JPH04329265A - Open type alkaline storage battery - Google Patents

Open type alkaline storage battery

Info

Publication number
JPH04329265A
JPH04329265A JP3099316A JP9931691A JPH04329265A JP H04329265 A JPH04329265 A JP H04329265A JP 3099316 A JP3099316 A JP 3099316A JP 9931691 A JP9931691 A JP 9931691A JP H04329265 A JPH04329265 A JP H04329265A
Authority
JP
Japan
Prior art keywords
negative electrode
capacity
alkaline storage
discharge
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3099316A
Other languages
Japanese (ja)
Inventor
Kiyoshi Fujita
藤田 清
Yoshihiko Sato
良彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP3099316A priority Critical patent/JPH04329265A/en
Publication of JPH04329265A publication Critical patent/JPH04329265A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To enable the use under the normal condition for a long time without lowering voltage even in the case that charge/discharge cycle is repeated at a deepened discharge depth by making a real capacity of a negative electrode 1.2 times of a real capacity of a positive electrode. CONSTITUTION:In an open type alkaline storage battery, a desired nor of positive electrode plates and negative electrode plates filled with the active material are laminated on a plate substrate, and charge/discharge is performed at a discharge depth deepened to 100% or near 100%. When capacity of the positive and negative electrode plates is showed with real capacity, which is showed with a formula I, a real capacity of the negative electrode is made 1.2 times of a real capacity of the positive electrode. Open type alkaline storage battery, of which voltage lowering is remarkably small and of which lifetime is long and which has the excellent performance at the time of quick discharge even if charge/discharge cycle is repeated at 100 % of discharge depth, is thereby obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は開放型アルカリ蓄電池の
改良に関するものであり、特に放電深度を100%又は
100%の近傍にて充放電を繰返し行うも電圧が低下す
ることなく長寿命に耐えうる開放型アルカリ蓄電池をえ
んとするものである。
[Field of Industrial Application] The present invention relates to the improvement of open-type alkaline storage batteries, and in particular to the improvement of open-type alkaline storage batteries, which can withstand a long life without voltage drop even when repeatedly charged and discharged at or near 100% depth of discharge. This is an open type alkaline storage battery.

【0002】0002

【従来の技術】一般にアルカリ蓄電池においては密閉型
アルカリ蓄電時と開放型アルカリ蓄電池とが知られてお
り、密閉型アルカリ蓄電池においては充電池に発生する
酸素又は水素ガスを吸収して消費するために正極の活物
質又は負極の活物質の何れかの一方を多量にするという
Overcharge Protection の設計
が行われている。然しながら開放型アルカリ蓄電池にお
いては電解液量を多量として且つ密閉型アルカリ蓄電池
とは逆なガスの吸収消費するのを防止する処理がとられ
ているものである。この防止処理としては例えば正極と
負極の実容量を下式で表わした時にそれぞれ等しくなる
ようにしているものである。 実容量=理論容量×利用率×保守率 なお、保持率とは経年変化による容量の変化を補償する
補正値で1.1とした。
[Prior Art] In general, sealed alkaline storage batteries and open alkaline storage batteries are known for alkaline storage batteries. Sealed alkaline storage batteries absorb and consume oxygen or hydrogen gas generated in the rechargeable battery. An overcharge protection design is being carried out in which the amount of either the positive electrode active material or the negative electrode active material is increased. However, in open-type alkaline storage batteries, the amount of electrolyte is increased and measures are taken to prevent absorption and consumption of gas, which is the opposite of that in closed-type alkaline storage batteries. As a preventive treatment for this, for example, the actual capacities of the positive electrode and the negative electrode are made to be equal when expressed by the following formula. Actual capacity = theoretical capacity x utilization rate x maintenance rate Note that the retention rate is a correction value that compensates for changes in capacity due to aging, and was set to 1.1.

【0003】このようにしてえた正極と負極とにより充
放電のサイクルを繰返し行うに際し、その条件として充
電深度が70〜80%の如く浅い場合には特に問題はな
いが放電深度を100%又は100%近傍の如く深くし
て行うことが要求される。その理由は放電深度を深くす
ることにより蓄電池の能力を十分に発揮せしめることが
出来るためである。然しその反面過酷な条件にて充放電
を行うためにサイクルの寿命が短くなり、長期に亘り使
用することが出来ないという問題があった。
When repeatedly charging and discharging the positive and negative electrodes obtained in this way, there is no particular problem as long as the depth of charge is shallow, such as 70 to 80%, but if the depth of discharge is 100% or 100%, there is no particular problem. It is required to perform the process at a depth close to %. The reason for this is that by increasing the depth of discharge, the capacity of the storage battery can be fully demonstrated. However, on the other hand, since charging and discharging are performed under harsh conditions, the cycle life is shortened, and there is a problem that the battery cannot be used for a long period of time.

【0004】0004

【発明が解決しようとする課題】本発明はかかる現状に
鑑み鋭意研究を行った結果、放電深度を深くして充放電
サイクルを繰返し行うも、電圧が低下することなく長期
に亘り正常の状態にて使用しうる開放型アルカリ蓄電池
を開発したものである。
[Problems to be Solved by the Invention] The present invention has been made as a result of intensive research in view of the current situation.Even when the depth of discharge is deepened and charge/discharge cycles are repeated, the voltage does not drop and remains in a normal state for a long period of time. We have developed an open-type alkaline storage battery that can be used in

【0005】[0005]

【課題を解決するための手段】本発明は極板基板に活物
質を充填した正極及び負極を所望枚数積層し且つ放電深
度を100%又は100%の近傍まで深くして充放電を
行ってなる開放型アルカリ蓄電池において、上記正負極
板の容量を下式に示す実容量で表わしたときに負極の実
容量を正極の実容量の1.2倍以上にしたことを特徴と
するものである。 実容量=理論容量×利用率×保守率
[Means for Solving the Problems] The present invention comprises stacking a desired number of positive electrodes and negative electrodes filled with active materials on an electrode plate substrate, and performing charging and discharging by increasing the depth of discharge to 100% or close to 100%. The open-type alkaline storage battery is characterized in that, when the capacity of the positive and negative electrode plates is expressed by the actual capacity shown in the following formula, the actual capacity of the negative electrode is 1.2 times or more the actual capacity of the positive electrode. Actual capacity = theoretical capacity x utilization rate x maintenance rate

【0006】[0006]

【作用】上記の如く放電深度を100%又は100%の
近傍で行うとは、放電の深さを出来うる限り深くして行
うことであり、かゝる状態まで放電を行った後、再度充
電を行うのである。而して、アルカリ蓄電池における極
板は活物質を焼結式基板に充填しているものであるが、
正極と負極とではその利用率が異るのである。
[Function] As mentioned above, carrying out the discharge at 100% or near 100% means making the discharge as deep as possible, and after discharging to such a state, charging again. This is what we do. Therefore, the electrode plates in alkaline storage batteries are made of a sintered substrate filled with active material.
The utilization rate is different between the positive electrode and the negative electrode.

【0007】即ち正極板の活物質利用率は極板の厚さ及
び充填量にて差異を生ずるか通常98〜100%である
。これに対し負極板の活物質利用率は正極板と同様の因
子により影響をうけるも通常70〜75%である。従っ
て正極板の利用率が負極板の利用率より25〜30%高
いことを示している。
That is, the active material utilization rate of the positive electrode plate is usually 98 to 100%, depending on the thickness and filling amount of the electrode plate. On the other hand, the active material utilization rate of the negative electrode plate is usually 70 to 75%, although it is influenced by the same factors as the positive electrode plate. Therefore, it is shown that the utilization rate of the positive electrode plate is 25 to 30% higher than the utilization rate of the negative electrode plate.

【0008】又上式における実容量を算出するための活
物質の理論容量とは、正極の活物質は通常水酸化ニッケ
ル(Ni(OH)2 )が使用され、負極の活物質は通
常水酸化カドミウム(Cd(OH)2 )が使用されて
いるものであるが、これらの理論容量を測定すると正極
の単位g当りの容量は0.289Ah/gであり、負極
の単位g当りの容量は0.366Ah/gである。
[0008] The theoretical capacity of the active material used to calculate the actual capacity in the above equation means that the active material of the positive electrode is usually nickel hydroxide (Ni(OH)2), and the active material of the negative electrode is usually nickel hydroxide (Ni(OH)2). Cadmium (Cd(OH)2) is used, and when their theoretical capacities are measured, the capacity per unit g of the positive electrode is 0.289Ah/g, and the capacity per unit g of the negative electrode is 0. .366Ah/g.

【0009】本発明は正極と負極とにおける活物質の充
填比率を1:1.20以上とし、実容量を正極に対し負
極が同等又は同等以上にすることにより、充放電のサイ
クルを行うにおいて正極の容量が負極の容量より先に0
になるようにしたものである。なお、負極における1.
20以上の上限については特に限定するものではないが
、望ましくは正極1.0;負極1.20〜1.5の範囲
が好ましい。
In the present invention, the filling ratio of the active material between the positive electrode and the negative electrode is set to 1:1.20 or more, and the actual capacity of the negative electrode is equal to or higher than that of the positive electrode, so that the positive electrode is The capacitance of becomes 0 before the capacitance of the negative electrode.
It was designed so that Note that 1. at the negative electrode.
Although the upper limit of 20 or more is not particularly limited, it is preferably in the range of 1.0 for the positive electrode and 1.20 to 1.5 for the negative electrode.

【0010】0010

【実施例】ニッケル焼結基板に水酸化ニッケルの活物を
充填した厚さ0.17mm、高さ950mm、巾550
mmの正極板(単位g当りの容量0.289Ah/g)
8枚と、上記基板に水酸化カドミウムの活物質を充填し
た厚さ0.81mm、高さ950mm、巾550mmの
負極板(単位g当りの容量0.366Ah/g)9枚と
を、ガスバリアとしてのセロハンをナイロンクロスでサ
ンドイッチ状にはさんだものをセパレータとし、且つ該
負極板を両側部に設けて積層した極板群に極柱を取付け
、これをステンレス容器内に収納し、比率1.24の水
酸化カリ電解液を注入して、公称容量12Ahの本発明
開放型アルカリ蓄電池をえた。又上記の正極及び負極に
おける必要活物量(g)は次式の如くして算出した。                     12   
   正極=                   
     ×1.1=46.6g          
    0.289×0.98      正極1枚当
りの量=5.8g                 
     12                  
        負極=(             
         ×1.1)×1.2=61.8g 
               0.366×0.7 
           なお、上式において (1)  分子の12の値は電池容量である。 (2)  負極の1.2は負極の実容量の倍率を示した
ものである。 (3)  正極及び負極の1.1は保守率を示すもので
ある。
[Example] Nickel sintered substrate filled with active nickel hydroxide, thickness 0.17mm, height 950mm, width 550mm
mm positive electrode plate (capacity per unit g 0.289Ah/g)
8 sheets and 9 negative electrode plates each having a thickness of 0.81 mm, a height of 950 mm, and a width of 550 mm (capacity per unit g of 0.366 Ah/g) filled with an active material of cadmium hydroxide on the above substrate as a gas barrier. Cellophane sandwiched between nylon cloth was used as a separator, and the negative electrode plate was provided on both sides, and a pole pole was attached to the stacked electrode plate group, and this was stored in a stainless steel container, and the ratio was 1.24. An open type alkaline storage battery of the present invention having a nominal capacity of 12 Ah was obtained by injecting a potassium hydroxide electrolyte of 100 ml. Further, the amount (g) of active material required in the above positive electrode and negative electrode was calculated using the following formula. 12
Positive electrode =
×1.1=46.6g
0.289×0.98 Amount per positive electrode = 5.8g
12
Negative electrode = (
×1.1)×1.2=61.8g
0.366×0.7
In addition, in the above formula (1), the value of 12 in the numerator is the battery capacity. (2) 1.2 of the negative electrode indicates the magnification of the actual capacity of the negative electrode. (3) 1.1 for the positive and negative electrodes indicates the maintenance rate.

【0011】又、本発明開放型アルカリ蓄電池と比較す
るため、負極のみを下式より算出した以外はすべて実施
例と同様にして公称容量12Ahの比較例開放型アルカ
リ蓄電池をえた。                     12   
   負極=                   
   ×1.1=51.5g            
  0.366×0.7              
In addition, in order to compare with the open type alkaline storage battery of the present invention, a comparative open type alkaline storage battery having a nominal capacity of 12 Ah was prepared in the same manner as in the example except that only the negative electrode was calculated using the following formula. 12
Negative electrode =
×1.1=51.5g
0.366×0.7

【0012】斯くして得た本発明アルカリ蓄電池と比較
例アルカリ蓄電池とについて、12Aの電流にて放電終
止電圧1.0V、充電を2.4A電流にて120%行い
、そのサイクル回数と電圧との関係を測定した。この結
果は図1に示す通りである。
The alkaline storage battery of the present invention and the alkaline storage battery of the comparative example thus obtained were charged at 120% at a current of 2.4A at a discharge end voltage of 1.0V at a current of 12A, and the number of cycles and voltage were determined. We measured the relationship between The results are shown in FIG.

【0013】[0013]

【発明の効果】本発明開放型アルカリ蓄電池によれば放
電深度100%の如く深くして充放電サイクルを繰返し
行うも電圧の降下が極めて少く長寿命にたえうると共に
急放電を行うにおいて優れた性能を有する等工業上有用
なものである。
Effects of the Invention: According to the open type alkaline storage battery of the present invention, even when charging and discharging cycles are repeated at a depth of discharge as deep as 100%, the voltage drop is extremely small and the battery has a long life, and is excellent in rapid discharge. It has good performance and is industrially useful.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】充放電サイクル回数と電圧との関係説明図。FIG. 1 is an explanatory diagram of the relationship between the number of charge/discharge cycles and voltage.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  極板基板に活物質を充填した正極板及
び負極板を所望枚数積層し且つ放電深度を100%又は
100%の近傍まで深くして充放電を行ってなる開放型
アルカリ蓄電池において、上記正・負極板の容量を下式
に示す実容量で表わした時に、負極の実容量を正極の実
容量の1.2倍以上にしたことを特徴とする開放型アル
カリ蓄電池。 実容量=理論容量×利用率×保守率
1. An open-type alkaline storage battery in which a desired number of positive and negative plates filled with an active material are stacked on an electrode plate substrate, and charging and discharging are performed at a depth of discharge of 100% or close to 100%. , an open type alkaline storage battery characterized in that, when the capacity of the positive and negative electrode plates is expressed by the actual capacity shown in the following formula, the actual capacity of the negative electrode is 1.2 times or more the actual capacity of the positive electrode. Actual capacity = theoretical capacity x utilization rate x maintenance rate
JP3099316A 1991-04-30 1991-04-30 Open type alkaline storage battery Pending JPH04329265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3099316A JPH04329265A (en) 1991-04-30 1991-04-30 Open type alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3099316A JPH04329265A (en) 1991-04-30 1991-04-30 Open type alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH04329265A true JPH04329265A (en) 1992-11-18

Family

ID=14244238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3099316A Pending JPH04329265A (en) 1991-04-30 1991-04-30 Open type alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH04329265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766973A1 (en) * 1997-08-04 1999-02-05 Alsthom Cge Alcatel Maintenance-free vented industrial nickel/metal hydride accumulator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946773A (en) * 1982-09-10 1984-03-16 Furukawa Battery Co Ltd:The Zinc alkali cell
JPS6081777A (en) * 1983-10-12 1985-05-09 Sanyo Electric Co Ltd Nickel-zinc battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946773A (en) * 1982-09-10 1984-03-16 Furukawa Battery Co Ltd:The Zinc alkali cell
JPS6081777A (en) * 1983-10-12 1985-05-09 Sanyo Electric Co Ltd Nickel-zinc battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766973A1 (en) * 1997-08-04 1999-02-05 Alsthom Cge Alcatel Maintenance-free vented industrial nickel/metal hydride accumulator

Similar Documents

Publication Publication Date Title
JP6575536B2 (en) Lead acid battery
JP3390309B2 (en) Sealed alkaline storage battery
JPH04329265A (en) Open type alkaline storage battery
CN100499249C (en) Charging control method for Ni-Cd accumulator
JPS61165956A (en) Sealed type lead acid battery
JPH0582158A (en) Sealed rectangular alkaline storage battery
JP2720689B2 (en) Lead storage battery
JPH04296464A (en) Sealed-type lead-acid battery
JP2014078325A (en) Lead storage battery
JPH0737609A (en) Alkaline storage battery
JPH02109263A (en) Lead-acid battery
JPH01149376A (en) Sealed lead-acid battery
JPH04294058A (en) Manufacture of metal oxide-hydrogen storage battery
JPH01186572A (en) Sealed type lead-acid battery
JP2691533B2 (en) Sealed alkaline storage battery
JPH1050337A (en) Sealed lead-acid battery
JPS6266569A (en) Cathode plate for alkaline storage battery
JPS61101955A (en) Alkali zinc storage cell
JPH09199162A (en) Sealed alkaline storage battery
JP3412162B2 (en) Alkaline storage battery
JPH0554906A (en) Lamination type nickel-hydrogen storage battery
JPH01159969A (en) Sealed ni-zn storage battery
JPH0689719A (en) Sealed type nickel zinc storage battery
JPH06267587A (en) Sealed alkali-zinc secondary battery
JPH0696796A (en) Sealed secondary battery