JPH0432159A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH0432159A
JPH0432159A JP2134670A JP13467090A JPH0432159A JP H0432159 A JPH0432159 A JP H0432159A JP 2134670 A JP2134670 A JP 2134670A JP 13467090 A JP13467090 A JP 13467090A JP H0432159 A JPH0432159 A JP H0432159A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
metal
electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2134670A
Other languages
Japanese (ja)
Inventor
Keiji Sato
恵二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2134670A priority Critical patent/JPH0432159A/en
Publication of JPH0432159A publication Critical patent/JPH0432159A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the deterioration of a negative electrode,a nd to improve charging/ discharging characteristics by using a lithium-aluminum alloy having a grid groove on the surface that comes into contact with an electrolyte, and the negative electrode on the other side of which a metal layer which is not easily alloyed with lithium, is formed. CONSTITUTION:A negative electrode 1 is applied on a negative electrode collecting body 3 fixed to the inner bottom surface of a negative electrode can 2. A positive electrode 4 is also applied on a positive electrode collecting body 6 fixed to the inner bottom surface of a positive electrode can 5. A separator 7 is provided between the negative electrode 1 and the positive electrode 4, and a nonaqueous electrolyte is impregnated therein. The negative electrode 1 is provided with a grid-shaped groove formed on the surface that comes into contact with the electrolyte of the negative electrode 1. An aluminium metal plate provided with a nickel layer 10 on one surface, is installed on the negative electrode of a plating electrode of the negative electrode 1, while a lithium metal is provided on the positive electrode thereof, so as to make it an alloy by electrochemically precipitating the lithium on the aluminium metal plate. Namely, an aluminium alloy 9 for the negative electrode 1 is thus manufactured. Although a nickel layer (nickel foil) 10 is used in the present embodiment, as a metal that cannot be easily electrochemically alloyed with lithium metal, other materials such as titanium, copper, and stainless can also be used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非水電解質二次電池特にリチウム二次電池の
負極劣化の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvement of negative electrode deterioration of non-aqueous electrolyte secondary batteries, particularly lithium secondary batteries.

〔発明の概要〕[Summary of the invention]

本発明は、アルミニウム材にリチウムを電気化学的に合
金化した負極の電解質と接する面に格子状の溝を設け、
その反対側の面にリチウム金属と合金化しにくい金属層
を設けた負極にするとにより、充放電に伴う負極の劣化
を防止し、充放電サイクル特性の優れた非電解質二次電
池を提供するものである。
The present invention provides lattice-like grooves on the surface in contact with the electrolyte of a negative electrode made of aluminum material electrochemically alloyed with lithium,
By providing a negative electrode with a metal layer that is difficult to alloy with lithium metal on the opposite surface, deterioration of the negative electrode due to charging and discharging is prevented, and a non-electrolyte secondary battery with excellent charge-discharge cycle characteristics is provided. be.

〔従来の技術〕[Conventional technology]

リチウム金属を負極活性物質として用いる二次電池、所
謂リチウム二次電池は、高電圧、高エネルギ密度である
ため、非水溶液を電解質として実用に供されているが、
充放電サイクル特性向上のためリチウムはアルミニウム
と合金化されて実用している。
Secondary batteries that use lithium metal as a negative electrode active material, so-called lithium secondary batteries, have high voltage and high energy density, so they are put into practical use using non-aqueous solutions as electrolytes.
In order to improve charge-discharge cycle characteristics, lithium is alloyed with aluminum and put into practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

