JPH04321911A - Production of thin-film magnetic head - Google Patents

Production of thin-film magnetic head

Info

Publication number
JPH04321911A
JPH04321911A JP9049991A JP9049991A JPH04321911A JP H04321911 A JPH04321911 A JP H04321911A JP 9049991 A JP9049991 A JP 9049991A JP 9049991 A JP9049991 A JP 9049991A JP H04321911 A JPH04321911 A JP H04321911A
Authority
JP
Japan
Prior art keywords
layer
coil
photoresist
magnetic head
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9049991A
Other languages
Japanese (ja)
Other versions
JP2927032B2 (en
Inventor
Toshikuni Kai
甲斐 敏訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9049991A priority Critical patent/JP2927032B2/en
Publication of JPH04321911A publication Critical patent/JPH04321911A/en
Application granted granted Critical
Publication of JP2927032B2 publication Critical patent/JP2927032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high-accuracy coil patterns by flattening a coil layer forming surface including the gap layer on a lower magnetic layer and forming a coil layer via a contrast enforcing layer on a photoresist on a flat surface. CONSTITUTION:After the lower magnetic layer 4 is formed on a substrate, the gap layer 5 is formed and further a protective layer 10 consisting of a material having selectivity in chemical etching with the layer 4 and the layer 5 is formed in the region which does not exist right under the coil layer 9. An insulating layer 7 is then stuck to the entire part of the substrate and thereafter, a substrate electrode film 6 and a photoresist layer 13 are formed. The contrast enforcing layer(CEL) 16 is then formed on the layer 13. The layer 16 and the layer 13 are simultaneously exposed by UV rays via a photomask 14. The UV rays blurred by the effect of the layer 16 are cut by the layer 16 and exposed regions 15 having the size faithful with the size of the mask 14 are formed in the layer 13. The film 6 is exposed to the shape to form coils and coil layers 9 are selectively stuck by electroplating to these parts. The layer 13 is removed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高性能な薄膜磁気ヘッド
を簡易な工程で製造する薄膜磁気ヘッドの製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film magnetic head with simple steps.

【0002】0002

【従来の技術】近年、磁気ディスク装置の高性能化に伴
い、それに用いる薄膜磁気ヘッドにも種々の高性能化が
要求されている。例えば、磁気ディスク装置の面記録密
度向上のための狭トラック化が検討されている。この際
、コイルの巻数を増加する必要があるが、磁気抵抗が増
加しヘッド効率の劣化やインダクタンスの異常な増加に
よるヘッド特性の劣化を惹起させている。そこで、薄膜
磁気ヘッドの磁路長の増大を行わずに、コイル巻数を増
加させることが大きな課題となっている。
2. Description of the Related Art In recent years, as the performance of magnetic disk drives has improved, the thin film magnetic heads used therein have also been required to have various improvements in performance. For example, narrower tracks are being considered to improve the areal recording density of magnetic disk drives. At this time, it is necessary to increase the number of turns of the coil, but this increases magnetic resistance, causing deterioration of head efficiency and deterioration of head characteristics due to an abnormal increase in inductance. Therefore, increasing the number of coil turns without increasing the magnetic path length of the thin film magnetic head has become a major challenge.

【0003】以下に、従来の薄膜磁気ヘッドの製造方法
について説明する。図3は従来の薄膜磁気ヘッドの斜視
図であり、図4(a)はトランスジューサ素子の拡大側
面図であり、図4(b)は図4(a)のA−A′線の要
部断面図である。
A conventional method for manufacturing a thin film magnetic head will be described below. FIG. 3 is a perspective view of a conventional thin-film magnetic head, FIG. 4(a) is an enlarged side view of a transducer element, and FIG. 4(b) is a cross-section of a main part taken along line A-A' in FIG. 4(a). It is a diagram.

【0004】11は上部絶縁層、12は上部磁性層、1
3は上部磁性層と下部磁性層が接合するバックギャップ
部、17は端子層、18はスライダ、19は浮上レール
である。
11 is an upper insulating layer, 12 is an upper magnetic layer, 1
3 is a back gap portion where the upper magnetic layer and the lower magnetic layer are joined, 17 is a terminal layer, 18 is a slider, and 19 is a floating rail.

【0005】以上のように構成された従来の薄膜磁気ヘ
ッドについて、以下その製造方法について説明する。
A method of manufacturing the conventional thin film magnetic head constructed as described above will be described below.

【0006】図5は従来の薄膜磁気ヘッドの製造工程を
示す工程図であり、図6は従来のコントラスト増強層(
以下、CELと略す)を形成した薄膜磁気ヘッドの要部
断面図であり、図7(a)は従来のパターンでの露光時
の状態図であり、図7(b)は従来のCELを有するパ
ターンでの露光時の状態図である。図5において、(a
)工程でパーマロイ等の磁性膜により下部磁性層4を形
成した後、磁気ギャップ層5を形成し、その上に下部磁
性層4とコイル層9の絶縁をとり、かつ下部磁性層4に
よって発生した段差を緩和しコイル層9を形成しやすく
するためにフォトレジストやポリイミド樹脂からなる絶
縁層8を形成する。絶縁層8は粘性をもっているものの
、下部磁性層4がかなり厚い(通常4〜5μm)ためそ
の段差を完全に解消することはできない。
FIG. 5 is a process diagram showing the manufacturing process of a conventional thin film magnetic head, and FIG. 6 is a process diagram showing the manufacturing process of a conventional thin film magnetic head.
7(a) is a state diagram during exposure with a conventional pattern, and FIG. 7(b) is a cross-sectional view of a main part of a thin film magnetic head formed with a conventional CEL (hereinafter abbreviated as CEL). FIG. 4 is a state diagram during pattern exposure. In FIG. 5, (a
) After forming the lower magnetic layer 4 with a magnetic film such as permalloy in the process, a magnetic gap layer 5 is formed thereon, the lower magnetic layer 4 and the coil layer 9 are insulated, and the lower magnetic layer 4 generates a An insulating layer 8 made of photoresist or polyimide resin is formed to reduce the step difference and make it easier to form the coil layer 9. Although the insulating layer 8 has viscosity, the lower magnetic layer 4 is quite thick (usually 4 to 5 μm), so the step cannot be completely eliminated.

【0007】次に、(b)工程にて電気メッキによりコ
イル層を形成するための下地電極膜6をスパッタ法等に
より銅を0.1〜0.2μm付着させ、その上にコイル
パターンを形成するためのフォトレジストを塗布乾燥す
る。(c)工程にてフォトマスク14を介して紫外線を
フォトレジスト層13に照射し、フォトレジスト層13
に感光領域15を形成する。
Next, in step (b), a base electrode film 6 for forming a coil layer is deposited with a thickness of 0.1 to 0.2 μm by sputtering or the like by electroplating, and a coil pattern is formed thereon. Apply photoresist and dry. In the step (c), the photoresist layer 13 is irradiated with ultraviolet rays through the photomask 14, and the photoresist layer 13 is
A photosensitive area 15 is formed in the area.

【0008】次に、(d)工程にてフォトレジスト層1
3の感光領域15を現像により溶解除去して下地電極膜
6をパターン形状に露出させ、その部分に電気メッキに
よりコイル層9を形成する。
Next, in step (d), the photoresist layer 1 is
The photosensitive area 15 of No. 3 is dissolved and removed by development to expose the base electrode film 6 in a patterned shape, and the coil layer 9 is formed on that portion by electroplating.

【0009】次に、(e)工程にてフォトレジスト層1
3を除去した後、コイル層9を短絡させている不要の下
地電極膜6をイオンビームエッチングにより除去しコイ
ル層9の形成が終わる。上記のような従来技術を用いて
コイル層を形成すると、起伏をもった絶縁層8上にコイ
ル層9を形成しなければならないため、コイルパターン
を作成するためのフォトレジスト層13の膜厚を図5(
b)で示すように絶縁層8の平坦部ではT1 、傾斜部
近傍ではT2 とすると、T1 >T2 となり膜厚が
不均一でパターン内での最適露光条件が異なるとともに
、最適露光のための基板上の焦点位置も異なってくる。 そのためパターン幅に広狭部ができパターン幅の変動が
発生し、図5(e)工程で示すようにコイル間隔の上部
の寸法S1 と下部の寸法S2 が大きく異なる(S1
 <S2 )状態となり、S1 とS2 の寸法差以下
にはコイル間隔を狭くできないこととなる。
Next, in step (e), the photoresist layer 1 is
After removing the coil layer 3, the unnecessary base electrode film 6 that short-circuits the coil layer 9 is removed by ion beam etching, and the formation of the coil layer 9 is completed. When a coil layer is formed using the above-described conventional technique, the coil layer 9 must be formed on the undulating insulating layer 8, so the thickness of the photoresist layer 13 for creating the coil pattern must be adjusted. Figure 5 (
As shown in b), if T1 is T1 in the flat part of the insulating layer 8, and T2 is T2 near the sloped part, then T1 > T2, and the film thickness is non-uniform and the optimum exposure conditions within the pattern are different, and the substrate for optimum exposure is The upper focus position also differs. As a result, wide and narrow parts are created in the pattern width, causing fluctuations in the pattern width, and as shown in the process in FIG.
<S2), and the coil spacing cannot be made smaller than the dimensional difference between S1 and S2.

【0010】この現象は図7(a)に示すように、パタ
ーン形成をする場合、フォトマスク14を介してフォト
レジスト層13に到達する紫外線は光の回折現象により
初期の幅Aより広い幅a1 となることに起因する。こ
の際、紫外線の強度はパターンの中央部の一定の範囲が
最も強く、周囲にいくにつれて弱くなるという分布を示
す。そのためパターンの外周部の紫外線はフォトレジス
ト層13の下方にいくにつれて強度が弱くなるという状
態が顕著となる。
As shown in FIG. 7(a), when forming a pattern, the ultraviolet rays that reach the photoresist layer 13 through the photomask 14 form a width a1 wider than the initial width A due to the light diffraction phenomenon. This is due to the fact that At this time, the intensity of the ultraviolet rays exhibits a distribution in which the intensity is strongest in a certain range at the center of the pattern and becomes weaker toward the periphery. Therefore, the intensity of the ultraviolet light at the outer periphery of the pattern decreases as it goes below the photoresist layer 13.

【0011】その結果露光されたフォトレジスト層13
の上部の寸法a1 と下部の寸法a2が異なることとな
る。図5(e)ではこの状態がより助長された形となる
。磁性層の長さ(磁路長)の増大なしに単にコイル巻数
を増加させるだけであればコイルの層数を多くすればよ
いが、これでは製造工程が複雑で形成が難しく製造原価
が上昇し量産性に適さない。
The resulting exposed photoresist layer 13
The upper dimension a1 and the lower dimension a2 are different. In FIG. 5(e), this state is further promoted. If you simply increase the number of coil turns without increasing the length of the magnetic layer (magnetic path length), you can increase the number of coil layers, but this would complicate the manufacturing process and make it difficult to form, increasing manufacturing costs. Not suitable for mass production.

【0012】またコイル寸法を従来のままでコイル巻数
を増加させると、薄膜磁気ヘッドの磁路長を長くする必
要があり、磁気抵抗の増加によるヘッド効率の低下や異
常なインダクタンスの増加を招き、薄膜磁気ヘッドとし
ての機能を損なう結果となる。
Furthermore, if the number of coil turns is increased while the coil dimensions remain the same as before, it is necessary to increase the magnetic path length of the thin film magnetic head, which leads to a decrease in head efficiency due to an increase in magnetic resistance and an abnormal increase in inductance. This results in a loss of functionality as a thin film magnetic head.

【0013】次に従来のCELを形成した薄膜磁気ヘッ
ドについて説明する。図6に示すように、下部磁性層4
及び絶縁層8によって形成された段差上に下地電極膜6
を介してコイルパターン形成用のフォトレジストを塗布
するため、フォトレジスト層13は起伏し、その上に塗
布するCEL16もまたフォトレジスト層13の起伏の
影響を受けて膜厚のむらができる。
Next, a conventional thin film magnetic head formed with CEL will be explained. As shown in FIG. 6, the lower magnetic layer 4
A base electrode film 6 is formed on the step formed by the insulating layer 8 and the insulating layer 8.
Since the photoresist for forming the coil pattern is applied through the photoresist layer 13, the photoresist layer 13 is undulated, and the CEL 16 applied thereon is also affected by the undulations of the photoresist layer 13, resulting in uneven film thickness.

【0014】その結果CEL16も絶縁層8の平坦部上
の膜厚t1 より傾斜部近傍の膜厚t2 のほうが薄く
なる。
As a result, the thickness t2 of the CEL 16 near the sloped portion of the insulating layer 8 is thinner than the thickness t1 of the flat portion of the insulating layer 8.

【0015】CEL16の塗布むらができるとCELの
機能を充分生かしきれないだけでなく、逆にパターン形
成の不安定要因を増加することとなる。ここでCELの
機能とは図7(b)に示すように、フォトマスク14を
通過した幅Aの紫外線がフォトレジスト層13上に塗布
したCELに投影される時、図7(a)と同様に光の回
折現象によりある広がりを持った幅a1 となるが、C
EL16はフォトレジスト層13に比べて感度が低いた
め紫外線のエネルギーがある一定以上にならないと、紫
外線はCEL16を通してフォトレジスト層13に到達
することができない。
[0015] If the CEL 16 is applied unevenly, not only will the function of the CEL not be fully utilized, but it will also increase the cause of instability in pattern formation. Here, the function of the CEL is as shown in FIG. 7(b), when the ultraviolet rays having a width A that have passed through the photomask 14 are projected onto the CEL coated on the photoresist layer 13, similar to that in FIG. 7(a). The width a1 has a certain spread due to the diffraction phenomenon of light, but C
Since the EL 16 has lower sensitivity than the photoresist layer 13, the ultraviolet rays cannot reach the photoresist layer 13 through the CEL 16 unless the energy of the ultraviolet rays exceeds a certain level.

【0016】その結果強度の弱い紫外線はCEL16で
カットされ、最終的にフォトレジスト層13に到達する
紫外線の幅b2はフォトマスクの幅Aとほぼ同じ寸法に
形成する作用を有する。
As a result, the weak-intensity ultraviolet rays are cut by the CEL 16, and the width b2 of the ultraviolet rays that finally reaches the photoresist layer 13 has the effect of forming approximately the same dimension as the width A of the photomask.

【0017】[0017]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、コイルパターンを形成する場合に、下部磁
性層及び絶縁層がつくる段差によってコイルパターンを
理想的に精度良く形成することができず、またCELも
段差の影響により充分その機能を発揮することができな
い。そのため薄膜磁気ヘッドの性能を損なわずにコイル
巻数を増加することが困難で高性能の薄膜磁気ヘッドを
製造することができないという問題点があった。
[Problems to be Solved by the Invention] However, with the above-mentioned conventional configuration, when forming a coil pattern, the coil pattern cannot be formed with ideal precision due to the steps created by the lower magnetic layer and the insulating layer. CEL is also unable to fully demonstrate its function due to the difference in level. Therefore, there has been a problem in that it is difficult to increase the number of coil turns without impairing the performance of the thin-film magnetic head, making it impossible to manufacture a high-performance thin-film magnetic head.

【0018】本発明は上記従来の問題点を解決するもの
で、フォトレジストやCELの塗布むらのない平滑面上
でパターンを形成する簡単な方法で、狭いコイルピッチ
で厚いコイル膜厚を持ったコイル層を形成し、コイル巻
数を著しく増加させることのできる低原価で量産性に適
した高性能な薄膜磁気ヘッドの製造方法を提供すること
を目的とする。
The present invention solves the above-mentioned conventional problems, and is a simple method for forming a pattern on a smooth surface without uneven coating of photoresist or CEL, and has a narrow coil pitch and a thick coil film thickness. An object of the present invention is to provide a method for manufacturing a high-performance thin-film magnetic head that is suitable for mass production at low cost and can significantly increase the number of coil turns by forming a coil layer.

【0019】[0019]

【課題を解決するための手段】この目的を達成するため
に本発明の薄膜磁気ヘッドの製造方法は、下部磁性層上
に形成したギャップ層上の磁気ギャップを形成する部分
を含みかつコイル層の直下に位置しない領域に、下部磁
性層及びギャップ層と化学エッチングにおいて選択性の
ある材料からなる保護層を下部磁性層の膜厚と同等かそ
れより厚い膜厚でパターン形成した後、絶縁材料を下部
磁性層の膜厚と同等かそれより厚く基板全体に付着させ
、次いで基板全体を機械研磨等によりコイル層形成面を
平坦化した後、下地電極膜、フォトレジスト層、CEL
の順に積層して露光、現像することによりコイルパター
ンを形成する構成を有している。
[Means for Solving the Problems] In order to achieve this object, the method for manufacturing a thin film magnetic head of the present invention includes a portion forming a magnetic gap on a gap layer formed on a lower magnetic layer and a coil layer. After patterning a protective layer made of a material that is selective to the lower magnetic layer and the gap layer in chemical etching to a thickness equal to or thicker than that of the lower magnetic layer in an area that is not located directly below, an insulating material is formed. It is deposited on the entire substrate to a thickness equal to or thicker than that of the lower magnetic layer, and then the entire substrate is mechanically polished to flatten the surface on which the coil layer is formed, and then the base electrode film, photoresist layer, CEL
It has a structure in which a coil pattern is formed by stacking layers in this order, exposing and developing them.

【0020】[0020]

【作用】この構成によって、コイルパターン形成用のフ
ォトレジスト層の膜厚を均一にすることができ、その上
に塗布するCELの膜厚も均一にすることができる。そ
の結果、CELの性能を最大限に生かすことができるた
め、フォトマスク寸法に忠実な像をフォトレジストに転
写することができ、パターン寸法の変動がない高精度な
コイルパターンを得ることができるとともに、薄膜磁気
ヘッドの性能を損なうことなくコイルの巻数を増加させ
ることもできる。
[Operation] With this structure, the thickness of the photoresist layer for forming the coil pattern can be made uniform, and the thickness of the CEL coated thereon can also be made uniform. As a result, the performance of CEL can be utilized to its fullest, making it possible to transfer an image faithful to the photomask dimensions onto the photoresist, making it possible to obtain a highly accurate coil pattern with no variation in pattern dimensions. , it is also possible to increase the number of turns of the coil without impairing the performance of the thin-film magnetic head.

【0021】[0021]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0022】図1は本発明の一実施例の薄膜磁気ヘッド
の製造方法を示すフロー図であり、図2はその工程図で
ある。
FIG. 1 is a flowchart showing a method for manufacturing a thin film magnetic head according to an embodiment of the present invention, and FIG. 2 is a process diagram thereof.

【0023】図2において、(a)工程において基板上
に下部磁性層4として電気メッキ法あるいはスパッタ法
によりパーマロイ等の磁性膜を形成後、アルミナ等の絶
縁材料によりギャップ層5を形成し、さらに磁気ギャッ
プ部を含みかつコイル層9の直下に位置しない領域に、
下部磁性層4及びギャップ層5と化学エッチングにおい
て選択性のある材料からなる保護層10を下部磁性層の
膜厚Pより厚くパターン形状に形成する(図1(1) 
)。 保護層10の材料としては銅、金、チタン等化学エッチ
ングで除去可能でかつそのエッチング液は下部磁性層4
及びギャップ層5をエッチングしないものや、フォトレ
ジスト等の有機物でもよい。
In FIG. 2, in step (a), a magnetic film such as permalloy is formed on the substrate as the lower magnetic layer 4 by electroplating or sputtering, and then a gap layer 5 is formed from an insulating material such as alumina. In a region including the magnetic gap portion and not located directly under the coil layer 9,
A protective layer 10 made of a material that is selective to the lower magnetic layer 4 and the gap layer 5 in chemical etching is formed into a pattern shape to be thicker than the film thickness P of the lower magnetic layer (FIG. 1 (1)).
). The material of the protective layer 10 is copper, gold, titanium, etc., which can be removed by chemical etching, and the etching solution is used for the lower magnetic layer 4.
Alternatively, a material that does not etch the gap layer 5 or an organic material such as a photoresist may be used.

【0024】次に基板全体に下部磁性層4の最も広い領
域の膜厚Pより厚くアルミナ等の絶縁層7をスパッタ法
により付着した(図1(2) )後、基板全体を機械研
磨により平坦化加工しコイル層形成面を形成する(図1
(3) )。次に(b)工程にて下地電極膜6をスパッ
タ法あるいは蒸着法により0.1〜0.2μmの厚みで
形成する。コイル層に銅を用いる場合は、通常この下地
電極膜6には同じ材料である銅を用いるが、基板に対す
る密着力を強化するため銅と基板の間にチタンやクロム
等を数百Å程度の膜を形成し2層膜としてもよい。
Next, an insulating layer 7 made of alumina or the like is deposited on the entire substrate by sputtering to a thickness greater than the film thickness P of the widest region of the lower magnetic layer 4 (FIG. 1 (2)), and then the entire substrate is flattened by mechanical polishing. process to form a coil layer forming surface (Figure 1
(3) ). Next, in step (b), a base electrode film 6 is formed with a thickness of 0.1 to 0.2 μm by sputtering or vapor deposition. When copper is used for the coil layer, copper, which is the same material, is usually used for the base electrode film 6, but in order to strengthen the adhesion to the substrate, a layer of titanium, chromium, etc. is placed between the copper and the substrate to a thickness of several hundred Å. A film may be formed to form a two-layer film.

【0025】次に下地電極膜6の上にコイルパターンを
形成するためのフォトレジスト層13をコイル膜厚の予
定厚みより厚くスピンコーター等により塗布し、ホット
プレートあるいは乾燥器により乾燥する(図1(4) 
)。 例えば、コイル膜厚を6μmにしたい場合はフォトレジ
スト層13の厚みを7μm〜8μmに形成するとよい。 フォトレジスト層13としては膜厚が厚くなってもパタ
ーン精度が比較的よいポジ型フォトレジストを用いるの
が望ましい。次に(c)工程にてフォトレジスト層13
の上にCEL16をスピンコーターにより塗布後乾燥す
る(図1(5) )。この際、CELとフォトレジスト
が親和性を有する場合は、フォトレジストとCELの間
にバリヤー的な中間層を形成してもよい。
Next, a photoresist layer 13 for forming a coil pattern is applied onto the base electrode film 6 using a spin coater or the like to a thickness greater than the intended thickness of the coil film, and is dried using a hot plate or dryer (FIG. 1). (4)
). For example, if the coil thickness is desired to be 6 μm, the photoresist layer 13 may be formed to have a thickness of 7 μm to 8 μm. As the photoresist layer 13, it is desirable to use a positive type photoresist that has relatively good pattern accuracy even when the film thickness is increased. Next, in step (c), the photoresist layer 13
CEL16 is applied onto the surface using a spin coater and then dried (Fig. 1 (5)). At this time, if CEL and photoresist have affinity, a barrier-like intermediate layer may be formed between the photoresist and CEL.

【0026】次いでフォトマスク14を介して紫外線を
照射し、CEL16及びフォトレジスト層13を同時に
露光する。この際、図7(b)で示したCELの効果に
より、フォトマスクを通過して回折現象によりにじんだ
紫外線や基板上に投影された時に焦点がずれることによ
りぼやけた紫外線はCEL16でカットされ、フォトレ
ジスト13にフォトマスク寸法に忠実な寸法をもった露
光領域15が形成される。次に(d)工程にてCEL1
6を純水や溶剤で除去した後、フォトレジスト層13の
露光領域15をアルカリ系の現像液により溶解、除去し
コイルを形成する形状に下地電極膜6を露出させ、その
部分に電気メッキにより選択的にコイル層9を付着する
(図1(6) )。コイル材料としては固有抵抗が最も
低いという観点から銅が好ましく、硫酸銅系のメッキ液
を用いて作成される。
Next, ultraviolet rays are irradiated through the photomask 14 to simultaneously expose the CEL 16 and the photoresist layer 13. At this time, due to the effect of the CEL shown in FIG. 7(b), the ultraviolet rays that pass through the photomask and blur due to the diffraction phenomenon, and the ultraviolet rays that become blurred due to a shift in focus when projected onto the substrate, are cut by the CEL 16. An exposed region 15 having dimensions faithful to the dimensions of the photomask is formed in the photoresist 13. Next, in step (d), CEL1
6 is removed using pure water or a solvent, the exposed area 15 of the photoresist layer 13 is dissolved and removed using an alkaline developer to expose the base electrode film 6 in a shape that forms a coil, and the exposed area 15 of the photoresist layer 13 is removed by electroplating. A coil layer 9 is selectively deposited (FIG. 1(6)). Copper is preferred as the coil material from the viewpoint of having the lowest specific resistance, and is produced using a copper sulfate-based plating solution.

【0027】次に(e)工程にてフォトレジスト層13
を除去した後、コイル層9を短絡させている不要の下地
電極膜6をイオンビームミリング等のドライエッチング
により除去しコイル層9の作成が行なわれる。
Next, in step (e), the photoresist layer 13 is
After removing the unnecessary base electrode film 6 that short-circuits the coil layer 9, the coil layer 9 is created by removing the unnecessary base electrode film 6 that short-circuits the coil layer 9 by dry etching such as ion beam milling.

【0028】以上のように本発明によれば、従来、コイ
ル幅Wは4μm、コイル間隔Sは2μm、コイル膜厚H
は4μm程度が技術的限界であったものが、各々Wは2
〜3μm、Sは1〜2.5μm、Hは6〜10μmと自
在性をもってコイルを作成することが可能となった。こ
れによりコイルピッチを従来より狭くして、コイル膜厚
を厚く形成できるため、異常な磁路長の増加やインダク
タンスおよび直流抵抗の増加等をさせることなしに、コ
イル巻数を増加させることができる。
As described above, according to the present invention, the coil width W was 4 μm, the coil spacing S was 2 μm, and the coil thickness H
The technical limit was about 4 μm, but each W was 2 μm.
~3 μm, S is 1 to 2.5 μm, and H is 6 to 10 μm, making it possible to create a coil with flexibility. As a result, the coil pitch can be made narrower than before and the coil thickness can be formed thicker, so the number of turns of the coil can be increased without abnormally increasing the magnetic path length or increasing the inductance and DC resistance.

【0029】[0029]

【発明の効果】以上のように本発明の薄膜磁気ヘッドの
製造方法は、下部磁性層上のギャップ層を含むコイル層
形成面を平坦化し、平坦面上でフォトレジスト上に塗布
したコントラスト増強層を介してコイル層を形成するた
め、フォトレジストやコントラスト増強層の塗布むらが
ない理想的な平滑面上でパターンを形成することができ
るので、コントラスト増強層の性能を最大限引き出すこ
とができ、従来不可能であった狭いコイルピッチで厚い
コイル膜厚を持ったコイル層を形成することができる。 その結果、磁路長の異常な増加やインダクタンスや直流
抵抗の大幅な増加なしにコイル巻数を増加させることが
可能となった。また、コイル巻数を増加する必要がない
場合、従来はコイル層を2層構造としていたのが、本発
明では、薄膜磁気ヘッドのコイルピッチを狭くしコイル
膜厚を厚くすることにより、磁性層の大幅な寸法変更を
せずにコイル層を単層とすることも可能となり、簡単な
工程でかつ低原価で量産性に適した高性能な薄膜磁気ヘ
ッドを製造することができる優れた薄膜磁気ヘッドの製
造方法を実現できるものである。
As described above, the method for manufacturing a thin-film magnetic head of the present invention flattens the coil layer formation surface including the gap layer on the lower magnetic layer, and the contrast enhancement layer coated on the photoresist on the flat surface. Since the coil layer is formed through the coating, a pattern can be formed on an ideally smooth surface with no uneven application of photoresist or contrast enhancement layer, so the performance of the contrast enhancement layer can be maximized. It is possible to form a coil layer with a narrow coil pitch and a thick coil thickness, which was previously impossible. As a result, it has become possible to increase the number of coil turns without abnormally increasing the magnetic path length or significantly increasing inductance or DC resistance. In addition, when there is no need to increase the number of coil turns, the coil layer has conventionally had a two-layer structure, but in the present invention, the coil pitch of the thin-film magnetic head is narrowed and the coil film thickness is thickened. This is an excellent thin-film magnetic head that allows the coil layer to be made into a single layer without major dimensional changes, making it possible to manufacture a high-performance thin-film magnetic head suitable for mass production with a simple process and at low cost. This manufacturing method can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例における薄膜磁気ヘッドの製
造方法のフロー図
FIG. 1 is a flow diagram of a method for manufacturing a thin film magnetic head in an embodiment of the present invention.

【図2】本発明の一実施例における薄膜磁気ヘッドの製
造方法の工程図
FIG. 2 is a process diagram of a method for manufacturing a thin film magnetic head in an embodiment of the present invention.

【図3】従来の薄膜磁気ヘッドの斜視図[Figure 3] Perspective view of a conventional thin film magnetic head

【図4】(a)
はトランスデューサ素子部の拡大側面図(b)は図5(
a)のA−A′線断面図
[Figure 4] (a)
is an enlarged side view (b) of the transducer element section, and FIG.
A-A′ cross-sectional view of a)

【図5】従来の薄膜磁気ヘッド
の製造工程図
[Figure 5] Manufacturing process diagram of a conventional thin film magnetic head

【図6】従来のコントラスト増強層を形成
した薄膜磁気ヘッドの要部断面図
[Fig. 6] Cross-sectional view of main parts of a thin-film magnetic head with a conventional contrast enhancement layer formed thereon.

【図7】(a)は従来のパターンでの露光時の状態図(
b)は従来のCELを有するパターンでの露光時の状態
[Figure 7] (a) is a state diagram during exposure with a conventional pattern (
b) is a state diagram during exposure using a pattern with conventional CEL.

【符号の説明】[Explanation of symbols]

1  基板 2  絶縁層 4  下部磁性層 5  ギャップ層 6  下地電極膜 7  絶縁層 8  絶縁層 9  コイル層 10  保護層 13  フォトレジスト層 14  フォトマスク 15  フォトレジスト感光領域 16  コントラスト増強層 17  端子層 18  スライダー 19  浮上レール 1 Board 2 Insulating layer 4 Lower magnetic layer 5 Gap layer 6 Base electrode film 7 Insulating layer 8 Insulating layer 9 Coil layer 10 Protective layer 13 Photoresist layer 14 Photomask 15 Photoresist photosensitive area 16 Contrast enhancement layer 17 Terminal layer 18 Slider 19 Floating rail

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基板上に下部磁性層、ギャップ層、導体層
、絶縁層、上部磁性層を順次積層してなる薄膜磁気ヘッ
ドの製造方法であって、磁気ギャップ部を含みかつ導体
層の直下に位置しない領域に下部磁性層及びギャップ層
と化学エッチングにおいて選択性のある保護層を形成す
る工程と、基板全体に絶縁層を形成する工程と、基板全
体を平坦化しコイル層形成面を形成する工程と、を有す
ることを特徴とする薄膜磁気ヘッドの製造方法。
1. A method for manufacturing a thin film magnetic head in which a lower magnetic layer, a gap layer, a conductive layer, an insulating layer, and an upper magnetic layer are sequentially laminated on a substrate, including the magnetic gap portion and immediately below the conductive layer. A process of forming a protective layer selective to the lower magnetic layer and the gap layer by chemical etching in areas not located on the substrate, a process of forming an insulating layer over the entire substrate, and a process of flattening the entire substrate to form a coil layer forming surface. A method of manufacturing a thin film magnetic head, comprising the steps of:
【請求項2】前記平坦加工されたコイル層形成面に、下
地電極膜、フォトレジスト層、コントラスト増強層を順
次積層した後、露光、現像する工程を有することを特徴
とする請求項1記載の薄膜磁気ヘッドの製造方法。
2. The method according to claim 1, further comprising the step of sequentially laminating a base electrode film, a photoresist layer, and a contrast enhancement layer on the flattened coil layer formation surface, followed by exposure and development. A method for manufacturing a thin film magnetic head.
JP9049991A 1991-04-22 1991-04-22 Method for manufacturing thin-film magnetic head Expired - Lifetime JP2927032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9049991A JP2927032B2 (en) 1991-04-22 1991-04-22 Method for manufacturing thin-film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9049991A JP2927032B2 (en) 1991-04-22 1991-04-22 Method for manufacturing thin-film magnetic head

Publications (2)

Publication Number Publication Date
JPH04321911A true JPH04321911A (en) 1992-11-11
JP2927032B2 JP2927032B2 (en) 1999-07-28

Family

ID=14000196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9049991A Expired - Lifetime JP2927032B2 (en) 1991-04-22 1991-04-22 Method for manufacturing thin-film magnetic head

Country Status (1)

Country Link
JP (1) JP2927032B2 (en)

Also Published As

Publication number Publication date
JP2927032B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
JPS62245509A (en) Manufacture of thin film magnetic head
US6721130B2 (en) Thin-film magnetic head having thin coil-layer and method for manufacturing the thin-film magnetic head
JPH081688B2 (en) Thin film magnetic head and method of manufacturing the same
JPH09180127A (en) Production of thin-film magnetic head
JPH04321911A (en) Production of thin-film magnetic head
JP2567221B2 (en) Thin film magnetic head and method of manufacturing the same
US5254373A (en) Process of making thin film magnetic head
JP2752447B2 (en) Method for manufacturing thin-film magnetic head
JPH02141912A (en) Thin film magnetic head
JPH04111211A (en) Thin-film magnetic head
JP2713758B2 (en) Method for manufacturing thin-film magnetic head
JPH0644526A (en) Production of thin-film magnetic head
JP2000048317A (en) Thin film magnetic head
JPH0316686B2 (en)
KR100234175B1 (en) Manufacturing method of coil for thin film magnetic head
KR0153970B1 (en) Method for fabricating a thin film magnetic head
KR100234184B1 (en) Manufacturing method of thin film magnetic head
JPH103613A (en) Thin-film magnetic head and its production
JPS61117715A (en) Thin film magnetic head
JP2001256613A (en) Thin-film magnetic head and method of manufacture
KR19980020615A (en) Planarization method of thin film magnetic head
JPH07116638B2 (en) Thin film plating method
JPS61216110A (en) Formation of metallic pattern
JPH04181510A (en) Forming method of thin film conductor pattern
JPH0765321A (en) Thin-film magnetic head and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 12

EXPY Cancellation because of completion of term