JPS62149815A - Production of low iron loss grain oriented silicon steel sheet having decreased surface defect - Google Patents

Production of low iron loss grain oriented silicon steel sheet having decreased surface defect

Info

Publication number
JPS62149815A
JPS62149815A JP28931985A JP28931985A JPS62149815A JP S62149815 A JPS62149815 A JP S62149815A JP 28931985 A JP28931985 A JP 28931985A JP 28931985 A JP28931985 A JP 28931985A JP S62149815 A JPS62149815 A JP S62149815A
Authority
JP
Japan
Prior art keywords
silicon steel
slab
rolling
hot rolling
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28931985A
Other languages
Japanese (ja)
Inventor
Osamu Hashimoto
修 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28931985A priority Critical patent/JPS62149815A/en
Publication of JPS62149815A publication Critical patent/JPS62149815A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a low iron-less grain oriented silicon steel sheet having decreased surface defects by subjecting a silicon steel slab contg. specific compsn. ratios of C, Si, Se and S to a preliminary hot rolling treatment under specific conditions then to hot and cold rolling, etc. CONSTITUTION:The silicon steel slab contg. 0.010-0.060wt% C, 2.5-4.0% Si, and contg. 0.010-0.10% Se and/or S as an inhibitor forming element is subjected to the preliminary hot rolling treatment under the conditions satisfying the formula; 130X(R+5)<1/4>XlogL<=T<=360, 800/(110+R).logL (where, T; the surface temp. of the slag, deg.C, L; the thickness of the slag, mm, R' the draft at the 1st pass, %) prior to hot rolling. The above-mentioned slab is thereafter subjected to hot rolling and cold rolling, then to decarburization, primary recrystallization annealing and final finish annealing. The low-rion loss grain oriented silicon steel sheet which obviates the generation of the surface defects such as scabs and cracks is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、一方向性けい素鋼板の製造方法に関し、と
くに表面性状の劣化を伴うことなしに鉄損のより一層の
低減を図ろうとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing unidirectional silicon steel sheets, and specifically aims to further reduce iron loss without deteriorating surface properties. It is something.

(従来の技術) 一方向性けい素鋼板は、主としてトランスや大型発電機
の鉄心として利用されていて、その特性としては磁束密
度(egoで代表される)が高くかつ鉄損(WI715
0で代表される)が低いことが要求される。
(Prior Art) Unidirectional silicon steel sheets are mainly used as iron cores for transformers and large power generators, and their characteristics include high magnetic flux density (represented by ego) and iron loss (WI715).
(represented by 0) is required to be low.

かような一方向性けい素鋼板において、上記の如き高磁
束密度化および低鉄損化を図る一手段として、通常の熱
間圧延に先立ってスラブを熱間で圧延する方法が知られ
ている(特公昭54−27820号、同50−3700
9号各公報)。
As a means of achieving high magnetic flux density and low core loss in such unidirectional silicon steel sheets, a method is known in which a slab is hot rolled prior to normal hot rolling. (Special Publication No. 54-27820, No. 50-3700
No. 9 publications).

上記の方法はいずれも、柱状晶組織を破壊して結晶粒の
微細化を図るために施されるもので、前者の特公昭54
−27820号公報においては結晶粒成長が生じない1
200℃以下の温度で圧延を行うことにより、一方後者
の特公昭50−37009号公報においては比較的高圧
下率(70%まで)で圧延することにより、細粒の再結
晶組織の形成をねらっている。
All of the above methods are used to destroy the columnar crystal structure and refine the crystal grains.
- No crystal grain growth occurs in Publication No. 278201
By rolling at a temperature of 200°C or less, on the other hand, the latter Japanese Patent Publication No. 50-37009 aims to form a fine-grained recrystallized structure by rolling at a relatively high reduction rate (up to 70%). ing.

ところでけい素鋼板の鉄損を低減する他の手段として、
インヒビターの含有量を高めることが考えられるが、イ
ンヒビターの増量の下に上記の方法を適用した場合には
、以下に述べるような問題があった。
By the way, as another means to reduce the iron loss of silicon steel sheets,
It is possible to increase the content of the inhibitor, but when the above method is applied to increase the amount of the inhibitor, there are problems as described below.

