の加熱は、
1000℃未満ではスラブ材の強度が低下しないため、
連続鋳造中に巻込まれる介在物付近に発生する微小空洞
を、引き続く2%以上の軽圧延で押しつぶすことができ
ない。一方1回目の加熱温度が1300℃をこえるとス
ラブ材の抗張力が低下するため、既に空洞内に集まった
N2 ガスに起因した割れが進展してしまい、この割れ
は後に続く2%以上の軽圧延では圧着せず、最終的にふ
くれやへげの表面欠陥となる。従って1回目の加熱は、
1000〜1300℃の温度域とする。なお加熱時間は
、スラブ寸法とくに厚さによって決まり、肉厚中心まで
所定の温度域に達するまでの時間とする。
[0012] Here, the first heating prior to hot rolling is
Since the strength of the slab material does not decrease below 1000℃,
Micro cavities generated near inclusions that are rolled up during continuous casting cannot be crushed by subsequent light rolling of 2% or more. On the other hand, if the first heating temperature exceeds 1300°C, the tensile strength of the slab material decreases, and cracks caused by N2 gas that have already collected in the cavity will develop, and these cracks will be caused by subsequent light rolling of 2% or more. Otherwise, the bond will not be crimped, resulting in surface defects such as blisters and flakes. Therefore, the first heating is
The temperature range is 1000-1300°C. The heating time is determined by the slab dimensions, especially the thickness, and is the time required to reach a predetermined temperature range up to the center of the wall thickness.

【0013】また続く圧延における圧下率は、2%未満
では空洞を圧延によって押しつぶすことができないため
、2%以上は必要である。なお30%を越えて圧下率を
増やしても効果がほとんど変わらないにもかかわらず、
スラブ厚が減少することにより次の高温加熱炉の寸法制
約から、スラブの単重を小さくせねばならないなど操業
上のデメリットが生じるので上限は30%とすることが
望ましい。
[0013] Further, the rolling reduction ratio in the subsequent rolling is required to be 2% or more, since the cavities cannot be crushed by rolling if it is less than 2%. Although the effect remains almost unchanged even if the reduction rate is increased beyond 30%,
As the thickness of the slab decreases, operational disadvantages arise, such as the need to reduce the unit weight of the slab due to the dimensional constraints of the next high-temperature heating furnace, so it is desirable that the upper limit is 30%.

【0014】さらに上記圧延後に再度加熱する際の温度
は、1300℃未満では2次再結晶が不安定になるため
、1300℃以上とする。すなわちAlN の析出物は
ゴス方位2次再結晶に効果があり、中でも有効な特定微
少サイズのAlN を得るためには、熱間圧延時のスラ
ブ加熱の段階で一度AlN を地鉄中に固溶させる必要
があり、このAlN の固溶に要する最低温度が130
0℃である。なお加熱時間は、主にスラブの厚さによっ
て決まり、肉厚中心まで所定の温度域に到達する時間と
する。上記した熱間圧延に先立つ処理後は、熱間圧延及
び冷間圧延を公知の手法にて実施することにより、へげ
やふくれのない一方向性けい素鋼板を得ることができる
Furthermore, the temperature when heating again after the above-mentioned rolling is set to 1300°C or higher, since secondary recrystallization becomes unstable if it is lower than 1300°C. In other words, AlN precipitates have an effect on secondary recrystallization in the Goss orientation, and in order to obtain AlN of a specific minute size, which is especially effective, AlN must be solid-dissolved in the steel base once during the slab heating stage during hot rolling. The minimum temperature required for solid solution of AlN is 130℃.
It is 0°C. The heating time is mainly determined by the thickness of the slab, and is the time required to reach a predetermined temperature range up to the center of the thickness. After the above-described treatment prior to hot rolling, a unidirectional silicon steel sheet without sagging or blistering can be obtained by hot rolling and cold rolling using known methods.