リチウム−アルミニウム合金を負極に用いたとしても、
充放電に伴う体積変化により、負極に歪が生じて亀裂が
発生し、やがて崩壊に至ったりする。また、負極と集電
体との間に絶縁部を形成し、充放電サイクル特性が低下
する。
Even if a lithium-aluminum alloy is used for the negative electrode,
Changes in volume associated with charging and discharging cause distortion and cracks in the negative electrode, which eventually leads to collapse. Furthermore, an insulating portion is formed between the negative electrode and the current collector, resulting in a decrease in charge/discharge cycle characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記課題を解決するために、電解液と接する
面に格子状の溝と、その反対の面に形成したリチウムと
電気化学的に合金化しにくい金属層とよりなるアルミニ
ウム−リチウム合金より構成された負極を持つ非水電解
質二次電池とする。
In order to solve the above problems, the present invention has developed an aluminum-lithium alloy comprising lattice-like grooves on the surface in contact with the electrolyte and a metal layer that is difficult to electrochemically alloy with lithium formed on the opposite surface. This is a non-aqueous electrolyte secondary battery having a negative electrode constructed as follows.

〔作用〕[Effect]

充放電に伴うアルミニウム−リチウム合金よりなる負極
の応力・歪は、負極へのリチウムの出入りにより生じる
ものである。負極の電解質と接する面に微細な溝を格子
状に設けることにより、負極へのリチウムの出入りによ
り生じる応力・歪が緩和され、負極の電極劣化の原因と
なる亀裂の生成か抑えられる。また、負極の反対面には
、リチウムと合金化されにくい金属層が形成されている
ため、リチウムに作用されなく、負極へのリチウムの出
入りにより生じる応力・歪がその面には発生しない。
Stress and strain in the negative electrode made of an aluminum-lithium alloy due to charging and discharging are caused by lithium flowing in and out of the negative electrode. By creating fine grooves in a lattice pattern on the surface of the negative electrode in contact with the electrolyte, stress and strain caused by lithium entering and leaving the negative electrode are alleviated, and the formation of cracks that can cause electrode deterioration can be suppressed. Furthermore, since a metal layer that is difficult to alloy with lithium is formed on the opposite surface of the negative electrode, it is not affected by lithium, and stress and strain caused by lithium entering and leaving the negative electrode do not occur on that surface.

〔実施例〕〔Example〕

以下、本発明の実施例について図面に基づいて説明する
Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例による偏平型非水電解質二次
電池の断面図を示すものである。負極1は負極缶2の内
側底面に固着した負極集電体3に圧着されている。正極
4も同様に正極缶5の内側底面に固着している正極集電
体6に圧着されている。
FIG. 1 shows a sectional view of a flat nonaqueous electrolyte secondary battery according to an embodiment of the present invention. The negative electrode 1 is crimped to a negative electrode current collector 3 fixed to the inner bottom surface of the negative electrode can 2 . Similarly, the positive electrode 4 is crimped to a positive electrode current collector 6 fixed to the inner bottom surface of the positive electrode can 5 .

セパレータ7は負極1と正極4の間に設けられており、
非水電解質が含浸されている。正極缶5と負極缶2の外
形よりなる電池寸法は直径20.0m高さ3.0鶴であ
る。
The separator 7 is provided between the negative electrode 1 and the positive electrode 4,
Impregnated with non-aqueous electrolyte. The dimensions of the battery, consisting of the external shapes of the positive electrode can 5 and the negative electrode can 2, are 20.0 m in diameter and 3.0 m in height.

正極4としてはMnO2、v201、V6O13、Mo
b、、Cr30Bなどの酸化物や、Ti5z、MoS2
などの遷移金属ジカルコゲナイトや、Nb5es 、M
oS*などの遷移金属トリカルコゲナイドや、更にN1
PS:+ 、Fe0C1などの化合物や、炭素およびポ
リピロール、ポリパラフェニレン、ポリチオフェン、ポ
リアニリン等の導電性高分子からなる。また、非水溶液
電解質(電解液)は溶媒としてプロピレンカーボネート
、エチレンカーボネート、γ−ブチロラクトン、ジメチ
ルスルフオキシド、スルフオラン、1,3−ジオキソラ
ン、4−メチル−1,3−ジオキソラン、テトラヒドロ
フラン、2−メチルテトラヒドロフラン、1.2−ジオ
キソランなどを単体または混合したものである。ン容質
としては、LiAsFい LiC10いLiBFa 、
t、ipl’6 、Licp3so3、LiAIC1m
などを0.5から3.0モル/l程度溶媒に添加し、そ
の他に2−メチルフラン、チオフェン、ピロール、ヘキ
サメチルフォリソクトリアミド、クラウンエーテル類な
どを微量添加してもよい。
As the positive electrode 4, MnO2, v201, V6O13, Mo
b,, oxides such as Cr30B, Ti5z, MoS2
Transition metal dichalcogenites such as Nb5es, M
Transition metal trichalcogenides such as oS* and even N1
It consists of compounds such as PS:+, Fe0C1, and conductive polymers such as carbon and polypyrrole, polyparaphenylene, polythiophene, and polyaniline. In addition, the non-aqueous electrolyte (electrolyte solution) uses propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide, sulfolane, 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyl as a solvent. It is a single substance or a mixture of tetrahydrofuran, 1,2-dioxolane, etc. As for the capacity, LiAsF, LiC10, LiBFa,
t, ipl'6, Licp3so3, LiAIC1m
About 0.5 to 3.0 mol/l of 2-methylfuran, thiophene, pyrrole, hexamethylfolisoctriamide, crown ethers, etc. may also be added in trace amounts.

本実施例では以下電解質として、プロピレンカーボネー
ト、エチレンカーボネート、2−メチルテトラヒドロフ
ランを体積で1:1:2の割合で混合したものにLiP
F6を1モル/7!添加したものを用いた。正極として
MnO□とエチレンブラックと弗素樹脂を重量で85:
10:5の割合で混合し加圧成形したものを使用した。
In this example, as an electrolyte, LiP was added to a mixture of propylene carbonate, ethylene carbonate, and 2-methyltetrahydrofuran in a volume ratio of 1:1:2.
1 mole/7 of F6! The one added was used. As a positive electrode, MnO□, ethylene black, and fluororesin were used by weight: 85:
A mixture of 10:5 and pressure molding was used.

負極1は第2図に示したように、負極1の電解質と接触
する面に、間隔およそ100 μ調、幅およそ15μ観
、深さ約60μmの格子状の溝を形成した。
As shown in FIG. 2, the negative electrode 1 had lattice-like grooves with an interval of approximately 100 μm, a width of approximately 15 μm, and a depth of approximately 60 μm formed on the surface of the negative electrode 1 that was in contact with the electrolyte.

なお、負極1はメツキ電極の負極に一方の面にニッケル
JilOを形成した約1寵厚さのアルミニウム金属板を
装着し、その正極にリチウム金属を設けて、電気化学的
にリチウムをアルミニウム金属板に析出させて、合金化
させる。つまり、負極1用のアルミニウム合金9ができ
る。なお、格子状の溝はリチウムを電気化学的に合金化
させる前にアルミニウム金属板に形成する。負極1のア
ルミニウム合金の成分はおよそ原子比でリチウム30ニ
アルミニウム70である。
In addition, the negative electrode 1 is a plated electrode with an aluminum metal plate of about 1 inch thick on which nickel JILO is formed on one side, and lithium metal is provided on the positive electrode, and lithium is electrochemically transferred to the aluminum metal plate. It is precipitated and alloyed. In other words, an aluminum alloy 9 for the negative electrode 1 is produced. Note that the lattice-shaped grooves are formed in the aluminum metal plate before electrochemically alloying lithium. The components of the aluminum alloy of the negative electrode 1 are approximately 30 parts lithium and 70 parts aluminum in atomic ratio.

リチウム金属と電気化学的に合金化されにくい金属とし
て本実施例ではニッケルNにノケル箔)10を用いたが
、材質としては、その他チタン、動、ステンレスなども
利用できる。
In this example, nickel N (Nokel foil) 10 was used as a metal that is difficult to electrochemically alloy with lithium metal, but other materials such as titanium, dynamic metal, and stainless steel can also be used.

第3図は、従来の非水電解質二次電池と本実施例の非水
電解質二次電池とを充放電を繰り返し行ってとの劣化を
調べた充放電のサイクル特性図である。従来の非水電解
質二次電池には負極の格子状溝とリチウム金属と電気化
学的に合金化されにくい金属層が形成されていないもの
であり、その他は本実施例と同様な構成である。
FIG. 3 is a charging/discharging cycle characteristic diagram in which the deterioration of a conventional nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery of this example was investigated by repeatedly charging and discharging the battery. The conventional non-aqueous electrolyte secondary battery does not have the lattice grooves of the negative electrode and the metal layer that is difficult to be electrochemically alloyed with lithium metal, but has the same structure as the present example.

充放電条件は電流を2.0m八で充放電時間を各々6時
間とし、放電6時間したときの電圧を室軸に設定してい
る。一応寿命としては放電終了時点での電圧が2,0ν
になった時点とした。
The charging and discharging conditions were such that the current was 2.0m8, the charging and discharging time was 6 hours each, and the voltage after 6 hours of discharge was set on the chamber axis. As for the lifespan, the voltage at the end of discharge is 2.0ν
It was defined as the point when

溝を形成していない従来の二次電池に比べて本実施例の
サイクル特性的112は寿命が向上していることがわか
る。つまり、従来のものは約140回位であり、本実施
例は約210回位の寿命である。
It can be seen that the cycle characteristic 112 of this example has an improved life compared to the conventional secondary battery in which no grooves are formed. That is, the life of the conventional type is about 140 times, and the life of this embodiment is about 210 times.

溝の寸法は幅5〜30μm程度、深さ5〜100μ鴎程
度の範囲が効果的であり、その範囲をこえると充放電寿
命はあまり長くはならない。また、溝間隔はおよそ30
〜200 μI程度がよい。
The groove dimensions are effectively in the range of about 5 to 30 μm in width and about 5 to 100 μm in depth; beyond these ranges, the charge/discharge life will not be very long. Also, the groove spacing is approximately 30
~200 μI is preferable.

本発明のように負極1をリチウム−アルミニウム合金と
その一方(負極集電体3に面する側)にリチウム金属と
合金化しにくい金属層10を設けた構成にすることによ
り、充放電を繰り返すことにより負極1に多少の亀裂が
生じてもその部分の材料破壊及び負極集電体3との絶縁
部形成がおこりにくくなり、サイクル特性への影響を抑
制できる。
By configuring the negative electrode 1 as in the present invention with a lithium-aluminum alloy and a metal layer 10 that is difficult to alloy with lithium metal on one side (the side facing the negative electrode current collector 3), charging and discharging can be repeated. Therefore, even if some cracks occur in the negative electrode 1, material breakdown at the cracks and formation of an insulating part with the negative electrode current collector 3 are less likely to occur, and the influence on cycle characteristics can be suppressed.

本実施例では、負極1のリチウム−アルミニウム合金が
30 ニア0のものを用いたが、勿論本発明の効果はこ
れに限定されるものではない。
In this example, the lithium-aluminum alloy of the negative electrode 1 used was 30% near 0, but of course the effects of the present invention are not limited to this.

また、本実施例では、偏平型二次電池について述べたが
、円筒形等の形状のものでも適応できるものである。こ
の場合、負極1にリチウム金属とアルミニウム金属を予
め所定の形状に形成した後、電気化学的に合金化するこ
とにより得られる。
Further, in this embodiment, a flat secondary battery has been described, but it is also applicable to batteries having a cylindrical shape or the like. In this case, the negative electrode 1 is obtained by forming lithium metal and aluminum metal into a predetermined shape in advance and then electrochemically alloying them.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、非水電解質二次電
池において、電解質(電解液)に接する面に格子状の溝
を形成したりチウム−アルミニウム合金と、リチウムと
合金化されにくい金属層を他方の面に形成した負極を用
いることにより、充放電に伴う、負極の劣化を抑制し、
充放電特性の優れた非水電解質二次電池を得ることがで
きる。
As described above, according to the present invention, in a non-aqueous electrolyte secondary battery, lattice-shaped grooves are formed on the surface in contact with the electrolyte (electrolyte), and lithium-aluminum alloy and metals that are difficult to alloy with lithium are formed. By using a negative electrode with a layer formed on the other side, deterioration of the negative electrode due to charging and discharging is suppressed,
A nonaqueous electrolyte secondary battery with excellent charge/discharge characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の偏平型非水電解質二次電池
の断面図で、第2図は負極の部分斜視図で、第3図は充
放電サイクル特性図である。 1・・負極       2・・負極缶3 ・ ・ 5 ・ ・ 7 ・ ・ 9 ・ ・ 11 ・ 12 ・ 負極集電体    4・・正極 正極缶      6・・正極集電体 セパレータ    8・・絶縁バ、キンリチウムーアル
ミニウム合金 ニッケル層 ・従来のサイクル特性曲線 ・本実施例のサイクル特性曲線 出願人 セイコー電子工業株式会社 代理人 弁理士 林  敬 之 助 督−靴嗣匂ハミ(ト) 手 続 補 正 書 (自発) 平成 3年y月70日 平成 2年 特許願 第134670号 発明の名称 非水電解質二次電池 3、補正をする者 事件との関係 特許出願人 (232)セイコー電子工業株式会社 代表取締役  原  禮之助 6、補正の内容 (1)  明細書第5頁第18行目乃至第6頁第2行目
の「なお、・・・・・・合金化させる。」を「負極lは
第一一”二部分斜視図に示すように、厚さ0.1 nで
、3よそ100 μ■、幅およそ15μm、深さおよそ
60μ園に溝を格子状に形成したアルミニウム合金9を
リチウム金属と電気化学的に合金しにくい金属としての
ニッケル箔10に形成した負極基体を上記電解液中でリ
チウム金属を対極として電気化工合金化したリチウム−
アルミニウム合金である。」と補正します。 (2)明細書第6頁第11行目の「動」を「銅」と補正
します。 」細書第6頁第20行目の「立」を「縦」と−まず。 補正の対象 以上
FIG. 1 is a sectional view of a flat nonaqueous electrolyte secondary battery according to an embodiment of the present invention, FIG. 2 is a partial perspective view of a negative electrode, and FIG. 3 is a charge/discharge cycle characteristic diagram. 1. Negative electrode 2. Negative electrode can 3 .. 5 .. 7 .. 9 .. 11 . 12 . Negative electrode current collector 4. Positive electrode positive electrode can 6. Lithium-aluminum alloy nickel layer, conventional cycle characteristic curve, cycle characteristic curve of this example Applicant: Seiko Electronic Industries Co., Ltd. Agent Patent attorney Takayuki Hayashi Assistant Director - Shoetsugu Nouhami (T) Procedural amendment (voluntary) Patent Application No. 134670 of 1990 (Y/70/1991) Name of the invention Non-aqueous electrolyte secondary battery 3, person making an amendment Relationship to the case Patent applicant (232) Seiko Electronic Industries Co., Ltd. Representative Director Hiroyuki Hara Supplement 6, Contents of amendment (1) From page 5, line 18 to page 6, line 2 of the specification, “In addition,...alloying” was changed to “the negative electrode l is the first one.” As shown in the two-part perspective view, an aluminum alloy 9 with grooves formed in a lattice pattern having a thickness of 0.1 nm, a width of about 15 μm, and a depth of about 60 μ is electrochemically treated with lithium metal. A negative electrode base formed on nickel foil 10, which is a metal that is difficult to alloy with, is electrochemically alloyed with lithium metal in the electrolytic solution using lithium metal as a counter electrode.
It is an aluminum alloy. ” and correct it. (2) Correct the word "do" on page 6, line 11 of the specification to "copper.""Tate" on page 6, line 20 of the specification book is "tate" - first. More than subject to correction

Claims (1)

【特許請求の範囲】[Claims]  電解質と接する面に格子状の溝と、その反対の面に形
成したリチウムと電気化学的に合金化しにくい金属層と
よりなるアルミニウム−リチウム合金より構成された負
極を持つことを特徴とする非水電解質二次電池。
A non-aqueous cathode comprising an aluminum-lithium alloy comprising lattice-like grooves on the surface in contact with the electrolyte and a metal layer that is difficult to electrochemically alloy with lithium formed on the opposite surface. Electrolyte secondary battery.
JP2134670A 1990-05-24 1990-05-24 Nonaqueous electrolytic secondary battery Pending JPH0432159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2134670A JPH0432159A (en) 1990-05-24 1990-05-24 Nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2134670A JPH0432159A (en) 1990-05-24 1990-05-24 Nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JPH0432159A true JPH0432159A (en) 1992-02-04

Family

ID=15133819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134670A Pending JPH0432159A (en) 1990-05-24 1990-05-24 Nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JPH0432159A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100794A1 (en) * 2005-03-23 2006-09-28 Mitsui Mining & Smelting Co., Ltd. Negative electrode for rechargeable battery with nonaqueous electrolyte
WO2007055276A1 (en) * 2005-11-09 2007-05-18 Matsushita Electric Industrial Co., Ltd. Negative electrode for coin-type lithium rechargeable battery, process for producing said negative electrode, and coin-type lithium rechargeable battery
JP2007157704A (en) * 2005-11-09 2007-06-21 Matsushita Electric Ind Co Ltd Negative electrode for coin type lithium secondary battery, its manufacturing method, and coin type lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100794A1 (en) * 2005-03-23 2006-09-28 Mitsui Mining & Smelting Co., Ltd. Negative electrode for rechargeable battery with nonaqueous electrolyte
WO2007055276A1 (en) * 2005-11-09 2007-05-18 Matsushita Electric Industrial Co., Ltd. Negative electrode for coin-type lithium rechargeable battery, process for producing said negative electrode, and coin-type lithium rechargeable battery
JP2007157704A (en) * 2005-11-09 2007-06-21 Matsushita Electric Ind Co Ltd Negative electrode for coin type lithium secondary battery, its manufacturing method, and coin type lithium secondary battery
US20100151321A1 (en) * 2005-11-09 2010-06-17 Teruaki Yamamoto Negative electrode for coin-shaped lithium secondary battery, method for producing the same, and coin-shaped lithium secondary battery

Similar Documents

Publication Publication Date Title
JP3282189B2 (en) Non-aqueous electrolyte secondary battery
CN1266799C (en) Lithium accumulator
US7054138B2 (en) Electric double layer capacitor and electrolyte battery
JPH06260168A (en) Lithium secondary battery
JPH0432159A (en) Nonaqueous electrolytic secondary battery
JPH06168722A (en) Nonaqueous electrolyte battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
US20210036385A1 (en) Electrode with enhanced state of charge estimation
JPH07226206A (en) Nonaqueous electrolyte secondary battery
JPH0536401A (en) Lithium secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JP2006049237A (en) Anode material for lithium ion battery
JP7466112B2 (en) Non-aqueous electrolyte secondary battery
JP3256986B2 (en) Coin type non-aqueous electrolyte battery
JP7262041B2 (en) Electrochemical device
JPH04206258A (en) Nonaqueous electrolyte secondary battery
JPH04206263A (en) Nonaqueous electrolyte secondary battery
JPH0434852A (en) Nonaqueous electrolyte secondary battery
JPH0254870A (en) Organic electrolyte battery
JP2023027874A (en) Negative electrode and lithium ion secondary battery
JP2673836B2 (en) Non-aqueous electrolyte secondary battery
JP2646913B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JPH11238527A (en) Nonaqueous secondary battery
JPS62283571A (en) Nonaqueous solvent secondary cell
JP2771580B2 (en) Manufacturing method of lithium alloy plate