(発明が解決しようとする問題点) すなわち、 (1)高温で圧延するとヘゲが多発する。(Problem to be solved by the invention) That is, (1) When rolling at high temperatures, baldness occurs frequently.

(2)とはいえ低温で圧延すると、その後の熱間粗圧延
で割れが、また仕上げ圧延ではササヘゲが発生する。
(2) However, when rolled at low temperatures, cracks occur during subsequent hot rough rolling, and sag occurs during finish rolling.

(3)上記(1)、 (2)における表面欠陥の発生率
は、スラブ厚が厚くなるほど、また圧下率が高くなるほ
ど大きくなる傾向にある。
(3) The incidence of surface defects in (1) and (2) above tends to increase as the slab thickness increases and as the rolling reduction rate increases.

なおヘゲの問題については、特開昭59−80719号
公報において、スラブを1250℃以下に徐冷してから
搬送する方法が提案されているが、この方法では上記し
た如き圧延時に生成するヘゲや割れについては防止でき
ない。
Regarding the problem of sagging, Japanese Patent Application Laid-Open No. 59-80719 proposes a method of slowly cooling the slab to 1250°C or less before transporting it, but this method does not eliminate the sagging generated during rolling as described above. It is not possible to prevent warping and cracking.

この発明は、上記の問題を有利に解決するもので、イン
ヒビター量を増加させた場合であってもヘゲや割れなど
の表面欠陥の発生を効果的に防止して鉄損特性にすぐれ
た一方向性けい素鋼板を有利に得ることができる製造方
法を提案することを目的とする。
The present invention advantageously solves the above-mentioned problems, and even when the amount of inhibitor is increased, it effectively prevents the occurrence of surface defects such as bald spots and cracks, and has excellent iron loss characteristics. The purpose is to propose a manufacturing method that can advantageously obtain grain-oriented silicon steel sheets.

(問題点を解決するための手段) さて発明者らは、上記の問題を解決すべく、改めて熱間
圧延に先立つ圧延条件を綿密に検討したところ、線ヘゲ
に対しては低温熱延が、一方割れやササヘゲに対しては
高温熱延がそれぞれ好ましいことを知見した他、スラブ
厚や1パス目の圧下率に関連して割れやヘゲの発生しな
い条件も変化することの知見を得た。
(Means for Solving the Problem) In order to solve the above problem, the inventors once again carefully examined the rolling conditions prior to hot rolling, and found that low temperature hot rolling is effective against line curling. On the other hand, in addition to finding that high-temperature hot rolling is preferable for cracking and flaking, we also found that the conditions under which cracking and flaking do not occur change depending on the slab thickness and the rolling reduction in the first pass. Ta.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなりちこの発明は、C: 0.010〜0.060w
t%(以下車に%で示す) 、Si :2.5〜4.0
%を含存し、かつインヒビクー形成元素としてSeおよ
びSのうち少なくとも1種を0.010〜0.10wt
%の範囲において含有するけい素鋼スラブに、熱間圧延
ついで冷間圧延を施したのち、脱炭・1次再結晶焼鈍を
施し、しかるのち最終仕上げ焼鈍を施す一連の工程によ
って一方向性けい素鋼板を製造するに当たり、上記熱間
圧延に先立ち、けい素鋼スラブに、下記(1)式を満足
する条件下に予備熱延処理を施すことを特徴とする表面
欠陥の少ない低鉄損一方向性けい素鋼板の製造方法であ
る。
Sunarichiko's invention is C: 0.010~0.060w
t% (hereinafter shown in % on cars), Si: 2.5 to 4.0
% and at least one of Se and S as an inhibitor-forming element in an amount of 0.010 to 0.10 wt.
A silicon steel slab with a silicon content in the range of In producing a raw steel plate, prior to the above-mentioned hot rolling, the silicon steel slab is subjected to a preliminary hot rolling treatment under conditions that satisfy the following formula (1). This is a method for producing a grain-oriented silicon steel sheet.

記 L;スラブ厚み(mm) R:1パス目の圧下率(%) 以下この発明を具体的に説明する。Record L: Slab thickness (mm) R: 1st pass rolling reduction rate (%) This invention will be explained in detail below.

まずこの発明の基礎となった実験結果について説明する
First, the experimental results that formed the basis of this invention will be explained.

表1に示す化学組成になり、種々の厚みL(mm)およ
び表面温度T (t)を有するスラブに、熱間圧延に先
立って種々の圧下率(1パス目の圧下率R%)での圧延
すなわち予備熱延を施した。
Slabs having the chemical compositions shown in Table 1 and having various thicknesses L (mm) and surface temperatures T (t) were subjected to various rolling reductions (first pass rolling reduction R%) prior to hot rolling. Rolling, that is, preliminary hot rolling was performed.

かかる予備圧延後そのまま、常法に従って熱間粗圧延、
仕上げ圧延、冷間圧延、脱炭・1次再結晶焼鈍および最
終仕上げ焼鈍を施した。
After such preliminary rolling, hot rough rolling is carried out according to a conventional method.
Finish rolling, cold rolling, decarburization/primary recrystallization annealing, and final finish annealing were performed.

上記の製造工程中、予備熱延でスラブコーナ一部に発生
した割れと、焼鈍後の表面に現れた線ヘゲの発生率を測
定した。また熱延が低温すぎた場合にはササヘゲが発生
する場合があるので、その発生の有無についても調査し
た。
During the above manufacturing process, the occurrence rate of cracks that occurred in some slab corners during pre-hot rolling and line baldness that appeared on the surface after annealing was measured. In addition, if the hot rolling temperature is too low, scabbing may occur, so we also investigated whether this occurred.

ここに線ヘゲの発生率は、鋼板長手方向の単位長さ1m
当たりに線ヘゲが存在する場合(複数個であっても)を
1とし、その和を鋼板全長で除した1直に100を乗じ
ることによって求めた。
Here, the occurrence rate of line baldness is per unit length of 1 m in the longitudinal direction of the steel plate.
If there is a line sag in the area (even if there are multiple lines), it is set as 1, and the sum is divided by the total length of the steel plate, which is 1. It was calculated by multiplying 1 by 100.

かくして得られた結果のうち、1パス目の圧下率Rが2
0%の場合における割れの有無およびヘゲ発生率を、ス
ラブ厚しとスラブ表面温度Tとの関係で第1図に整理し
て示す。
Among the results obtained in this way, the rolling reduction ratio R of the first pass is 2
The presence or absence of cracks and the incidence of sagging in the case of 0% are summarized in FIG. 1 in relation to the slab thickness and the slab surface temperature T.

さて線ヘゲについては、これを完全になくすことは極め
て困難であるため、発生率を1%未満に抑制することが
当面の目標となるわけであるが、そのためには第1図よ
り明らかなように、下記(a)式、 T≦2774/log L    ・(a)を満足する
条件下に圧延を開始する必要がある。
Now, regarding line baldness, it is extremely difficult to completely eliminate it, so the immediate goal is to suppress the incidence to less than 1%. As such, it is necessary to start rolling under conditions that satisfy the following formula (a): T≦2774/log L ·(a).

玉出(a)式は、スラブ厚しが大きくなるほどより低温
で圧延を行う必要があることを示唆している。
The Tamade formula (a) suggests that the larger the slab thickness, the lower the temperature it is necessary to perform rolling.

ここに線ヘゲの発生のメカニズムは現在までのところま
だ明確には解明されてないが、圧延ロールへの噛込み時
に受ける衝撃によって粒界割れや疵が生じ、これらの割
れや疵は、スラブ厚みが大きいほど、また表面温度が高
く表層が軟質であるほど、さらには1バス目の圧下率が
高いほど多くなる傾向にあり、それが後工程を経て長く
伸ばされて線状のヘゲになるものと推定される。
Although the mechanism by which line baldness occurs has not been clearly elucidated to date, intergranular cracks and flaws occur due to the impact received when the slab is bitten by the rolling roll, and these cracks and flaws The larger the thickness, the higher the surface temperature and the softer the surface layer, and the higher the rolling reduction rate in the first bath, the more the amount will increase. It is estimated that

従って線ヘゲに関しては、とくにスラブ表面温度が重要
となる。
Therefore, the slab surface temperature is especially important for line shedding.

次にスラブのコーナー割れに関しては、第1図によると
低温圧延はどまたスラブ厚が厚いほど割れが発生し易い
ことがわかる。ここに割れ発生のない条件を求めると、
次式(1)) %式%() のようになる。
Next, regarding slab corner cracks, it can be seen from FIG. 1 that the thicker the slab thickness is, the more likely cracks are to occur in low-temperature rolling. If we look for conditions where no cracking occurs, we get
The following formula (1)) is as follows.

低温で圧延するほどコーナー割れが発生し易いのは、粒
内の延性不足によるものと考えられ、またスラブ厚が厚
いほど割れ易いのは、表層と中心層における変形の形態
の差、すなわちスラブエツジ部の圧延面表層では摩擦力
によるせん断変形が主であるのに対し、スラブ厚の中心
層では圧縮力による轡方向への変形が主というような形
態差が、スラブ厚が厚くなるほど大きくなるためと推定
される。
The reason why corner cracks are more likely to occur when rolling at a lower temperature is considered to be due to insufficient ductility within the grains, and the reason why the thicker the slab is, the more likely it is to crack is due to the difference in the form of deformation between the surface layer and the center layer, that is, the edge of the slab. This is because the morphological difference in which the surface layer of the rolled surface is mainly caused by shear deformation due to frictional force, whereas the center layer of the slab is mainly deformed in the rim direction due to compressive force, which becomes larger as the slab thickness increases. Presumed.

次に表1に示した組成で厚みLが100 ++++nお
よび300 mm(Qスラブについて、割れや線ヘゲに
対するスラブ表面温度Tと1パス目の圧下率Rとの関係
を第2−にまとめて示す。
Next, with the composition shown in Table 1, the thickness L is 100 ++++n and 300 mm (For the Q slab, the relationship between the slab surface temperature T and the rolling reduction ratio R of the first pass against cracks and line curling is summarized in 2- show.

線ヘゲについては、その発生率を1%未満におさえるた
めには、次式(C) T≦に、/(110+R)    ・・・ (C)の条
件を満足させる必要があり、ここに前掲(a)式との比
較によりに1は1/1ogLに比例することがわかる。
In order to suppress the incidence of line baldness to less than 1%, it is necessary to satisfy the following formula (C) where T≦, /(110+R)... (C), and here the above-mentioned A comparison with equation (a) shows that 1 is proportional to 1/1ogL.

一方割れについては、lパス目の圧下率Rが大きくなる
と表面温度を高くする必要があることがわかる。ここに
割れ発生のないスラブ表面温度T(℃)と1パス目の圧
下率R(%)との関係は、第2図より、次式(d) T≧に2X (5+R)I/4   ・・・ (d)で
表すことができる。
On the other hand, regarding cracks, it is understood that as the rolling reduction ratio R of the first pass increases, it is necessary to increase the surface temperature. From Figure 2, the relationship between the slab surface temperature T (℃) at which no cracking occurs and the rolling reduction ratio R (%) of the first pass is expressed by the following formula (d): T≧2X (5+R)I/4 ・... It can be expressed as (d).

ここでもに2は前掲(b)式との比較によりlog L
に比例することは明白であり、ここに数値計算によって
(c)、 (d)式の比例定数Kl、 K2の値を求め
たところ、線ヘゲも割れも発生しない条件は次式(1)
のとおりに表されることが判明した。
Here again, 2 is calculated as log L by comparison with equation (b) above.
It is clear that it is proportional to , and when we calculated the values of the proportionality constants Kl and K2 in equations (c) and (d) by numerical calculation, we found that the conditions under which neither line peeling nor cracking occurs are the following equation (1).
It turns out that it can be expressed as follows.

備熱延によってスラブ温度が低下し、それに伴って熱延
仕上げ温度が下がりすぎることによって発生すると考え
られるササヘゲを防止するために、予備熱延機再加熱を
施したのち、後続工程に供したが、かような再加熱を施
したものは、その後の熱間粗圧延の条件如何にかかわら
ず、ササヘゲはいうまでもなく割れは全く発生せず、ま
た線ヘゲの発生率も0.05%以下と著しく低減できた
In order to prevent sagging, which is thought to occur when the slab temperature decreases during pre-hot rolling and the resulting hot-rolling finishing temperature drops too much, the slab was reheated in the pre-hot rolling mill and then subjected to the subsequent process. , Regardless of the conditions of subsequent hot rough rolling, products subjected to such reheating do not have any cracks, let alone sagging, and the incidence of line sagging is 0.05%. It was significantly reduced to:

この理由についても現時点では未だ明確には解明されて
いないが、再加熱材の極表面層では、圧延、加熱さらに
は脱スケールなどによって、ヘゲや割れの発生原因の1
つであるSeやSの含有量が低減したためと推察される
Although the reason for this is not yet clearly understood, one of the causes of flaking and cracking is that the extreme surface layer of reheated materials is affected by rolling, heating, and descaling.
This is presumed to be due to a decrease in the content of Se and S.

なお上記の如き予備熱延後の再加熱の好適条件は100
0〜1400℃、15分間以下程度である。
The preferred conditions for reheating after preliminary hot rolling as described above are 100
The temperature is 0 to 1400°C for about 15 minutes or less.

(作 用) この発明において素材の成分組成を前記の範囲に限定し
た理由は次のとおりである。
(Function) The reason why the component composition of the material is limited to the above range in this invention is as follows.

C:0.010〜0.060% Cを0.010%未満まで低減するには溶製段階におい
て脱ガスを強化する必要があるが、かような処理は歩留
りの低下やコストアップを招き、一方0゜060%を超
えると、この発明のようにSe+Sを比較的多量に含有
する鋼種においては、M n S eや!AnSの固溶
のためにスラブ加熱温度を高< (1400℃以上)す
る必要が生じると共に、脱炭処理に長時間を要しコスト
の上昇を招くため、C含有量は0.010〜0、060
%の範囲に限定した。
C: 0.010-0.060% In order to reduce C to less than 0.010%, it is necessary to strengthen degassing in the melting stage, but such treatment causes a decrease in yield and an increase in cost. On the other hand, if it exceeds 0°060%, M n Se and! In order to dissolve AnS into solid solution, it is necessary to heat the slab to a high temperature (1400°C or higher), and the decarburization process takes a long time, leading to an increase in cost. 060
% range.

Si:2.5〜4.0% Siは、低鉄損化のためには少なくとも2.5%以上含
有させる必要があるが、4.0%を超えると加工性が劣
化するので、2.5〜4.0%の範囲に限定した。
Si: 2.5 to 4.0% Si must be contained in an amount of at least 2.5% in order to reduce iron loss, but if it exceeds 4.0%, workability deteriorates, so 2. It was limited to a range of 5 to 4.0%.

Seおよび/またはS :0.010〜0.10%Se
およびSはいずれも、インヒビター形成元素として有用
であり、この発明では十分に結晶方位のそろった二次再
結晶集合組織を得るために従来よりも比較的多量にこれ
らの元素を含有させるものとする。しかしながら0.1
0%を超えて含有させると固溶処理のための加熱温度が
著しく高くなる点で好ましくなく、一方0.010%に
満たないとその添加効果に乏しいので、0.010〜0
.10%の範囲で含有させるものとした。
Se and/or S: 0.010-0.10%Se
Both of S and S are useful as inhibitor-forming elements, and in this invention, these elements are contained in relatively larger amounts than conventionally in order to obtain a secondary recrystallized texture with sufficiently uniform crystal orientation. . However, 0.1
If the content exceeds 0%, the heating temperature for solid solution treatment becomes extremely high, which is undesirable. On the other hand, if the content is less than 0.010%, the effect of the addition is poor, so 0.010 to 0.
.. The content was set to be within 10%.

なお熱延仕上げ温度が低下しすぎるとササヘゲが発生す
るので、前掲(1)式の範囲を満足するスラブ表面温度
Tではあっても、このTが低下してササヘゲ発生のおそ
れが生じた場合には、予備熱延後に再加熱を施すことが
好ましい。
Note that if the hot-rolling finishing temperature falls too low, burrs will occur, so even if the slab surface temperature T satisfies the range of formula (1) above, if this T decreases and there is a risk of burlap occurring, It is preferable to perform reheating after preliminary hot rolling.

(実施例) 表2に示す化学成分(鋼D−F)に成り、厚みLが15
0,250,350 mmの各スラブに、スラブ表面温
度T (t>および1パス目の圧下率R(%)が表3に
示す条件下に予備熱延を施した。
(Example) The chemical composition (steel D-F) shown in Table 2 was obtained, and the thickness L was 15
Each slab of 0, 250, and 350 mm was subjected to pre-hot rolling under conditions where the slab surface temperature T (t>) and the first pass rolling reduction R (%) are shown in Table 3.

ついで再加熱を施しまたは施すことなしに、常法に従っ
て熱間圧延を終了し、ついで酸洗後、1回目の冷間圧延
によって0.70mmの冷延板とし、950度、5m1
nの中間焼鈍後、2回目の冷延によって最終板厚0.2
3mmの冷延板に仕上げたのち、820度、10m1n
の脱炭、1次再結晶焼鈍および1200℃、50hの仕
上げ焼鈍を施した。
Then, hot rolling was completed according to a conventional method with or without reheating, and after pickling, a cold rolled sheet of 0.70 mm was obtained by the first cold rolling, and heated at 950 degrees, 5 m1.
After n intermediate annealing, the final plate thickness is 0.2 by second cold rolling.
After finishing it into a 3mm cold-rolled plate, it was heated to 820 degrees and 10m1n.
decarburization, primary recrystallization annealing, and final annealing at 1200°C for 50 hours.

かくして得られた各製品板の磁気特性とヘゲ発生率、な
らびに熱延工程における割れ発生の有無について調べた
結果を、表3にまとめて示す。
Table 3 summarizes the results of examining the magnetic properties and sagging occurrence rate of each product sheet thus obtained, as well as the presence or absence of cracking during the hot rolling process.

表3に示したとおり、スラブ表面温度T、スラブ厚しお
よび予備熱延における1パス目の圧下率Rが(1)式の
条件を逸脱した場合、すなわちTが下限に満たない供試
N014および7はいずれも割れが発生し、一方上限を
超えた供試N003および6はいずれもヘゲ発生率が高
い。
As shown in Table 3, when the slab surface temperature T, the slab thickness, and the rolling reduction ratio R of the first pass in pre-hot rolling deviate from the conditions of formula (1), that is, when T is less than the lower limit, sample N014 and Cracks occurred in all samples No. 7, while samples No. 003 and No. 6, which exceeded the upper limit, both had a high occurrence of bald spots.

またSおよびSe量が下限に満たない鋼Fを用いた場合
(供試No、9.lO)は、たとえ(1)式の条件は満
足したとしても磁気特性も悪い。
Further, when steel F in which the amounts of S and Se are less than the lower limit (sample No. 9.1O) is used, the magnetic properties are poor even if the condition of equation (1) is satisfied.

これに対し、この発明に従い得られた供試No、 1 
On the other hand, sample No. 1 obtained according to the present invention
.

2.5,8.11および12はいずれも、割れの発生は
なく、ヘゲ発生率も低く、さらに磁気特性にも優れてい
た。
No. 2.5, 8.11, and 12 had no cracks, a low rate of sagging, and excellent magnetic properties.

(発明の効果) かくしてこの発明によれば、表面性状の劣化を伴うこと
なしに磁気特性とくに鉄損特性に優れた一方向性けい素
鋼板を得ることができる。
(Effects of the Invention) Thus, according to the present invention, a unidirectional silicon steel sheet having excellent magnetic properties, particularly iron loss properties, can be obtained without deterioration of surface properties.

さらにこの発明では、従来、インヒビター増量の下に予
備熱延を施した場合に不可避とされた表面手入れを行う
必要がないので、省力化および歩留りの向上にも大きく
貢献する。
Furthermore, in the present invention, there is no need to carry out surface care, which was conventionally considered unavoidable when preliminary hot rolling was performed under the condition of increasing the amount of inhibitor, thereby greatly contributing to labor saving and improvement in yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、割れ発生の有無およびヘゲ発生率を、スラブ
厚しと1パス目のスラブ表面温度Tとの関係で示したグ
ラフ、 第2図は、割れや線ヘゲに対するスラブ表面温度Tと1
パス目の圧下率Rとの関係を示したグラフである。
Figure 1 is a graph showing the presence or absence of cracks and the incidence of sagging in relation to the slab thickness and the slab surface temperature T of the first pass. Figure 2 is a graph showing the slab surface temperature for cracks and line sagging. T and 1
It is a graph showing the relationship between the rolling reduction ratio R of the pass.

Claims (1)

【特許請求の範囲】 1、C:0.010〜0.060wt%、 Si:2.5〜4.0wt% を含有し、かつインヒビター形成元素としてSeおよび
Sのうち少なくとも1種を0.010〜0.10wt%
の範囲において含有するけい素鋼スラブに、熱間圧延つ
いで冷間圧延を施したのち、脱炭・1次再結晶焼鈍を施
し、しかるのち最終仕上げ焼鈍を施す一連の工程によっ
て一方向性けい素鋼板を製造するに当たり、 上記熱間圧延に先立ち、けい素鋼スラブに、下記(1)
式を満足する条件下に予備熱延処理を施すことを特徴と
する表面欠陥の少ない低鉄損一方向性けい素鋼板の製造
方法。 記 130×(R+5)^1^/^4×logL≦T≦36
0800/[(110+R)・logL]…(1)ここ
でT:スラブ表面温度(℃) L:スラブ厚み(mm) R:1パス目の圧下率(%)
[Claims] 1. Contains 0.010 to 0.060 wt% of C, 2.5 to 4.0 wt% of Si, and 0.010 wt% of at least one of Se and S as an inhibitor-forming element. ~0.10wt%
A unidirectional silicon steel slab containing silicon steel in the range of In manufacturing steel plates, the following (1) is applied to silicon steel slabs prior to the above hot rolling.
A method for producing a unidirectional silicon steel sheet with few surface defects and low iron loss, characterized by performing preliminary hot rolling treatment under conditions satisfying the formula. Note 130×(R+5)^1^/^4×logL≦T≦36
0800/[(110+R)・logL]...(1) where T: Slab surface temperature (℃) L: Slab thickness (mm) R: 1st pass rolling reduction (%)
JP28931985A 1985-12-24 1985-12-24 Production of low iron loss grain oriented silicon steel sheet having decreased surface defect Pending JPS62149815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28931985A JPS62149815A (en) 1985-12-24 1985-12-24 Production of low iron loss grain oriented silicon steel sheet having decreased surface defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28931985A JPS62149815A (en) 1985-12-24 1985-12-24 Production of low iron loss grain oriented silicon steel sheet having decreased surface defect

Publications (1)

Publication Number Publication Date
JPS62149815A true JPS62149815A (en) 1987-07-03

Family

ID=17741650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28931985A Pending JPS62149815A (en) 1985-12-24 1985-12-24 Production of low iron loss grain oriented silicon steel sheet having decreased surface defect

Country Status (1)

Country Link
JP (1) JPS62149815A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329832A (en) * 1991-04-30 1992-11-18 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in surface characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329832A (en) * 1991-04-30 1992-11-18 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in surface characteristic

Similar Documents

Publication Publication Date Title
JPH0158255B2 (en)
JPS62149815A (en) Production of low iron loss grain oriented silicon steel sheet having decreased surface defect
JPH10251754A (en) Manufacture of nonoriented silicon steel sheet
JPS6234803B2 (en)
JPH0160531B2 (en)
JPS6059967B2 (en) Method for preventing surface defects in low Mn-low Al slabs
JPH01198428A (en) Production of non-oriented silicon steel sheet having excellent magnetic characteristic
JPS6024325A (en) Production of ferritic stainless steel plate having less ridging and excellent formability
JPH0665746B2 (en) Method for manufacturing titanium hot-rolled sheet
JPS6376706A (en) Production of thin sheet made of alpha+beta type alloy titanium
JP2000042604A (en) Manufacture of steel plate having excellent surface property
JPS59123720A (en) Production of cold rolled steel sheet for deep drawing
JPH07173537A (en) Production of austenitic stainless hot rolled steel strip
JPS61243124A (en) Production of black plate for tin plate having excellent workability
JPS5818964B2 (en) Method for manufacturing high-strength hot-rolled steel sheets with excellent low-temperature toughness
JPH04120215A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic and surface characteristic
JP4696341B2 (en) Manufacturing method of thin steel sheet with excellent surface properties
JPH058257B2 (en)
JPH08120348A (en) Production of steel sheet for hard can small in plane anisotropy
JPS62136526A (en) Production of cr stainless steel strip
JPS6320889B2 (en)
JPS5989723A (en) Manufacture of steel sheet for working by continuous casting and direct hot rolling
JPH0132291B2 (en)
JPS6036622A (en) Production of cold rolled steel plate by continuous annealing
JPS62270726A (en) Manufacture of cold rolled steel sheet having superior workability