【0015】[0015]

【実施例】実施例1 C:0.06%、Si:3.05%、sol.Al:0
.023 %、Mn:0.075 %、S:0.025
 %、N:0.0085%を含み、残部実質的に鉄及び
不可避不純物からなる、連続鋳造にて得た多数のけい素
鋼スラブを、 900〜1300℃の範囲の種々の温度
で20分間加熱した後、0〜30%の範囲の種々の圧下
率で圧延を施し、さらに1370℃で30分間加熱して
から、1.8 mm厚に熱間圧延した。次いで熱延板を
1050℃で連続焼鈍した後60秒間で常温まで急冷し
、その後88.9%の圧下率で冷間圧延し、0.20m
mの最終板厚とし、引き続き脱炭焼鈍、そしてH2 :
25%及びN2 :75%の雰囲気中で1200℃の最
終焼鈍を施した。かくして得られた最終製品におけるへ
げ及びふくれの発生数について調べた結果を、製品コイ
ル1000m当たりの発生数として、図1に示す。同図
から、熱間圧延に先立って、この発明に従う処理を施す
ことにより、表面欠陥の少ない表面性状の優れた一方向
性けい素鋼板が得られることがわかる。
[Example] Example 1 C: 0.06%, Si: 3.05%, sol. Al: 0
.. 023%, Mn: 0.075%, S: 0.025
%, N: 0.0085%, with the remainder essentially consisting of iron and unavoidable impurities, a number of silicon steel slabs obtained by continuous casting were heated at various temperatures in the range of 900 to 1300°C for 20 minutes. After that, it was rolled at various rolling reductions in the range of 0 to 30%, further heated at 1370°C for 30 minutes, and then hot rolled to a thickness of 1.8 mm. The hot rolled sheet was then continuously annealed at 1050°C, rapidly cooled to room temperature for 60 seconds, and then cold rolled at a rolling reduction of 88.9% to form a 0.20 m
m final plate thickness, followed by decarburization annealing, and H2:
A final annealing was performed at 1200°C in an atmosphere of 25% and N2:75%. The results of investigating the number of occurrences of blisters and blisters in the final product thus obtained are shown in FIG. 1 as the number of occurrences per 1000 m of product coil. From the figure, it can be seen that by performing the treatment according to the present invention prior to hot rolling, a unidirectional silicon steel sheet with fewer surface defects and excellent surface properties can be obtained.

【0016】実施例2 C:0.06%、Si:3.05%、sol.Al:0
.028 %、Mn:0.070 %、Se:0.02
0 %、N:0.0090%を含み、残部実質的に鉄及
び不可避不純物からなる、連続鋳造にて得た多数のけい
素鋼スラブを、900 〜1300℃の範囲の種々の温
度で20分間加熱した後、0〜30%の範囲の種々の圧
下率で圧延を施し、さらに1400℃で30分間加熱し
てから、1.8mm 厚に熱間圧延した。次いで熱延板
を1100℃で連続焼鈍した後60秒間で常温まで急冷
し、その後87.2%の圧下率で冷間圧延し、0.23
mmの最終板厚とし、引き続き脱炭焼鈍、そしてH2 
:25%及びN2 :75%の雰囲気中で1200℃の
最終焼鈍を施した。かくして得られた最終製品における
へげ及びふくれの発生数について調べた結果を、製品コ
イル1000m当たりの発生数として、図2に示す。同
図から、熱間圧延に先立って、この発明に従う処理を施
すことにより、表面欠陥の少ない表面性状の優れた一方
向性けい素鋼板が得られることがわかる。また、1回目
の加熱温度1100℃、その後の圧延の圧下率15%の
熱延板について2回目の加熱を1250, 1300,
 1400℃の種々の加熱温度で行なった結果を図3に
示す。同図から、1300℃以上で外観が改善されるこ
とが分かった。
Example 2 C: 0.06%, Si: 3.05%, sol. Al: 0
.. 028%, Mn: 0.070%, Se: 0.02
A large number of silicon steel slabs obtained by continuous casting, containing 0.0%, N: 0.0090%, and the remainder substantially consisting of iron and unavoidable impurities, were heated at various temperatures in the range of 900 to 1300°C for 20 minutes. After heating, rolling was performed at various reduction ratios in the range of 0 to 30%, further heated at 1400° C. for 30 minutes, and then hot rolled to a thickness of 1.8 mm. The hot rolled sheet was then continuously annealed at 1100°C, rapidly cooled to room temperature for 60 seconds, and then cold rolled at a rolling reduction of 87.2%.
mm final plate thickness, followed by decarburization annealing, and H2
Final annealing was performed at 1200° C. in an atmosphere of :25% and N2 :75%. The results of investigating the number of occurrences of blisters and blisters in the final product thus obtained are shown in FIG. 2 as the number of occurrences per 1000 m of product coil. From the figure, it can be seen that by performing the treatment according to the present invention prior to hot rolling, a unidirectional silicon steel sheet with fewer surface defects and excellent surface properties can be obtained. In addition, for a hot-rolled sheet whose first heating temperature was 1100°C and the subsequent rolling reduction ratio was 15%, the second heating was performed at 1250°C, 1300°C,
The results obtained at various heating temperatures of 1400° C. are shown in FIG. From the same figure, it was found that the appearance was improved at 1300°C or higher.

【0017】実施例3 C:0.06%、Si:3.05%、sol.Al:0
.030 %、N:0.0095%を含み、残部実質的
に鉄及び不可避不純物からなる、連続鋳造にて得た多数
のけい素鋼スラブを、900 〜1300℃の範囲の種
々の温度で20分間加熱した後、0〜30%の範囲の種
々の圧下率で圧延を施し、さらに1250と1350℃
で50分間加熱してから、1.8mm 厚に熱間圧延し
た。 次いで熱延板を1050℃で連続焼鈍した後60秒間で
常温まで急冷し、その後88.9%の圧下率で冷間圧延
し0.20mmの最終板厚とし、引き続き脱炭焼鈍、そ
してH2 :25%及びN2 :75%の雰囲気中で1
200℃の最終焼鈍を施した。 かくして得られた最終製品におけるへげ及びふくれの発
生数について調べた結果を、表1に示す。
Example 3 C: 0.06%, Si: 3.05%, sol. Al: 0
.. A large number of silicon steel slabs obtained by continuous casting, containing 0.030%, N: 0.0095%, and the remainder substantially consisting of iron and unavoidable impurities, were heated at various temperatures in the range of 900 to 1300°C for 20 minutes. After heating, rolling was performed at various reduction rates in the range of 0 to 30%, and further at 1250 and 1350°C.
After heating for 50 minutes, it was hot rolled to a thickness of 1.8 mm. The hot-rolled sheet was then continuously annealed at 1050°C, then rapidly cooled to room temperature for 60 seconds, then cold rolled at a reduction rate of 88.9% to a final thickness of 0.20mm, followed by decarburization annealing, and H2: 1 in an atmosphere of 25% and N2:75%.
A final annealing was performed at 200°C. Table 1 shows the results of investigating the number of blisters and blisters in the final product thus obtained.

【0018】[0018]

【表1】 同表から、熱間圧延に先立って、この発明に従う処理を
施すことにより、表面欠陥の少ない表面性状の優れた一
方向性けい素鋼板が得られることがわかる。
[Table 1] From the same table, it can be seen that by performing the treatment according to the present invention prior to hot rolling, a unidirectional silicon steel sheet with fewer surface defects and excellent surface properties can be obtained.

【0019】[0019]

【発明の効果】この発明によれば、インヒビター形成成
分として有効なAl及びN量を減らすことなしに、スラ
ブ加熱時に発生する割れを防止し、へげやふくれ等の表
面欠陥のない優れた表面性状を有する一方向性けい素鋼
板を製造でき、特に電気機器の積層鉄心の材料に最適の
製品を提供し得る。
Effects of the Invention According to the present invention, cracks that occur during slab heating can be prevented without reducing the amount of Al and N, which are effective as inhibitor-forming components, and an excellent surface free from surface defects such as baldness and blistering can be achieved. It is possible to produce a unidirectional silicon steel sheet having the desired properties, and it is possible to provide a product that is particularly suitable for use as a material for laminated cores of electrical equipment.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】スラブ加熱温度と表面欠陥発生率との関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between slab heating temperature and surface defect occurrence rate.

【図2】スラブ加熱温度と表面欠陥発生率との関係を示
すグラフである。
FIG. 2 is a graph showing the relationship between slab heating temperature and surface defect occurrence rate.

【図3】スラブ加熱温度と表面欠陥発生率との関係を示
すグラフである。
FIG. 3 is a graph showing the relationship between slab heating temperature and surface defect incidence rate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  インヒビター形成成分として、少なく
ともsol.Al:0.01〜0.06wt%及びN:
0.0030〜0.0120wt%を含有する含けい素
鋼の連続鋳造スラブを、熱間圧延して熱延板とした後、
この熱延板に1回法又は2回法の冷間圧延を施したのち
、脱炭焼鈍ついで最終仕上げ焼鈍を施す一連の工程によ
って方向性けい素鋼板を製造するに当たり、上記スラブ
に熱間圧延を施すに先立ち、1000℃〜1300℃の
温度域に加熱したのち2%以上の圧下率で圧延し、次い
で1300℃以上の高温域に加熱することを特徴とする
表面性状の優れた一方向性けい素鋼板の製造方法。
1. The inhibitor-forming component comprises at least sol. Al: 0.01-0.06wt% and N:
After hot rolling a continuously cast slab of silicon-containing steel containing 0.0030 to 0.0120 wt% to form a hot rolled sheet,
This hot-rolled sheet is subjected to one-step or two-step cold rolling, followed by decarburization annealing and final finish annealing to produce a grain-oriented silicon steel sheet. unidirectionality with excellent surface texture characterized by heating to a temperature range of 1000°C to 1300°C, rolling at a rolling reduction of 2% or more, and then heating to a high temperature range of 1300°C or more. Method of manufacturing silicon steel sheet.
JP03124526A 1991-04-30 1991-04-30 Method for producing unidirectional silicon steel sheet with excellent surface properties Expired - Fee Related JP3076084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03124526A JP3076084B2 (en) 1991-04-30 1991-04-30 Method for producing unidirectional silicon steel sheet with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03124526A JP3076084B2 (en) 1991-04-30 1991-04-30 Method for producing unidirectional silicon steel sheet with excellent surface properties

Publications (2)

Publication Number Publication Date
JPH04329832A true JPH04329832A (en) 1992-11-18
JP3076084B2 JP3076084B2 (en) 2000-08-14

Family

ID=14887667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03124526A Expired - Fee Related JP3076084B2 (en) 1991-04-30 1991-04-30 Method for producing unidirectional silicon steel sheet with excellent surface properties

Country Status (1)

Country Link
JP (1) JP3076084B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427820A (en) * 1977-08-02 1979-03-02 Shoei Kikai Seisakusho Kk Device for preventing wrong entry of paper to blade of buckle folding machine
JPS62149815A (en) * 1985-12-24 1987-07-03 Kawasaki Steel Corp Production of low iron loss grain oriented silicon steel sheet having decreased surface defect

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427820A (en) * 1977-08-02 1979-03-02 Shoei Kikai Seisakusho Kk Device for preventing wrong entry of paper to blade of buckle folding machine
JPS62149815A (en) * 1985-12-24 1987-07-03 Kawasaki Steel Corp Production of low iron loss grain oriented silicon steel sheet having decreased surface defect

Also Published As

Publication number Publication date
JP3076084B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
JPS6256225B2 (en)
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0567683B2 (en)
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0277524A (en) Production of thin high-flux-density grain-oriented electrical steel sheet having excellent iron loss
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JPH04329832A (en) Production of grain-oriented silicon steel sheet excellent in surface characteristic
JP2002105537A (en) Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density
JPH02138418A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and surface characteristic
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPS63109115A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH0387315A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property and surface characteristic
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPS6134117A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH0417618A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPS6134118A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH04362132A (en) Production of double oriented silicon steel sheet

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees