JPS6134118A - Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss - Google Patents

Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss

Info

Publication number
JPS6134118A
JPS6134118A JP15387584A JP15387584A JPS6134118A JP S6134118 A JPS6134118 A JP S6134118A JP 15387584 A JP15387584 A JP 15387584A JP 15387584 A JP15387584 A JP 15387584A JP S6134118 A JPS6134118 A JP S6134118A
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
steel sheet
intermediate annealing
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15387584A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Hiroshi Koho
光法 弘視
Tomoo Tanaka
田中 智夫
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15387584A priority Critical patent/JPS6134118A/en
Publication of JPS6134118A publication Critical patent/JPS6134118A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a steel sheet having both high magnetic flux density and ultralow iron loss by applying a specified annealing until final cold rolling after intermediate annealing, in manufacture in which silicon steel material contg. Mo and havng a specified compsn. is hot rolled, cold rolled contg. intermediate annealing, and finally decarbonizing annealed. CONSTITUTION:Grain oriented silicon steel material contg. by weight, 0.01- 0.06% C, 2.0-4.0% Si, 0.01-0.2% Mn, 0.003-0.1% Mo, 0.005-0.2% Sb and 0.005-0.10% total of one or two kinds of S and Sb is hot rolled, next, cold rolled at least one time or more to final sheet thickness while contg. intermediate annealing. Here, annealing at 150-500 deg.C for 1sec-30min is carried out between said intermediate annealing and final cold rolling. Thereafter, said sheet is decarbonizing annealed also for primary recrystallization, the finishing annealed finally to develop secondary recrystallization grain having (110)[001] orientation. Thus, without inconvenience such as dirt of steel sheet surface in manufacturing process, grain oriented silicon steel sheet having >=1.91 T magnetic flux density B10, and <=1.00W/kg iron loss W17/50 is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁束密度が高く鉄損の低い一方向性けい素
鋼板の製造方法に関し、とくに中間焼鈍から最終冷延ま
での間に短時間熱処理を施すことKより、磁気特性の有
利な改善を図ろうとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing unidirectional silicon steel sheets with high magnetic flux density and low iron loss, and in particular, in a short period of time from intermediate annealing to final cold rolling. This is intended to improve the magnetic properties more favorably than by applying heat treatment.

(従来の技術) 一七白hI+鋒い害纏炬け−制ユル澹虚ナス2六箕結晶
粒を(lio)〔oox)方位すなわちGags方位に
高度に集積させたもので、主として変圧器その他の電気
機器の鉄心として使用されており、磁気特性として製品
の磁束密度が高く、鉄損が低いことが要求される。特に
エネルギー危機を境にして最近は電力損失の低減を特徴
とする請が著しく強まり、変圧器鉄心材料として鉄損の
より低い一方向性けい素鋼板の必要性はますます重要な
ものとなつ【きていφ。
(Prior art) It is a product in which crystal grains are highly concentrated in the (lio) [oox] direction, that is, the Gags direction, and are mainly used in transformers and other devices. It is used as the iron core of electrical equipment, and the product is required to have high magnetic flux density and low iron loss. Particularly in the wake of the energy crisis, demand for features that reduce power loss has become much stronger, and the need for unidirectional silicon steel sheets with lower iron loss as transformer core materials has become increasingly important. Come φ.

一方向性けい素鋼板の鉄損を低くする手法としては、 ■ S1含有量を増加させて電気抵抗を高めて鉄損を低
くする、 ■ 製品板厚を薄くする、 ■ 鋼板の純度をあげる、あるいは ■ 鋼板の2次再結晶粒のGoss集積度を高めかつ結
晶粒径を小さくする など、主に冶金学的な手法が一般に知られているが、こ
れらの手法は現行の生産手段での限界値に近い状態と考
えられている。
Methods to lower the iron loss of unidirectional silicon steel sheets include: ■ Increasing the S1 content to increase electrical resistance and lowering iron loss, ■ Decreasing the thickness of the product sheet, ■ Increasing the purity of the steel sheet. Or ■ Mainly metallurgical methods are generally known, such as increasing the Goss accumulation degree of secondary recrystallized grains of steel sheets and reducing the grain size, but these methods are limited by current production methods. It is considered to be close to the value.

これらの方法とは別に、特公昭54−28647号公報
に開示されているよさに鋼板表面に2次再結晶阻止領域
を形成させることKより、2次再結晶粒な細粒化させる
方法が提案されている。しかしこの方法は2次再結晶粒
径の制御が安定していな(・ため、実用的とは云いがた
い。一方、特公昭58−5968号公etcはS次再結
晶後の鋼板の表面にボールペン状小球によって微小歪を
鋼板表層に導入することにより、磁区の幅を微細化し、
鉄損な低減する方法が、またさらに特公昭57−225
2号公報には最終製品板表面に圧延方向とほぼ直角にレ
ーザービームな数mm間隔にて照射し、鋼板表層に高転
位密度領域を導入することKより磁区の幅を微細化し、
鉄損を低減する方法がそれぞれ提案され、そしてまた特
開昭67−18881号公報には、放電加工により鋼板
表層に微小歪を導入して磁区幅を微細化し、鉄損を低減
する同様な方法も提案されている。これら8種類の方法
はいずれもS次再結晶後の鋼板の地鉄表面に微小な塑性
歪を導入することKより、磁区幅を微細化して鉄損の低
減を図るものであって、均しく実用的であり、かつ鉄損
低減効果も優れているが、鋼板の打抜き加工、せん断加
工や、巻き加工後の歪取り焼鈍その他コーティングの焼
付は処理の如き熱処理によって、塑性歪導入による効果
が減殺される欠点を伴う。なおコーティング処理後に微
小な塑性歪を導入する場合は、絶縁性を維持するために
1絶縁コーテイングの再塗装を施さねばならず歪付与工
程、再塗装工程と、工程の大幅増加になりコストアップ
をもたらす不利も加わる(発明が解決しようとする問題
点) 以上最近の低鉄損一方向性けい素鋼板の製造技術を述べ
たが、発明者らは低鉄損の製品を得る手法として製品の
磁区細分化技術を利用することとは別にもつと冶金学的
な手法による鉄損向上の模索実験を行ってきた。
Apart from these methods, a method has been proposed in which the secondary recrystallization grains are made finer by forming a secondary recrystallization inhibiting region on the surface of the steel sheet, as disclosed in Japanese Patent Publication No. 54-28647. has been done. However, this method cannot be said to be practical because the control of the secondary recrystallized grain size is unstable.On the other hand, Japanese Patent Publication No. 58-5968 etc. By introducing minute strain into the surface layer of the steel plate using ballpoint pen-shaped balls, the width of the magnetic domain is made finer.
A further method for reducing iron loss was published in Japanese Patent Publication No. 57-225.
Publication No. 2 discloses that the width of the magnetic domain is made finer by irradiating the surface of the final product sheet with a laser beam at intervals of several mm almost perpendicular to the rolling direction to introduce high dislocation density regions into the surface layer of the steel sheet.
Various methods for reducing iron loss have been proposed, and Japanese Patent Application Laid-Open No. 18881/1983 describes a similar method of reducing iron loss by introducing micro-strain into the surface layer of a steel sheet by electric discharge machining to refine the magnetic domain width. has also been proposed. All of these eight methods aim to reduce iron loss by refining the magnetic domain width by introducing minute plastic strain to the surface of the steel sheet after S-order recrystallization, and evenly. Although it is practical and has an excellent iron loss reduction effect, the effect of introducing plastic strain is reduced by heat treatment such as punching and shearing of steel sheets, strain relief annealing after winding, and baking of coatings. It comes with some disadvantages. In addition, when introducing minute plastic strain after the coating process, it is necessary to repaint the first insulation coating to maintain the insulation properties, which significantly increases the number of processes such as the strain imparting process and the repainting process, which increases costs. This also adds disadvantages (problems to be solved by the invention) The recent manufacturing technology for low core loss unidirectional silicon steel sheets has been described above. In addition to using subdivision technology, we have been conducting experiments to explore ways to improve iron loss using metallurgical methods.

その結果、MOを含有する一方向性けい素鋼板につき、
その最終冷延前KIIIθ〜500℃の温度で温間圧延
を施して800〜500Hvの硬い鋼板と製造が可能で
あることを突き止め、特願昭58−280848号明細
書に開示した。
As a result, for the unidirectional silicon steel sheet containing MO,
It was found that it was possible to produce a hard steel sheet of 800 to 500 Hv by warm rolling at a temperature of KIIIθ to 500° C. before the final cold rolling, and this was disclosed in Japanese Patent Application No. 58-280848.

またこれとは別に%公昭54−18846号公報および
特公昭54−29182号公報においては、含Ag一方
向性けい素鋼板の強冷延の際に50℃〜600℃の温度
で温間圧延あるいはパス間時効により鉄損の低い一方向
性けい素鋼板を得る製造方法が提案されている。しかし
ながらこれらの手法は、磁気特性の向上には役立つが、
温間圧延のため鋼板表面が汚されるので、次の脱炭・1
次再結晶焼鈍に悪影響を与えたり、また圧延途中で長時
間の焼鈍処理が必要であることからコストアップをもた
らすなど、実際の製造工程への適用にはまだ解決すべき
問題が多かった。
Separately, in Japanese Patent Publication No. 18846/1984 and Japanese Patent Publication No. 29182/1984, hot rolling or A manufacturing method for obtaining unidirectional silicon steel sheets with low core loss through interpass aging has been proposed. However, although these methods are useful for improving magnetic properties,
Since the surface of the steel plate is contaminated due to warm rolling, the next step is decarburization/1.
There are many problems that still need to be resolved before it can be applied to actual manufacturing processes, such as adversely affecting the subsequent recrystallization annealing and requiring a long annealing treatment during rolling, which increases costs.

この発明は、上記の諸問題を有利に解決するもので、製
造過程において鋼板表面が汚れるなどの不利を生じるこ
となしに、 B□。値が少なくとも1.91 Tの高磁
束密度とW1?/、o値が1.00”/ly以下の超低
鉄損とを併せ備える一方向性けい素鋼板を提案すること
を目的とする。
This invention advantageously solves the above-mentioned problems without causing disadvantages such as staining of the steel plate surface during the manufacturing process.B□. A high magnetic flux density with a value of at least 1.91 T and W1? The object of the present invention is to propose a grain-oriented silicon steel sheet that also has ultra-low core loss with an o value of 1.00''/ly or less.

(問題点を解決するための手段) すなわちこの発明は、C: 0.01〜0.06 wt
%(以下単に%で示す)、si : 2.0〜4.0%
、Mn: 0.01〜0.2%、Mo : 0.008
〜0.1%およびBb : 0.005〜04%を含み
かつ、SおよびSeのうちいずれか一種または二種合計
で0.005〜0.10%を含有する組成になる一方向
性けい素鋼素材を、熱間圧延し、ついで中間焼鈍を含む
1回以上の冷間圧延を施して最終板厚としたのち、1次
再結晶を兼ねた脱炭焼鈍を施し、しかるのち最終仕上げ
焼鈍を施して(1]、 O) (001)方位の2次再
結晶粒を発達させる一連の工程よりなる一方向性けい素
鋼板の製造方法において、上記中間焼鈍後最終冷延まで
の間に、150〜500℃の温度範囲で1秒ないし80
分間の焼鈍処理を施すことからなる、磁束密度が高く鉄
損の低い一方向性げい素鋼板の製造方法である。
(Means for Solving the Problems) That is, this invention provides C: 0.01 to 0.06 wt.
% (hereinafter simply expressed as %), si: 2.0 to 4.0%
, Mn: 0.01-0.2%, Mo: 0.008
~0.1% and Bb: 0.005 to 04%, and a unidirectional silicon having a composition containing one or both of S and Se in total of 0.005 to 0.10% The steel material is hot rolled, then cold rolled one or more times including intermediate annealing to obtain the final thickness, then subjected to decarburization annealing that also serves as primary recrystallization, and then final finish annealing. In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps of developing secondary recrystallized grains with (1], O) (001) orientation, during the period from the intermediate annealing to the final cold rolling, 150 1 second to 80℃ in the temperature range of ~500℃
This is a method for producing a unidirectional silicon steel sheet with high magnetic flux density and low core loss, which comprises performing an annealing treatment for 30 minutes.

この発明において中間焼鈍は、焼鈍後900℃から常温
までの冷却速度が5 ’C/s以上の急冷処理を伴うも
のや、常温から900℃まで罠わたる昇温速度ならびに
冷却速度がいずれも5 ’気取上である急熱、急冷処理
を伴うものが、とりわけ有利に適合する。
In this invention, the intermediate annealing includes a rapid cooling treatment with a cooling rate of 5'C/s or more from 900°C to room temperature after annealing, or a process in which the heating rate and cooling rate from room temperature to 900°C are both 5'C/s or more. Those that involve rapid heating and rapid cooling are particularly advantageous.

以下、この発明を由来するに至った実験結果に基き、こ
の発明を具体的に説明する。
Hereinafter, this invention will be specifically explained based on the experimental results that led to this invention.

C: 0.045%、Si : 8.40%、Mn :
 0.068%、Ss : 0.020%およびSb 
: 0.025%を含有する組成になるけい素鋼の熱延
板(・厚み2.7mm)を、900℃で8分間の均一化
焼鈍を施してから、約70%の1次冷延を行なった。つ
いで中間焼鈍およびその後の時効焼鈍および温間圧延を
、第1表に示すような(1)〜(lO)の条件で処理し
た。その後試料は冷間圧延を施してo、sornm厚の
最終冷延板としたのち、820℃の湿水素中で脱炭・1
次再結晶焼鈍を施した。その後鋼板表面にMgoを主成
分とする焼鈍分離剤を塗布してから850℃で50時間
の2次再結晶焼鈍を施し、ついで水素中で1180℃、
5時間の純化焼鈍を施した。
C: 0.045%, Si: 8.40%, Mn:
0.068%, Ss: 0.020% and Sb
: A hot-rolled sheet of silicon steel (thickness: 2.7 mm) with a composition containing 0.025% is uniformly annealed at 900°C for 8 minutes, and then primary cold rolled to approximately 70%. I did it. Then, intermediate annealing, subsequent age annealing, and warm rolling were performed under conditions (1) to (lO) as shown in Table 1. After that, the sample was cold-rolled to form a final cold-rolled sheet with a thickness of 0.45 mm, and then decarburized in wet hydrogen at 820°C.
Next, recrystallization annealing was performed. Thereafter, an annealing separator containing Mgo as a main component was applied to the surface of the steel sheet, and secondary recrystallization annealing was performed at 850°C for 50 hours, followed by annealing at 1180°C in hydrogen.
Purification annealing was performed for 5 hours.

得られた製品の磁気特性について調べた結果を第1表に
併記する。
The results of investigating the magnetic properties of the obtained product are also listed in Table 1.

第1表に示した結果から明らかなように1中間焼鈍条件
はいずれKしろ、その後に850℃で20秒間程度の時
効焼鈍を施す(44,5,6および10)ことKよって
、磁気特性はBloおよびW□V/SOとも著しく改善
されている。
As is clear from the results shown in Table 1, the first intermediate annealing condition is K, followed by aging annealing at 850°C for about 20 seconds (44, 5, 6 and 10). Both Blo and W□V/SO are significantly improved.

これに対し、特願昭58−180848号明細書に開示
された方法に従い、中間焼鈍後に単に850℃で温間圧
延を施した場合(47,8および9)は、通常の焼鈍処
理(/161)、焼鈍後急冷処理を付加した場合(還2
)および急熱・急冷処理を令加した場合(、%8)K較
べると、磁気特性は幾分改善されてはいるけれども十分
とはいい難い。
On the other hand, when warm rolling was simply performed at 850°C after intermediate annealing according to the method disclosed in Japanese Patent Application No. 58-180848 (47, 8 and 9), normal annealing treatment (/161 ), when rapid cooling treatment is added after annealing (reduction
) and when rapid heating/quenching treatment was added (%8) K, the magnetic properties were somewhat improved, but it cannot be said to be sufficient.

上記したように中間焼鈍後に時効焼鈍処理を施すことK
よって磁気特性が改善される理由は、まだ明確に解明さ
れたわけではないが、次のとおりと考えられる。
As mentioned above, age annealing treatment is performed after intermediate annealing.
The reason why the magnetic properties are improved has not yet been clearly elucidated, but it is thought to be as follows.

すなわちかかる低温時効を行うことによって1次再結晶
粒内に微細な炭化物を析出させたのちに冷間圧延を施す
と、微細析出物の影響で冷間圧延組織中の(111)〔
IIJ)方位の変形結晶粒内に変形帯(Deforma
tion Band )が優先的に形成され、次の脱炭
・1次再結晶焼鈍においてこの変形帯からゴス方位の1
次再結晶粒が優先生成し、その後の2次再結晶焼鈍にお
いてゴス方位の2次再結晶粒が効果的に発達する条件が
整うためと考えられる。
In other words, when cold rolling is performed after fine carbides are precipitated within the primary recrystallized grains by such low-temperature aging, (111) [
There is a deformation band (Deforma
tion Band) is preferentially formed, and in the subsequent decarburization and primary recrystallization annealing, the Goss-oriented 1
This is thought to be because conditions are established in which secondary recrystallized grains are preferentially generated and secondary recrystallized grains in the Goss orientation are effectively developed in the subsequent secondary recrystallization annealing.

この考えは従来のように、中間焼鈍後の冷却途中に炭化
物を微細に析出させることをねらったものとは異なり、
一旦常温まで下げたのちに再び炭化物をマトリックス内
に微細析出させることによって、次の冷間圧延において
(111)<112>方位の変形粒内に変形帯の優先的
な形成を図るとの考えに型動するものである。
This idea is different from the conventional one, which aims to finely precipitate carbides during cooling after intermediate annealing.
The idea is that by once lowering the temperature to room temperature, carbides are finely precipitated within the matrix again to form deformation bands preferentially within the deformed grains in the (111) <112> orientation during the next cold rolling. It is something that changes.

次にこの発明において素材の成分組成を前記のとおりに
限定した理由について説明する。
Next, the reason why the component composition of the material is limited as described above in this invention will be explained.

C: 0.01〜0.06% Cは、0.01%より少ないと熱延集合組織制御が困難
で大きな伸長粒が形成されるため磁気特性が劣化し、一
方Cが0.06%より多いと脱炭工程で脱炭に時間がか
かり経済的でないので、0.01〜0.06%の範囲と
する必要がある。
C: 0.01 to 0.06% When C is less than 0.01%, it is difficult to control the hot rolling texture and large elongated grains are formed, resulting in deterioration of magnetic properties.On the other hand, when C is less than 0.06% If it is too large, it will take a long time to decarburize in the decarburization process, making it uneconomical, so it should be in the range of 0.01 to 0.06%.

Si : 2.0〜4.0% Slは、2.0%より少ないと電気抵抗が低く渦流損失
増大に基づく鉄損値が大きくなり、一方4.0%より多
いと冷延の際に脆性割れが生じ易くなるため2.0〜4
.0%の範囲内圧することが必要である。
Si: 2.0-4.0% If less than 2.0%, the electrical resistance will be low and the iron loss value will increase due to increased eddy current loss, while if it is more than 4.0%, it will cause brittleness during cold rolling. 2.0 to 4 because cracks are likely to occur
.. It is necessary to keep the pressure within the range of 0%.

Mn : 0.01〜0.2% Mnは、0.01%より少ないと充分なMnSeの析出
物を作ることが出来なく、一方0.2%より多いとMn
Seの析出物を溶解するのに加熱温度を高(しなければ
ならないため■は0.01〜0.2%の範囲にする必要
がある。
Mn: 0.01-0.2% If Mn is less than 0.01%, sufficient MnSe precipitates cannot be formed, while if it is more than 0.2%, Mn
Since the heating temperature must be high to dissolve Se precipitates, (2) must be in the range of 0.01 to 0.2%.

Mo : 0.008〜0.1% Mo Kついては、発明者らが先に特公昭57−147
87号公報および特公昭56−4618号公報において
開示したように、、0.1%までの少量のMO添加で1
次再結晶粒成長抑制効果があり、この発明においても同
様の効果が期待できる。MOが0.1%より多いと熱間
および冷間加工性が低下し、また鉄損が劣化するのでM
oは0.1%以下の範囲内にする必要があり、他方o、
ooa%より低いと、1次再結晶粒の成長抑制効果が小
さいためMoは0.008〜0.1%の範囲内にする必
要がある。
Mo: 0.008-0.1% Regarding Mo K, the inventors first published the
As disclosed in Japanese Patent Publication No. 87 and Japanese Patent Publication No. 56-4618, by adding a small amount of MO up to 0.1%,
It has the effect of suppressing the growth of subsequent recrystallized grains, and the same effect can be expected in the present invention. If MO is more than 0.1%, hot and cold workability will decrease, and iron loss will deteriorate, so M
o must be within the range of 0.1% or less, while o,
If it is lower than ooa%, the effect of suppressing the growth of primary recrystallized grains is small, so Mo needs to be within the range of 0.008 to 0.1%.

Sおよび/またはSe : 0.005〜0.10%B
zBeは何れも、0.1%以下、なかでもSは0.00
8〜0.1%、またSeは0.008〜0.1%の範囲
とすることが好ましい。それというのはこれらが0.1
%をこえると熱間および冷間加工性が劣化し、またそれ
ぞれ下限値に満たないとMnS。
S and/or Se: 0.005-0.10%B
All zBe is 0.1% or less, especially S is 0.00
The content of Se is preferably 8 to 0.1%, and the content of Se is preferably 0.008 to 0.1%. That means these are 0.1
%, hot and cold workability deteriorates, and below each lower limit, MnS.

MnSeとしての1次再結晶粒成長抑制機能に格別の効
果を生じないからであるが、すでに実験例についてのべ
たよ5 Vr、Sb s Moなどの既知1次り成長抑
制を有利に併用し得るので、SおよびBeの下限値は合
計で0.005%で足りる。
This is because MnSe does not have a particular effect on the primary recrystallized grain growth inhibiting function, but known primary growth inhibitors such as Betayo5 Vr and Sb s Mo, which have already been described in the experimental examples, can be used advantageously in combination. Therefore, a total lower limit of 0.005% for S and Be is sufficient.

Sb : 0.005〜0.2% Sbは、発明者らがかつて開示した特公昭88−821
4号公報によれば0.005〜0.1%含有され、また
同様に発明者らがさきに開示した特公昭51−1146
9号公報によれば0.005〜0.2%において微量の
SeまたはSとともに含有されることKより、1次粒の
成長が抑制されることが知られているとおりであり、S
bは0.005%より少ないと1次再結晶粒抑制効果が
少なく、一方0.2%より多いと磁束密度が低下し始め
て磁気特性を劣化させるので、Sbは0.006〜0.
2%の範囲内にする必要がある。
Sb: 0.005-0.2%
According to Publication No. 4, it is contained in 0.005 to 0.1%, and also in Japanese Patent Publication No. 51-1146, which the inventors previously disclosed.
According to Publication No. 9, it is known that the growth of primary grains is suppressed by K containing a trace amount of Se or S at 0.005 to 0.2%;
If b is less than 0.005%, the effect of suppressing primary recrystallized grains will be small, whereas if it is more than 0.2%, the magnetic flux density will begin to decrease and the magnetic properties will deteriorate, so Sb should be 0.006 to 0.
It is necessary to keep it within 2%.

この発明においては、上述の如くけい素鋼素材中にCO
,01〜0.06%、812.0〜4.0%、MOo、
008〜0.1%および8b O,005〜0.5%を
含み、かつSおよびSsのいずれか1種または2種合計
で0.005〜0.1θ%を含有することを基本とする
が、その他に通常けい素鋼中に添加される公知の元素、
たとえばCr5Ti、VSZr % Nb % Ta 
%C0qNi、Sn s PおよびAsなどが微量含有
されることも妨げない。また酸可溶AtO,01〜0.
09%、N O,001〜0.01%あるいはB O,
0008〜0.005%、Cu O,05〜0.5%の
5ち少なくとも一方を含有させることにより優れた磁気
特性の製品が安定して得られる。このうち11は0.0
1%以上であれば5SSeやSb 1Moなどの助成を
要しないが、もとより併用も可能である。
In this invention, as mentioned above, CO is contained in the silicon steel material.
, 01-0.06%, 812.0-4.0%, MOo,
Basically, it contains 008 to 0.1% and 8b O, 005 to 0.5%, and a total of 0.005 to 0.1θ% of any one or both of S and Ss. , and other known elements normally added to silicon steel,
For example, Cr5Ti, VSZr%Nb%Ta
%C0qNi, SnsP, As, and the like may be contained in trace amounts. Also, acid-soluble AtO, 01-0.
09%, N O, 001-0.01% or B O,
By containing at least one of the following: 0008 to 0.005%, CuO, and 05 to 0.5%, a product with excellent magnetic properties can be stably obtained. 11 of these are 0.0
If it is 1% or more, supplementation with 5SSe, Sb 1Mo, etc. is not required, but it is of course possible to use them in combination.

次にこの発明における一連の製造工程について説明する
Next, a series of manufacturing steps in this invention will be explained.

まず素材を溶製するKはLD転炉、電気炉、平炉その他
の公知q製鋼方法を用いて行い得ることは勿論、真空処
理、真空溶解を併することができる。
First, the process of melting the material can be performed using an LD converter, an electric furnace, an open hearth, or other known q steelmaking methods, and vacuum treatment and vacuum melting can be used together.

次のスラブ製造は現在歩止り向上と工程省略による大巾
な製造コスト低減、スラブ長手方向における成分あるい
は品質の均−性等の経済的技術的利点のため連続鋳造法
が適用されているが、そのほか従来の造塊法も好適に行
なうことができる。
Continuous casting is currently being applied to the next generation of slabs due to its economical and technical advantages, such as improving yields, significantly reducing production costs by eliminating process steps, and uniformity of components and quality in the longitudinal direction of the slab. In addition, conventional agglomeration methods can also be suitably used.

この発明において素材中に含有される8S813の何れ
か少なくとも1種ならびに8bとMOを溶鋼中に添加す
るには、従来公知′の何れの方法を用いることもでき、
たとえばLD転炉、RH脱ガス終了時あるいは造塊時の
溶鋼中に添加することができる。
In this invention, any conventionally known method can be used to add at least one of 8S813, 8b and MO contained in the material to the molten steel,
For example, it can be added to molten steel in an LD converter, at the end of RH degassing, or during ingot formation.

連続鋳造スラブまたは造塊した鋼塊はそれぞれ公知の方
法で熱延に付される。通常スラブを熱延鋼板に圧延する
嶌のは当然であり得られる熱延板の厚みは後続の冷延工
程より支配されるが通常2〜5 mm厚程度とすること
は有利である。
The continuously cast slab or the ingot is hot rolled in a known manner. Normally, a slab is rolled into a hot-rolled steel sheet, and the thickness of the resulting hot-rolled sheet is controlled by the subsequent cold rolling process, but it is usually advantageous to have a thickness of about 2 to 5 mm.

次に熱延板は均−化焼鈍後に冷延される。冷延後、中間
焼鈍前後に昇温あるいは冷却されるが、高磁束密度で超
低鉄損の製品を得るKは昇温および冷却速度に注意を払
う必要がある。すなわち発明者らが特公昭58−822
14号公19に開示したように中間焼鈍後の急冷処理、
あるいは特開昭69−856B5号公報に開示したよう
に急熱・急冷処理条件を施した場合においてより一層の
特性向上が認められる。
The hot rolled sheet is then uniformly annealed and then cold rolled. After cold rolling, the temperature is raised or cooled before and after intermediate annealing, but in order to obtain a product with high magnetic flux density and ultra-low iron loss, it is necessary to pay attention to the heating and cooling rates. In other words, the inventors
As disclosed in No. 14 Publication No. 19, rapid cooling treatment after intermediate annealing,
Alternatively, further improvement in properties is observed when rapid heating/quenching treatment conditions are applied as disclosed in JP-A-69-856B5.

この点、この発明においても短時間時効処理前の中間焼
鈍後の冷却速度を、900℃から常温まで5 ’C/S
以上(望ましくは10℃昨以上)あるいは中間焼鈍前の
昇温速度は常温から900℃まで5℃力以上(望ましく
はlO℃力以上)で中間焼鈍後の降温速度は900℃か
ら常温まで5°C/S以上(望ましくは10°C/S以
上)にした方が好ましい。
In this regard, in this invention as well, the cooling rate after intermediate annealing before short-time aging treatment is set at 5'C/S from 900°C to room temperature.
or higher (preferably 10°C or higher), or the temperature increase rate before intermediate annealing is 5°C or higher from room temperature to 900°C (preferably 10°C or higher), and the temperature cooling rate after intermediate annealing is 5° from 900°C to room temperature. It is preferable to set the temperature to C/S or higher (preferably 10° C/S or higher).

次にかような中間焼鈍が施された鋼板には、最終冷延前
に時効焼鈍処理が施されるが、この時効処理は第1図に
示したように、150〜500℃の温度範囲において1
秒から80分間の焼鈍、より好ましくは200℃〜60
0℃の温度範囲における1秒から100秒間の焼鈍処理
とする必要がある。
Next, the steel plate that has been subjected to such intermediate annealing is subjected to aging annealing treatment before final cold rolling, and this aging treatment is performed at a temperature range of 150 to 500°C, as shown in Figure 1. 1
Annealing for seconds to 80 minutes, more preferably 200°C to 60°C
It is necessary to carry out annealing treatment for 1 second to 100 seconds in a temperature range of 0°C.

ここに第1図は、この発明に従5好適組成のけい素鋼に
ついて、時効処理における温度および時間と製品板の鉄
損値との関係をまとめて示したものである。
FIG. 1 summarizes the relationship between the temperature and time in aging treatment and the iron loss value of the product plate for silicon steels having five preferred compositions according to the present invention.

なおかかる時効処理は、中間焼鈍とは別罠行ってもよい
が、連続焼鈍ラインにおいて上記したようなヒートパタ
ーンに従って処理することがより望ましい。
Although this aging treatment may be performed separately from the intermediate annealing, it is more preferable to perform the aging treatment in a continuous annealing line according to the heat pattern described above.

ついでこのような短時間時効焼鈍を施した後、最終冷延
が施される。かかる着終冷延途中に発明者らが特願昭5
8−280848号明細書に開示したように温間圧延あ
るいはバス間時効処理を施してもよいが、通常は常温で
最終板厚(0,20〜0.85rIL1rL厚)Kまで
冷間圧延される。
After such short-time aging annealing, final cold rolling is then performed. During the final cold rolling process, the inventors filed a patent application in 1973.
Although warm rolling or inter-bath aging treatment may be performed as disclosed in No. 8-280848, it is usually cold rolled at room temperature to the final plate thickness (0.20 to 0.85rIL1rL thickness) K. .

最終冷延を終り、製品板厚となった鋼板は次に脱炭に付
される。この焼鈍は冷延組織を1次再結晶組織にすると
同時に最終焼鈍で(110)〔001)方位の8次再結
晶粒を発達させる場合に有害なCを除去するのが目的で
、たとえば750℃から850℃で8〜15分程度程度
水素中での焼鈍のように既に公知になっているいかなる
方法をも用いることができる。
After finishing the final cold rolling, the steel plate that has reached the product thickness is then subjected to decarburization. The purpose of this annealing is to convert the cold-rolled structure into a primary recrystallized structure and at the same time to remove harmful C when the final annealing develops 8th recrystallized grains with (110)[001) orientation. Any known method can be used, such as annealing in hydrogen at 850° C. for about 8 to 15 minutes.

最終焼鈍は(110)<001>方位の8次再結晶粒を
充分発達させるため施されるもので、通常箱焼鈍によっ
て直ちに1000℃以上に昇温し、その温度に保持する
ととKよって行なわれる。この最終焼鈍は通常マグネシ
アなどの焼鈍分離剤を塗布してから箱焼鈍によって施さ
れる。この発明において(110)〔001>方位に極
度に揃った8次再結晶粒を発達させるためKは880℃
から900℃の低温で保定焼鈍する方が有利であるが、
あるいはたとえば0.5〜15℃4の昇温速度の除熱焼
鈍でも良い。
Final annealing is performed to sufficiently develop the 8th recrystallized grains with the (110) <001> orientation, and is usually carried out by box annealing where the temperature is immediately raised to 1000°C or higher and maintained at that temperature. . This final annealing is usually performed by box annealing after applying an annealing separator such as magnesia. In this invention, K is 880°C in order to develop 8th recrystallized grains that are extremely aligned in the (110) [001> orientation.
It is more advantageous to perform retention annealing at a low temperature of 900°C.
Alternatively, heat-removal annealing may be performed at a temperature increase rate of 0.5 to 15° C.4, for example.

実施例 l CO,048%、Si B、45%、Mn 0.072
%、BeO,020%、Sb O,025%およびMo
 0.080%を含有する鋼塊を、分塊圧延後、熱間圧
延により2.7am厚に仕上げ、900℃で8分間の均
一化焼鈍を施したのち、70%の冷間圧延を施し、つい
で960℃で8分間の中間焼鈍を施した。この中間焼鈍
の際、昇温速度は常温から600℃まで400C/S−
,500℃から900℃までは15℃/8で処理し、ま
た降温速度は900℃から500℃まで15℃/8.5
00℃から常温まではB 5 ’C/Bで冷却した。そ
の後400℃で80秒の時効処理を施したのち、最終冷
延して0.2’l mm 、 0.80 間厚に仕上げ
た。その後820℃の湿水素中で脱炭・1次再結晶焼鈍
を施したあと、850℃で60時間の2次再結晶焼鈍お
よび水素中で1180℃で5時間の仕上げ焼鈍を施した
Example l CO, 048%, Si B, 45%, Mn 0.072
%, BeO,020%, SbO,025% and Mo
After blooming a steel ingot containing 0.080%, hot rolling it to a thickness of 2.7 am, homogenizing it at 900°C for 8 minutes, and then cold rolling it to 70%. Then, intermediate annealing was performed at 960° C. for 8 minutes. During this intermediate annealing, the temperature increase rate is 400C/S- from room temperature to 600℃.
, 15℃/8.5 from 500℃ to 900℃, and the cooling rate is 15℃/8.5 from 900℃ to 500℃.
From 00°C to room temperature, cooling was performed using B 5 'C/B. Thereafter, it was aged at 400° C. for 80 seconds, and then finally cold-rolled to a thickness of 0.2 mm and a thickness of 0.80 mm. Thereafter, decarburization and primary recrystallization annealing were performed in wet hydrogen at 820°C, followed by secondary recrystallization annealing at 850°C for 60 hours and final annealing at 1180°C for 5 hours in hydrogen.

得られた製品の磁気特性は次のとおりであった。The magnetic properties of the obtained product were as follows.

o、syg厚 B□。:1.91 T% Wl、7.、
。: 0.92 %0.80mm厚 BIO: 1−9
1 Ts W1d6 : 0−98 w/y実施例 2 G O,046%、Si 8.88%、Mn 0.07
8%、SeO,019%、Sb O,020%およびM
o 0.019%を含有する連鋳スラブを、熱間圧延に
より2.7fim厚に仕上げ900℃で8分間の均一化
焼鈍を施したあと、約80%の冷間圧延を施し、ついで
950℃で8分間の中間焼鈍を施した。この中間焼鈍の
際昇温速度は常温から500℃まで85℃、/S、50
0℃から900℃までは12°C/Sで昇温し、また降
温速度は900℃から500℃まで16°G/13 、
500℃から常温までは40 c′C/Bで急冷した。
o, syg thickness B□. :1.91 T% Wl, 7. ,
. : 0.92% 0.80mm thickness BIO: 1-9
1 Ts W1d6: 0-98 w/y Example 2 GO, 046%, Si 8.88%, Mn 0.07
8%, SeO,019%, SbO,020% and M
o A continuous cast slab containing 0.019% was hot rolled to a thickness of 2.7 fim, homogenized annealed at 900°C for 8 minutes, then cold rolled to approximately 80%, and then rolled at 950°C. Intermediate annealing was performed for 8 minutes. During this intermediate annealing, the temperature increase rate was 85℃ from room temperature to 500℃, /S, 50
The temperature increases at a rate of 12°C/S from 0°C to 900°C, and the temperature decreases at a rate of 16°G/13 from 900°C to 500°C.
It was rapidly cooled at 40 c'C/B from 500°C to room temperature.

その後600℃で20秒間の時効焼鈍を施した後、常温
で冷間圧延して0.20と0.28 mm厚の最終冷延
板にした。その後820℃の湿水素中で脱炭・1次再結
晶焼鈍を施したあと、850℃で50時間の8次再結晶
焼鈍および水素中で1180℃で7時間の純化焼鈍を施
した。
Thereafter, it was subjected to age annealing at 600° C. for 20 seconds, and then cold rolled at room temperature to produce final cold rolled sheets with thicknesses of 0.20 and 0.28 mm. Thereafter, decarburization and primary recrystallization annealing were performed in wet hydrogen at 820°C, followed by eighth recrystallization annealing at 850°C for 50 hours and purification annealing at 1180°C for 7 hours in hydrogen.

得られた製品の磁気特性は次のとおりであった。The magnetic properties of the obtained product were as follows.

0.20 mmM  B、。: 1.91 T、  W
l、、AO: 0.76 %0.28mm厚 BIO:
 1.91 T% W17/、、o: 0.82 w、
4゜(発明の効果) かくしてこの発明によれば、中間焼鈍後最終冷延に至る
までの間に1短時間の焼鈍処理を施すという簡単な操作
で、磁束密度および鉄損特性を従来に比して格段に向上
させることができる。
0.20 mm M B,. : 1.91 T, W
l,,AO: 0.76%0.28mm thickness BIO:
1.91 T% W17/, o: 0.82 w,
4゜ (Effect of the invention) Thus, according to the present invention, the magnetic flux density and iron loss characteristics can be improved compared to conventional ones by a simple operation of performing annealing treatment for one short time after intermediate annealing and before final cold rolling. can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に従う時効焼鈍処理における時効温
度および時間と鉄ス値との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the aging temperature and time and the steel value in the aging annealing treatment according to the present invention.

Claims (1)

【特許請求の範囲】 1、C:0.01〜0.06wt%、 Si:2.0〜4.0wt%、 Mn:0.01〜0.2wt%、 Mo:0.008〜0.1wt%および Sb:0.005〜0.2wt% を含みかつ、 SおよびSeのうちいずれか一種また は二種合計で0.005〜0.10wt% を含有する組成になる一方向性けい素鋼素材を、熱間圧
延し、ついで中間焼鈍を含む1回以上の冷間圧延を施し
て最終板厚としたのち1次再結晶を兼ねた脱炭焼鈍を施
し、しかるのち最終仕上げ焼鈍を施して(110)〔0
01〕方位の2次再結晶粒を発達させる一連の工程より
なる一方向性けい素鋼板の製造方法において、上記中間
焼鈍後最終冷延までの間に、150〜500℃の温度範
囲で1秒ないし30分間の焼鈍処理を施すことを特徴と
する、磁束密度が高く鉄損の低い一方向性けい素鋼板の
製造方法。 2、中間焼鈍が、焼鈍後900℃から常温までの冷却速
度が5℃/S以上の急冷処理を伴うものである特許請求
の範囲第1項記載の方法。 3、中間焼鈍が、常温から900℃までの温度範囲にわ
たり、5℃/S以上の速度での急熱・急冷処理を伴うも
のである特許請求の範囲第1項記載の方法。
[Claims] 1. C: 0.01 to 0.06 wt%, Si: 2.0 to 4.0 wt%, Mn: 0.01 to 0.2 wt%, Mo: 0.008 to 0.1 wt% % and Sb: 0.005 to 0.2 wt%, and a unidirectional silicon steel material having a composition containing one or both of S and Se in total of 0.005 to 0.10 wt%. is hot rolled, then subjected to one or more cold rolling including intermediate annealing to obtain the final plate thickness, subjected to decarburization annealing which also serves as primary recrystallization, and then subjected to final finish annealing ( 110) [0
01] In a method for producing a grain-oriented silicon steel sheet that includes a series of steps for developing oriented secondary recrystallized grains, after the intermediate annealing described above and before the final cold rolling, the process is performed at a temperature range of 150 to 500°C for 1 second. A method for producing a grain-oriented silicon steel sheet having high magnetic flux density and low iron loss, the method comprising performing an annealing treatment for 30 minutes to 30 minutes. 2. The method according to claim 1, wherein the intermediate annealing is accompanied by rapid cooling treatment from 900°C to room temperature after annealing at a cooling rate of 5°C/S or more. 3. The method according to claim 1, wherein the intermediate annealing involves rapid heating/quenching treatment at a rate of 5°C/S or more over a temperature range from room temperature to 900°C.
JP15387584A 1984-07-24 1984-07-24 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss Pending JPS6134118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15387584A JPS6134118A (en) 1984-07-24 1984-07-24 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15387584A JPS6134118A (en) 1984-07-24 1984-07-24 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss

Publications (1)

Publication Number Publication Date
JPS6134118A true JPS6134118A (en) 1986-02-18

Family

ID=15572019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15387584A Pending JPS6134118A (en) 1984-07-24 1984-07-24 Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss

Country Status (1)

Country Link
JP (1) JPS6134118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203928A (en) * 1986-03-25 1993-04-20 Kawasaki Steel Corporation Method of producing low iron loss grain oriented silicon steel thin sheets having excellent surface properties
CN104136637A (en) * 2012-03-15 2014-11-05 杰富意钢铁株式会社 Method for producing non-oriented magnetic steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203928A (en) * 1986-03-25 1993-04-20 Kawasaki Steel Corporation Method of producing low iron loss grain oriented silicon steel thin sheets having excellent surface properties
CN104136637A (en) * 2012-03-15 2014-11-05 杰富意钢铁株式会社 Method for producing non-oriented magnetic steel sheet
CN104136637B (en) * 2012-03-15 2017-05-31 杰富意钢铁株式会社 The manufacture method of non orientation electromagnetic steel plate

Similar Documents

Publication Publication Date Title
JP7454646B2 (en) High magnetic induction grain-oriented silicon steel and its manufacturing method
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
US5261972A (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPS60121222A (en) Production of grain-oriented silicon steel sheet
EP0101321A2 (en) Method of producing grain oriented silicon steel sheets or strips having high magnetic induction and low iron loss
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JPH0567683B2 (en)
US4702780A (en) Process for producing a grain oriented silicon steel sheet excellent in surface properties and magnetic characteristics
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP2014208895A (en) Method of producing grain oriented electrical steel
JPS6134118A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPS6242968B2 (en)
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH05105956A (en) Production of grain-oriented silicon steel sheet having uniform magnetic property in sheet-width direction
JP3480332B2 (en) Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and coating properties
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
KR950014313B1 (en) Method of producing grain-oriented silicon steel with small boron addition
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
EP0205619B1 (en) Method of manufacturing unidirectional silicon steel slab having excellent surface and magnetic properties
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet