JPH11238527A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH11238527A
JPH11238527A JP10038577A JP3857798A JPH11238527A JP H11238527 A JPH11238527 A JP H11238527A JP 10038577 A JP10038577 A JP 10038577A JP 3857798 A JP3857798 A JP 3857798A JP H11238527 A JPH11238527 A JP H11238527A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrode film
film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10038577A
Other languages
Japanese (ja)
Inventor
Tetsuya Kusakabe
鉄也 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP10038577A priority Critical patent/JPH11238527A/en
Publication of JPH11238527A publication Critical patent/JPH11238527A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To reduce the internal resistance and realize high capacity of a battery by forming a positive electrode or a negative electrode from at least an active material and conductive fine metal powder and containing therein fine metal powder that forms a conductive network and has an mean particle diameter in a specific range. SOLUTION: A positive electrode 1 is composed by laminating an upper layer positive electrode film 2-1 and a lower layer positive electrode film 2-2 which contain fine metal powder and have a rectangular shape of a predetermined width interposing a positive electrode collector 4 made of metal foil. A negative electrode 5 is composed by laminating an upper layer negative electrode film 6-1 and a lower layer negative electrode film 6-2, which contain fine metal powder and have a rectangular shape of a predetermined width interposing a positive electrode collector 8 made of a metal foil. In addition, a cell body 10 is structured by laminating the positive electrode 1 and the negative electrode 5 interposing a separator 9. The conductivity of the positive electrode films 2-1, 2-2 and the negative electrode films 6-1, 6-2 can be improved and the resistance between the positive and negative collectors 4, 8 and these can be reduced by forming the positive electrode 1 or the negative electrode 5 from at least an active material and conductive fine metal powder and including therein fine metal powder that forms a conductive network and has a mean particle diameter in the range of 0.1-30 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高容量で軽量又は
内部抵抗の小さな非水系二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery having a high capacity, a light weight and a small internal resistance.

【0002】[0002]

【従来の技術】近年、高エネルギー密度の期待できる非
水系二次電池の研究開発が活発になされ、たとえば、リ
チウムイオンの挿入放出が可能な活物質を含む正極及び
負極を有するリチウムイオン二次電池が、小型軽量が要
求される携帯電話やノート型パソコン等の電源として広
く使用されるようになってきている。しかしながら、上
記従来の非水系二次電池においては、高電流密度(例え
ば、10mA/cm2以上)で十分な容量を引き出せて
おらず、その原因の1つとして電池の内部抵抗の低減が
不十分であるという問題がある。
2. Description of the Related Art In recent years, non-aqueous secondary batteries that can be expected to have high energy density have been actively researched and developed. For example, a lithium ion secondary battery having a positive electrode and a negative electrode containing an active material capable of inserting and releasing lithium ions. However, they have been widely used as power sources for mobile phones, notebook computers, and the like that require small size and light weight. However, in the conventional non-aqueous secondary battery described above, a sufficient capacity cannot be drawn out at a high current density (for example, 10 mA / cm 2 or more), and one of the causes is insufficient reduction of the internal resistance of the battery. There is a problem that is.

【0003】二次電池の内部抵抗は、電極、電解液及び
セパレータの抵抗からなる。この中で、電解液の抵抗は
用いる電解液の種類により決まり、またセパレータの抵
抗は含浸される電解液の抵抗に依存することから、所定
の電解液を用いる場合、内部抵抗を低減するためには、
電極の抵抗を下げることが要求される。従来、電極は金
属箔からなる集電体に活物質を含むペーストを塗布する
ことにより作製され、活物質と導電性カーボン及び結着
剤を含む極材層と集電体とから構成されている。そこ
で、電極の抵抗を下げるため、極材層の抵抗を下げた
り、又は集電体の表面に物理的あるいは化学的に凹凸を
形成させ、極材層との密着性を向上させる等の検討がな
されている。
[0003] The internal resistance of a secondary battery consists of the resistance of the electrodes, electrolyte and separator. Among them, the resistance of the electrolyte is determined by the type of the electrolyte used, and the resistance of the separator depends on the resistance of the electrolyte to be impregnated. Is
It is required to reduce the resistance of the electrode. Conventionally, an electrode is manufactured by applying a paste containing an active material to a current collector made of a metal foil, and is composed of an active material, an electrode layer containing a conductive carbon and a binder, and a current collector. . Therefore, in order to lower the resistance of the electrode, it is necessary to reduce the resistance of the electrode material layer or to form a physical or chemical unevenness on the surface of the current collector to improve the adhesion with the electrode material layer. It has been done.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、極材層
の抵抗を下げるため、導電性カーボンの添加量をふやす
と、極材層の体積が増加し、体積及び重量エネルギー密
度が低下するという問題がある。また、充放電の繰り返
しとともに、活物質の体積が増えるため、極材層と集電
体との密着性が徐々に低下し電極の抵抗が増加するとい
う問題もあり、電極の抵抗の低減は不十分であった。
However, if the amount of conductive carbon added is increased in order to reduce the resistance of the electrode material layer, the volume of the electrode material layer increases, and the volume and the energy density by weight decrease. is there. In addition, the volume of the active material increases as charge and discharge are repeated, so that the adhesion between the electrode material layer and the current collector gradually decreases and the resistance of the electrode increases. Was enough.

【0005】そこで、本発明は、上述の問題点を解決す
るため、電極の抵抗を下げることにより、内部抵抗が低
減された高容量の非水系二次電池を提供することを目的
とした。
Therefore, an object of the present invention is to provide a high-capacity non-aqueous secondary battery in which the internal resistance is reduced by lowering the resistance of the electrode in order to solve the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、活物質と導電性を付与する金属微粉末を
含む正極又は負極を用いて電池を構成することにより上
記課題を解決できることを見い出して完成されたもので
あり、すなわち、本発明は、リチウムイオンを挿入放出
可能な活物質を含む正極及び負極を有する非水系二次電
池において、正極又は負極が、少なくとも活物質と導電
性の金属微粉末からなり、導電性ネットワークを形成す
る平均粒径0.1μm〜30μmの上記金属微粉末を含
むことを特徴とする。上記金属微粉末の高い導電性と形
成される導電性ネットワークにより、従来の導電性付与
材である導電性カーボンを用いる場合に比べ、正極又は
負極に高い導電性が付与される。
In order to achieve the above-mentioned object, the present invention solves the above-mentioned problems by forming a battery using a positive electrode or a negative electrode containing an active material and a metal fine powder for imparting conductivity. That is, the present invention has been completed, that is, the present invention relates to a nonaqueous secondary battery having a positive electrode and a negative electrode containing an active material capable of inserting and releasing lithium ions, wherein the positive electrode or the negative electrode has at least an active material and a conductive material. It is characterized by comprising the above-mentioned metal fine powder having an average particle size of 0.1 μm to 30 μm which is formed of conductive metal fine powder and forms a conductive network. Due to the high conductivity of the metal fine powder and the conductive network formed, higher conductivity is imparted to the positive electrode or the negative electrode as compared with the case where conductive carbon which is a conventional conductivity-imparting material is used.

【0007】また、上記正極に含まれる金属微粉末が、
アルミニウム、チタン、ステンレスから選ばれた金属又
はそれを含む合金からなり、また、上記負極に含まれる
金属微粉末が、銅族及び白金族から選ばれたリチウム金
属と接触しても形態を著しく損なうことのない金属又は
それを含む合金からなることが望ましい。上記金属又は
それを含む合金を用いることにより、耐食性に優れ導電
性の高い正極又は負極を得ることができる。
[0007] The metal fine powder contained in the positive electrode may be:
Aluminum, titanium, a metal selected from stainless steel or an alloy containing the same, and the metal fine powder contained in the negative electrode, even when in contact with lithium metal selected from copper group and platinum group, significantly impairs the form It is desirable to use a metal or an alloy containing the same. By using the above metal or an alloy containing the same, a positive electrode or a negative electrode having excellent corrosion resistance and high conductivity can be obtained.

【0008】また、上記正極が金属微粉末を6〜20体
積%、さらに上記負極が金属微粉末を6〜20体積%の
範囲含むことが望ましく、上記の範囲であれば、電池の
容量を低下させることなく、正極又は負極の導電性を高
くすることができる。
Preferably, the positive electrode contains 6 to 20% by volume of the metal fine powder, and the negative electrode contains 6 to 20% by volume of the metal fine powder. Without this, the conductivity of the positive electrode or the negative electrode can be increased.

【0009】また、上記正極又は負極が、活物質と金属
微粉末を含む積層された複数の正極膜又は負極膜からな
ることが望ましい。金属微粉末を含む正極膜又は負極膜
を積層することにより、導電性の高い積層体を作製でき
る。
Preferably, the positive electrode or the negative electrode comprises a plurality of stacked positive electrode films or negative electrode films containing an active material and metal fine powder. By stacking a positive electrode film or a negative electrode film containing fine metal powder, a highly conductive laminate can be manufactured.

【0010】また、上記正極又は負極が正極膜又は負極
膜より巾の狭い矩形の金属箔からなる集電体を介して積
層された正極膜又は負極膜からなっても良い。電極が軽
量化できるとともに、電池製造時に要求される機械的強
度を電極に付与することができる。
Further, the positive electrode or the negative electrode may be composed of a positive electrode film or a negative electrode film laminated via a current collector made of a rectangular metal foil having a width smaller than that of the positive electrode film or the negative electrode film. The electrode can be reduced in weight, and the electrode can be provided with the mechanical strength required during battery production.

【0011】また、上記正極膜又は負極膜が、正極活物
質又は負極活物質に結着剤、導電性カーボン、溶媒及び
金属微粉末を添加し、混練して得たペーストをオレフィ
ン系樹脂からなる平板の上に塗布し、上記塗布したペー
ストを乾燥後、得られた塗膜を上記平板より剥離させる
ことにより作製されることが望ましい。
Further, the above-mentioned positive electrode film or negative electrode film comprises a paste obtained by adding a binder, conductive carbon, a solvent and a metal fine powder to a positive electrode active material or a negative electrode active material, and kneading the paste to form an olefin resin. It is desirably prepared by applying the composition on a flat plate, drying the applied paste, and peeling the obtained coating film from the flat plate.

【0012】また、上記正極膜及び/又は負極膜の片面
又は両面に導電性の金属からなる導電性薄膜部を形成さ
せても良い。上記導電性薄膜部を形成させることによ
り、正極膜間又は負極膜間の界面の抵抗をさらに低減す
ることができる。
A conductive thin film portion made of a conductive metal may be formed on one or both surfaces of the positive electrode film and / or the negative electrode film. By forming the conductive thin film portion, the resistance at the interface between the positive electrode films or the negative electrode films can be further reduced.

【0013】また、上記正極膜の導電性薄膜部が、アル
ミニウム、チタン、ステンレスから選ばれた金属又はそ
れを含む合金からなり、さらに上記負極膜の導電性薄膜
部が、銅族及び白金族から選ばれたリチウム金属と接触
しても形態を著しく損なうことのない金属又はそれを含
む合金からなることが望ましい。これにより、耐食性が
高く導電性が高い薄膜部が得られる。
Further, the conductive thin film portion of the positive electrode film is made of a metal selected from aluminum, titanium, and stainless steel or an alloy containing the same, and the conductive thin film portion of the negative electrode film is made of a copper group and a platinum group. It is desirable to use a metal or an alloy containing the metal that does not significantly impair the form even when contacted with the selected lithium metal. Thereby, a thin film portion having high corrosion resistance and high conductivity can be obtained.

【0014】また、上記導電性薄膜部は、正極膜又は負
極膜の片面又は両面に蒸着法、スパッタリング法、電解
メッキ法及び無電解メッキ法から選ばれたいずれか1つ
の方法を用いて形成されることが望ましい。
Further, the conductive thin film portion is formed on one or both surfaces of the positive electrode film or the negative electrode film by using any one method selected from a vapor deposition method, a sputtering method, an electrolytic plating method and an electroless plating method. Is desirable.

【0015】[0015]

【発明の実施の形態】以下、図面を参照して、本発明に
係る実施形態について説明する。 <第1の実施形態>図1は本発明の第1の実施形態にお
ける非水系二次電池の構成を示す模式的な断面図であ
る。金属微粉末を含む所定の巾の矩形の上層の正極膜2
-1と下層の正極膜2-2を金属箔からなる正極集電体4
を介して積層し、正極1を作製するとともに、金属微粉
末を含む所定の巾の矩形の上層の負極膜6-1と下層の
負極膜6-2を金属箔からなる負極集電体8を介して積
層して負極5を作製し、セパレータ9を介して正極1と
負極5を積層して素電池体10が構成される。素電池体
10は、さらにセパレータを新たに1枚積層してスパイ
ラル状に巻かれ、円筒形の電池ケースに収納され、電解
液注入後、電池ケースが密閉されて、電池が製造され
る。
Embodiments of the present invention will be described below with reference to the drawings. <First Embodiment> FIG. 1 is a schematic sectional view showing the structure of a non-aqueous secondary battery according to a first embodiment of the present invention. Upper layer positive electrode film 2 of rectangular shape having a predetermined width containing metal fine powder
Current collector 4 made of metal foil with -1 and lower positive electrode film 2-2
A negative electrode current collector 8 made of a metal foil is formed by stacking the upper negative electrode film 6-1 and the lower negative electrode film 6-2 having a predetermined width including a metal fine powder. The negative electrode 5 is produced by laminating the positive electrode 1 and the negative electrode 5 with the separator 9 interposed therebetween to form a unit cell body 10. The unit cell body 10 is further laminated with a new separator, wound in a spiral shape, housed in a cylindrical battery case, filled with an electrolytic solution, and then sealed to form a battery.

【0016】以上のように、本発明の第1の実施形態に
よれば、金属微粉末を含有させることにより正極膜又は
負極膜の導電性が向上するだけでなく、正極膜と集電体
間又は負極膜と集電体間の抵抗を下げることができるた
め、正極又は負極の抵抗を低減することができる。ま
た、正極膜又は負極膜より巾の狭い矩形の集電体を用い
ることにより、従来に比べ集電体の重量を軽減でき、か
つ正極又は負極に機械的強度を付与することができ、電
池の製造が容易になる。
As described above, according to the first embodiment of the present invention, the inclusion of the fine metal powder not only improves the conductivity of the positive electrode film or the negative electrode film, but also improves the conductivity between the positive electrode film and the current collector. Alternatively, since the resistance between the negative electrode film and the current collector can be reduced, the resistance of the positive electrode or the negative electrode can be reduced. In addition, by using a rectangular current collector having a width smaller than that of the positive electrode film or the negative electrode film, the weight of the current collector can be reduced as compared with the related art, and mechanical strength can be imparted to the positive electrode or the negative electrode. Manufacturing becomes easier.

【0017】<第2の実施形態>図2は、本発明の第2
の実施形態における非水系二次電池の構造を示す模式的
な断面図である。正極膜2-1と2-2の片面に導電性薄
膜層3-1と3-2を形成し、導電性薄膜層3-1と3-2
を対向せしめ、正極集電体4を介して正極膜2-1と2-
2を積層して正極1を作製するとともに、負極膜6-1
と6-2の片面に導電性薄膜部7-1と7-2を形成し、
導電性薄膜部7-1と7-2を対向せしめ、負極集電体8
を介して負極膜6-1と6-2を積層して負極5を作製す
る以外は、第1の実施形態と同様にして電池が製造され
る。
<Second Embodiment> FIG. 2 shows a second embodiment of the present invention.
It is a typical sectional view showing the structure of the nonaqueous system secondary battery in an embodiment. The conductive thin film layers 3-1 and 3-2 are formed on one side of the positive electrode films 2-1 and 2-2, and the conductive thin film layers 3-1 and 3-2 are formed.
And the positive electrode films 2-1 and 2-
2 to form a positive electrode 1 and a negative electrode film 6-1.
And 6-2 to form conductive thin film portions 7-1 and 7-2 on one side,
The conductive thin film portions 7-1 and 7-2 are opposed to each other, and the negative electrode current collector 8
A battery is manufactured in the same manner as in the first embodiment, except that the negative electrode 5 is prepared by laminating the negative electrode films 6-1 and 6-2 via.

【0018】以上のように、導電性薄膜部を正極膜又は
負極膜の少なくとも片面に形成して、集電体を介して正
極膜又は負極膜を積層することで、正極膜と集電体間又
は負極膜と集電体間の抵抗を一層低減することができ
る。
As described above, the conductive thin film portion is formed on at least one side of the positive electrode film or the negative electrode film, and the positive electrode film or the negative electrode film is laminated with the current collector interposed therebetween. Alternatively, the resistance between the negative electrode film and the current collector can be further reduced.

【0019】ここで、本発明の第1及び第2の実施形態
の非水系二次電池の正極活物質として用いられる正極材
料は、従来公知の何れの材料も使用でき、例えば、Li
xCoO2、LixNiO2、MnO2、LiMnO2、Li
xMn24、LixMn2-y4、α−V25、TiS2
が挙げられる。
Here, as the positive electrode material used as the positive electrode active material of the nonaqueous secondary batteries of the first and second embodiments of the present invention, any conventionally known materials can be used.
xCoO 2 , LixNiO 2 , MnO 2 , LiMnO 2 , Li
xMn 2 O 4, LixMn 2- y O 4, α-V 2 O 5, TiS 2 and the like.

【0020】また、本発明の第1及び第2の実施形態の
非水系二次電池の負極活物質としては、黒鉛、焼成炭素
質材料、ケイ素及びケイ素化合物等公知の材料を用いる
ことができる。
Further, as the negative electrode active material of the non-aqueous secondary batteries of the first and second embodiments of the present invention, known materials such as graphite, calcined carbonaceous material, silicon and silicon compound can be used.

【0021】また、本発明の第1及び第2の実施形態の
非水系二次電池に使用される非水電解液は、有機溶媒に
リチウム化合物を溶解させた非水電解液を用いることが
できる。非水電解液は、有機溶媒と電解質とを適宜組み
合わせて調製されるが、これら有機溶媒や電解質はこの
種の電池に用いられるものであればいずれも使用可能で
ある。有機溶媒としては、例えばプロピレンカーボネー
ト、エチレンカーボネート、ビニレンカーボネート、ジ
メチルカーボネート、ジエチルカーボネート、メチルエ
チルカーボネート、1,2−ジメトキシエタン、1,2
−ジエトキシエタンメチルフォルメイト、ブチロラクト
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、1−3ジオキソフラン、4−メチル−1、3−ジオ
キソフラン、ジエチルエーテル、スルホラン、メチルス
ルホラン、アセトニトリル、プロピオニトリル、ブチロ
ニトリル、バレロニトリル、ベンゾニトリル、1,2−
ジクロロエタン、4−メチル−2ーペンタノン、1、4
−ジオキサン、アニソール、ジグライム、ジメチルホル
ムアミド、ジメチルスルホキシド等である。これらの溶
媒はその1種を単独で使用することができるし、2種以
上を併用することもできる。電解質としては、例えばL
iClO4,LiAsF6,LiPF6,LiBF4,Li
B(C654,LiCl,LiBr,LiI,LiC
3SO3,LiCF3SO3,LiAlCl4等が挙げら
れ、これらの1種を単独で使用することもできるし、2
種以上を併用することもできる。
Further, as the non-aqueous electrolyte used in the non-aqueous secondary batteries of the first and second embodiments of the present invention, a non-aqueous electrolyte obtained by dissolving a lithium compound in an organic solvent can be used. . The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery. As the organic solvent, for example, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2
-Diethoxyethane methyl formate, butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1-3 dioxofuran, 4-methyl-1,3-dioxofuran, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, butyronitrile, valeronitrile , Benzonitrile, 1,2-
Dichloroethane, 4-methyl-2-pentanone, 1,4
-Dioxane, anisole, diglyme, dimethylformamide, dimethylsulfoxide and the like. One of these solvents can be used alone, or two or more can be used in combination. As the electrolyte, for example, L
iClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , Li
B (C 6 H 5 ) 4 , LiCl, LiBr, LiI, LiC
H 3 SO 3 , LiCF 3 SO 3 , LiAlCl 4, etc., and one of these can be used alone.
More than one species may be used in combination.

【0022】また、本発明の第1及び第2の実施形態の
セパレータとしては、非水系二次電池に用いられている
いずれのものも使用できるが、多孔性ポリエチレン等の
多孔性絶縁シートを用いることが望ましい。
As the separator of the first and second embodiments of the present invention, any of those used for non-aqueous secondary batteries can be used, but a porous insulating sheet such as porous polyethylene is used. It is desirable.

【0023】また、本発明の第1及び第2の実施形態の
非水系二次電池の正極又は負極は、正極活物質又は負極
活物質に結着剤と溶媒を加え、混練してペーストを作製
し、そのペーストをオレフィン系樹脂の平板上に塗布し
乾燥後、得られた塗膜を平板から剥離することにより、
それぞれ正極膜と負極膜を得ることができる。正極膜と
負極膜の厚さは、それぞれ20μm〜500μm、20
μm〜500μmであることが望ましい。
The positive and negative electrodes of the non-aqueous secondary batteries according to the first and second embodiments of the present invention are prepared by adding a binder and a solvent to a positive electrode active material or a negative electrode active material and kneading the paste. Then, the paste is applied to a flat plate of an olefin-based resin, and after drying, the obtained coating film is peeled off from the flat plate.
A positive electrode film and a negative electrode film can be obtained respectively. The thicknesses of the positive electrode film and the negative electrode film are respectively 20 μm to 500 μm,
It is desirable that it is from μm to 500 μm.

【0024】また、本発明の第1及び第2の実施形態の
非水系二次電池の正極膜及び負極膜の作製に用いる平板
は、オレフィン系の樹脂であれば、いずれのものも用い
ることができるが、ポリプロピレン製のものを用いるこ
とが望ましい。
The flat plate used for producing the positive electrode film and the negative electrode film of the nonaqueous secondary batteries of the first and second embodiments of the present invention may be any olefin resin. Although it is possible, it is desirable to use one made of polypropylene.

【0025】また、本発明の第1及び第2の実施形態の
非水系二次電池の正極膜に含まれる金属微粉末には、ア
ルミニウム、チタン、ステンレス等の耐電圧が高く、か
つ導電性の高い金属を単独又は組み合わせて用いること
ができるが、アルミニウムを用いることが望ましい。
The fine metal powder contained in the positive electrode film of the non-aqueous secondary batteries according to the first and second embodiments of the present invention has a high withstand voltage such as aluminum, titanium, and stainless steel, and has high conductivity. High metals can be used alone or in combination, but aluminum is preferred.

【0026】また、本発明の第1及び第2の実施形態の
非水系二次電池の負極膜に含まれる金属微粉末には、リ
チウムと反応しない、又は反応しても導電性が低下しな
い銅族及び白金族等の金属、たとえば銅、金、銀、ルテ
ニウム、ロジウム、パラジウム、オスミウム、イリジウ
ム、白金等を単独又は組み合わせて用いることができる
が、銅又は金を用いることが望ましい。
In addition, the metal fine powder contained in the negative electrode film of the non-aqueous secondary battery of the first and second embodiments of the present invention contains copper which does not react with lithium or does not decrease in conductivity even if it reacts. Metals such as copper, gold, silver, ruthenium, rhodium, palladium, osmium, iridium, platinum and the like can be used alone or in combination, but copper or gold is preferably used.

【0027】また、本発明の第1及び第2の実施形態の
非水系二次電池の集電体には、通常非水系二次電池の集
電体に使用されるいずれのものも用いることができる
が、正極集電体には、たとえばアルミニウム箔、負極集
電体には、たとえば銅箔を用いることが望ましい。
Further, as the current collector of the non-aqueous secondary battery of the first and second embodiments of the present invention, any one usually used for the current collector of the non-aqueous secondary battery may be used. However, it is desirable to use, for example, an aluminum foil for the positive electrode current collector and, for example, a copper foil for the negative electrode current collector.

【0028】また、本発明の第2の実施形態の非水系二
次電池の正極膜又は負極膜の導電性薄膜部は、蒸着法、
スパッタリング法、電解メッキ法及び無電解メッキ法か
ら選ばれたいずれか1つの方法により形成することがで
きる。正極膜に対しては蒸着法を用いるのが望ましい。
形成される導電性薄膜部の厚さは、正極膜、負極膜でそ
れぞれ3μm〜10μm、3μm〜10μmであること
が望ましい。
Further, the conductive thin film portion of the positive electrode film or the negative electrode film of the non-aqueous secondary battery according to the second embodiment of the present invention is formed by an evaporation method.
It can be formed by any one method selected from a sputtering method, an electrolytic plating method, and an electroless plating method. It is desirable to use an evaporation method for the positive electrode film.
The thickness of the formed conductive thin film portion is preferably 3 μm to 10 μm and 3 μm to 10 μm for the positive electrode film and the negative electrode film, respectively.

【0029】[0029]

【実施例】以下、実施例を用いて本発明をさらに詳細に
説明する。
The present invention will be described in more detail with reference to the following examples.

【0030】実施例1.平均粒径7μmの天然炭素粉末
100gにポリフッ化ビニリデン(PVDF)10g、
n−メチル−2−ピロリドン(NMP)を加えて、混練
してペーストを作製し、このペーストを巾50mm、長
さ520mm、厚さ20μmの銅箔(重量4.29g)
に塗布し、乾燥後、カレンダプレス加工をほどこし、両
面に厚さ100μm、比重1.2の塗膜を有する負極を
得た。この負極の重量は、9.91gであった。
Example 1. 10 g of polyvinylidene fluoride (PVDF) was added to 100 g of natural carbon powder having an average particle size of 7 μm.
n-Methyl-2-pyrrolidone (NMP) is added and kneaded to prepare a paste, and this paste is 50 mm wide, 520 mm long and 20 μm thick copper foil (weight 4.29 g).
After drying, a calender press process was performed to obtain a negative electrode having a coating film having a thickness of 100 μm and a specific gravity of 1.2 on both sides. The weight of the negative electrode was 9.91 g.

【0031】コバルト酸リチウム88gに対して、アセ
チレンブラック6g、PVDF6g、平均粒径が1μm
であるアルミニウム粉末6g及びNMPを加え、混練し
てペーストを作製し、このペーストをポリプロピレンの
平板上に塗布し、乾燥後、カレンダプレス加工をほどこ
し、巾50mm、長さ480mm、厚さ90μm、比重
2.5の正極膜をポロプロピレンの平板上から剥離して
得た。この正極膜を、真空蒸着装置に入れて、片面にア
ルミニウムを蒸着した。同様にして、アルミニウムを片
面に蒸着した正極膜をさらにもう1枚作製し、巾20m
m、長さ520mm、厚さ20μmのアルミニウム箔を
間に入れて2枚の正極膜の蒸着面を合わせて1つの正極
とした。この正極の重量は11.00gであった。
For 88 g of lithium cobaltate, 6 g of acetylene black, 6 g of PVDF, and an average particle size of 1 μm
6 g of aluminum powder and NMP were added and kneaded to prepare a paste. The paste was applied on a polypropylene flat plate, dried, and calender-pressed. The width was 50 mm, the length was 480 mm, the thickness was 90 μm, and the specific gravity was specific. The positive electrode film of 2.5 was obtained by peeling off a polypropylene plate. This positive electrode film was placed in a vacuum deposition apparatus, and aluminum was deposited on one side. In the same manner, one more positive electrode film having aluminum deposited on one side was prepared, and the width was 20 m.
m, a length of 520 mm, and a thickness of 20 μm, an aluminum foil was interposed between the two positive electrode films to form a single positive electrode. The weight of this positive electrode was 11.00 g.

【0032】セパレータに、巾52mm、長さ540m
m、厚さ30μmで、重量は0.84gのPET微多孔
膜を2枚用い、正極と負極の短絡を防ぎながら巻回し、
巻回中に負極集電タブとして巾3mm、長さ60mm、
厚さ50μmの銅片(重量0.08g)を負極に接触する
ように、さらに正極集電タブとして同じ寸法のアルミニ
ウム片(重量0.02g)を正極に接触するように巻き
込んで、巻体の片側に負極集電タブが、反対方向には正
極集電タブがはみ出るようにして、中心に直径2mmの
空孔を有する直径17.4mm、長さ52mmの円筒状
巻電池体を得た。この円筒状巻電池体の重量は、20.
48gであった。
The separator has a width of 52 mm and a length of 540 m.
m, a thickness of 30 μm, and a weight of 0.84 g using two PET microporous membranes, winding while preventing short circuit between the positive electrode and the negative electrode,
During winding, the width of the negative electrode current collecting tab is 3 mm, the length is 60 mm,
A copper piece (0.08 g in weight) having a thickness of 50 μm was wound so as to be in contact with the negative electrode, and an aluminum piece (0.02 g in weight) having the same size as the positive electrode current collecting tab was brought into contact with the positive electrode. The negative electrode current collecting tab protruded on one side and the positive electrode current collecting tab protruded in the opposite direction to obtain a cylindrical wound battery body having a diameter of 17.4 mm and a length of 52 mm having a hole of 2 mm in the center. The weight of this cylindrical wound battery body is 20.
It was 48 g.

【0033】この円筒状巻電池体を、直径17.4m
m、長さ67mmの有底の肉厚0.25mmのステンレ
ス製容器(重量8.90g)に負極集電タブが下になる
ように挿入し、負極集電タブを缶底に溶接し、電解液
4.00gを注入した後、正極集電タブを重量2.50g
の蓋に溶接し、正極と負極が短絡しないように缶をかし
めて密閉し、直径18mm、長さ65mmの電池を得
た。この電池の重量は38.09gであった。
This cylindrical wound battery body was 17.4 m in diameter.
m, a stainless steel container (weight 8.90 g) with a bottom and a thickness of 0.25 mm and a length of 67 mm, with the negative electrode current collecting tab facing down, welding the negative electrode current collecting tab to the bottom of the can, and performing electrolysis. After injecting 4.00 g of the liquid, the positive electrode current collector tab was weighed 2.50 g.
And a can was caulked and sealed so as not to short-circuit the positive electrode and the negative electrode to obtain a battery having a diameter of 18 mm and a length of 65 mm. The weight of this battery was 38.09 g.

【0034】なお、電解液は、エチレンカーボネートと
ジメチルカーボネートの混合溶媒(体積比1:1)に、
濃度が1mol/lとなるように六フッ化リン酸リチウ
ムを加えたものを用いた。電流密度2mA/cm
4.2Vまで充電を行い、2.5Vまで放電し、充放電時
のIRドロップより内部抵抗値を評価した。結果を表1
に示す。
The electrolyte was mixed with a mixed solvent of ethylene carbonate and dimethyl carbonate (1: 1 by volume).
What added lithium hexafluorophosphate so that concentration might be 1 mol / l was used. The battery was charged to 4.2 V at a current density of 2 mA / cm 2 , discharged to 2.5 V, and the internal resistance was evaluated from the IR drop during charging and discharging. Table 1 shows the results
Shown in

【0035】比較例1.コバルト酸リチウム88gに対
してアセチレンブラック6g、PVDF6gとNMPを
加え、混練してペーストを作製し、これを巾50mm、
長さ480mm、厚さ20μmのアルミニウム箔(重量
1.40g)の両面に塗布後乾燥し、カレンダプレス加
工を施して、両面に厚さ100μm、比重2.4の塗膜
を有する正極を得た。この正極の重量は、11.77g
であった。
Comparative Example 1. To 88 g of lithium cobaltate, 6 g of acetylene black, 6 g of PVDF and NMP were added and kneaded to prepare a paste.
After coating on both sides of an aluminum foil (weight: 1.40 g) having a length of 480 mm and a thickness of 20 μm, drying and calendering were performed to obtain a positive electrode having a coating having a thickness of 100 μm and a specific gravity of 2.4 on both sides. . The weight of this positive electrode was 11.77 g.
Met.

【0036】正極以外の負極、セパレータ、電解液、容
器缶、正負極集電タブ及び蓋は、実施例1と同様のもの
及び同様の方法を用い、中心に直径2mmの空孔を有す
る直径17.4mm、長さ52mmの円筒状巻電池体を
得た。この円筒状巻電池体の重量は、23.46gであ
った。実施例1と同様にして、この円筒状巻電池体を容
器に収納し、さらに電解液を注入し、直径18mm、長
さ65mmの電池を得た。この電池の重量は、38.8
6gであった。結果を表1に示す。
The negative electrode other than the positive electrode, the separator, the electrolytic solution, the container can, the positive and negative electrode current collecting tabs and the lid were formed in the same manner and in the same manner as in Example 1. A cylindrical wound battery body having a length of 0.4 mm and a length of 52 mm was obtained. The weight of this cylindrical wound battery body was 23.46 g. In the same manner as in Example 1, this cylindrically wound battery body was housed in a container, and an electrolytic solution was further injected to obtain a battery having a diameter of 18 mm and a length of 65 mm. The weight of this battery is 38.8
6 g. Table 1 shows the results.

【0037】実施例2.平均粒径7μmの天然炭素粉末
100gに、平均粒径20μmの無酸素銅粉末54gと
PVDF10g、そしてNMPを加えて混練してペース
トを作製し、これを巾50mm、長さ520mm、厚さ
20μmの銅箔に塗布し、乾燥後、カレンダプレス加工
を施して、両面に厚さ100μmの塗膜を有する負極を
得た。この負極の重量は、13.65gであった。負極
以外は、実施例1と同様にして、電池を得た。この電池
の総重量は、42.61gであった。
Example 2. To 100 g of natural carbon powder having an average particle size of 7 μm, 54 g of oxygen-free copper powder having an average particle size of 20 μm, 10 g of PVDF, and NMP were added and kneaded to prepare a paste. It was applied to a copper foil having a thickness of 520 mm and a thickness of 20 μm, dried, and then subjected to calendar press processing to obtain a negative electrode having a coating film having a thickness of 100 μm on both sides. The weight of the negative electrode was 13.65 g. A battery was obtained in the same manner as in Example 1 except for the negative electrode. The total weight of this battery was 42.61 g.

【0038】実施例3.コバルト酸リチウム88gに対
して、平均粒径5μmのアルミ粉6.4gとPVDF6
g、そしてNMPを加えて混練してペーストを作製し、
これを巾50mm、長さ480mm、厚さ20μmのア
ルミ箔に塗布し、乾燥後、カレンダプレス加工を施し、
両面に厚さ100μmの塗膜を有する正極を得た。この
正極の重量は、11.90gであった。正極以外は、実
施例1と同様にして、電池を得た。この電池の総重量
は、39.00gであった。
Embodiment 3 FIG. For 88 g of lithium cobaltate, 6.4 g of aluminum powder having an average particle size of 5 μm and PVDF6
g, and NMP are added and kneaded to produce a paste,
This is applied to an aluminum foil having a width of 50 mm, a length of 480 mm, and a thickness of 20 μm, and after drying, calendering is performed.
A positive electrode having a coating film having a thickness of 100 μm on both surfaces was obtained. The weight of this positive electrode was 11.90 g. A battery was obtained in the same manner as in Example 1, except for the positive electrode. The total weight of this battery was 39.00 g.

【0039】実施例4.コバルト酸リチウム88gに対
して、平均粒径5μmのアルミ粉12.8gとPVDF
6g、そしてNMPを加えて混練してペーストを作製
し、これを巾50mm、長さ480mm、厚さ20μm
のアルミ箔に塗布し、乾燥後、カレンダプレス加工を施
し、両面に厚さ100μmの塗膜を有する正極を得た。
この正極の重量は、12.02gであった。正極以外
は、実施例1と同様にして、電池を得た。この電池の総
重量は、39.11gであった。
Embodiment 4 FIG. 12.8 g of aluminum powder having an average particle size of 5 μm and PVDF were added to 88 g of lithium cobalt oxide.
6 g and NMP were added and kneaded to prepare a paste, which was 50 mm in width, 480 mm in length, and 20 μm in thickness.
And dried and then calendered to obtain a positive electrode having a coating film having a thickness of 100 μm on both surfaces.
The weight of this positive electrode was 12.02 g. A battery was obtained in the same manner as in Example 1, except for the positive electrode. The total weight of this battery was 39.11 g.

【0040】[0040]

【表1】 内部抵抗(mΩ) 正極重量(g) 負極重量(g) 電池重量(g) 実施例1 50 11.00 9.91 38.09 比較例1 100 11.77 9.91 38.86 実施例2 40 11.77 13.65 42.61 実施例3 40 11.90 9.91 39.00 実施例4 30 12.02 9.91 39.11Table 1 Internal resistance (mΩ) Positive electrode weight (g) Negative electrode weight (g) Battery weight (g) Example 1 50 11.00 9.91 38.09 Comparative Example 1 100 11.77 9.91 38.86 Example 2 40 11.77 13.65 42.61 Example 3 40 11.90 9.91 39.00 Example 4 30 12.02 9.91 39.11

【0041】[0041]

【発明の効果】以上、述べたように、本発明では、金属
微粉末を加えることにより正極膜又は負極膜の抵抗を下
げることができるとともに、正極膜又は負極膜をそれぞ
れ積層することにより、正極膜間又は負極膜間の界面の
電気抵抗が下がるため、電極の抵抗を下げることがで
き、電池の内部抵抗を低減することができる。また、正
極膜又は負極膜より巾の狭い矩形の集電体を、正極膜間
又は負極膜間に介在させる構成を採ることにより、電池
を軽量化できるとともに、正極及び負極に電池製造時に
必要な機械的強度を付与することができる。
As described above, according to the present invention, the resistance of the positive electrode film or the negative electrode film can be reduced by adding the fine metal powder, and the positive electrode film or the negative electrode film can be laminated to form the positive electrode film or the negative electrode film. Since the electrical resistance at the interface between the films or between the negative electrode films is reduced, the resistance of the electrodes can be reduced, and the internal resistance of the battery can be reduced. Further, by adopting a configuration in which a rectangular current collector having a width smaller than that of the positive electrode film or the negative electrode film is interposed between the positive electrode film or the negative electrode film, the battery can be reduced in weight, and the positive electrode and the negative electrode are required at the time of battery production. Mechanical strength can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態に係る非水系二次電
池の構成を示す模式的な断面図である。
FIG. 1 is a schematic sectional view showing a configuration of a non-aqueous secondary battery according to a first embodiment of the present invention.

【図2】 本発明の第2の実施形態に係る非水系二次電
池の構成を示す模式的な断面図である。
FIG. 2 is a schematic cross-sectional view illustrating a configuration of a non-aqueous secondary battery according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極、 2−1 上層の正極膜、 2−2 下層の正極膜、 3−1 上層の正極膜の導電性薄膜部、 3−2 下層の正極膜の導電性薄膜部、 4 正極集電体、 5 負極、 6−1 上層の負極膜、 6−2 下層の負極膜、 7−1 上層の負極膜の導電性薄膜部、 7−2 下層の負極膜の導電性薄膜部、 8 負極集電体、 9 セパレータ、 10 素電池体。 DESCRIPTION OF SYMBOLS 1 Positive electrode, 2-1 Upper layer positive electrode film, 2-2 Lower layer positive electrode film, 3-1 Upper layer positive electrode film conductive thin film section, 3-2 Lower layer positive electrode film conductive thin film section, 4 Positive electrode collector 5 Negative electrode; 6-1 Upper negative electrode film; 6-2 Lower negative electrode film; 7-1 Upper conductive thin film portion of negative electrode film; 7-2 Lower conductive thin film portion of negative electrode film; Body, 9 separator, 10 unit cell body.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを挿入放出可能な活物質
を含む正極及び負極を有する非水系二次電池において、
正極又は負極が、少なくとも活物質と導電性の金属微粉
末からなり、導電性ネットワークを形成する平均粒径
0.1μm〜30μmの上記金属微粉末を含むことを特
徴とする非水系二次電池。
1. A non-aqueous secondary battery having a positive electrode and a negative electrode containing an active material capable of inserting and releasing lithium ions,
A non-aqueous secondary battery, wherein the positive electrode or the negative electrode comprises at least an active material and conductive metal fine powder, and includes the metal fine powder having an average particle size of 0.1 μm to 30 μm forming a conductive network.
【請求項2】 上記正極に含まれる金属微粉末が、アル
ミニウム、チタン、ステンレスから選ばれた金属又はそ
れを含む合金からなることを特徴とする請求項1に記載
の非水系二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the fine metal powder contained in the positive electrode is made of a metal selected from aluminum, titanium, and stainless steel, or an alloy containing the same.
【請求項3】 上記負極に含まれる金属微粉末が、銅族
及び白金族から選ばれたリチウム金属と接触しても形態
を著しく損なうことのない金属又はそれを含む合金から
なることを特徴とする請求項1記載の非水系二次電池。
3. The method according to claim 1, wherein the fine metal powder contained in the negative electrode is made of a metal which does not significantly impair the form even when it comes into contact with lithium metal selected from a copper group and a platinum group, or an alloy containing the metal. The non-aqueous secondary battery according to claim 1.
JP10038577A 1998-02-20 1998-02-20 Nonaqueous secondary battery Pending JPH11238527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10038577A JPH11238527A (en) 1998-02-20 1998-02-20 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10038577A JPH11238527A (en) 1998-02-20 1998-02-20 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH11238527A true JPH11238527A (en) 1999-08-31

Family

ID=12529152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10038577A Pending JPH11238527A (en) 1998-02-20 1998-02-20 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH11238527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361343C (en) * 2002-05-30 2008-01-09 松下电器产业株式会社 Lithium ion secondary battery
JP2010040277A (en) * 2008-08-04 2010-02-18 Seiko Epson Corp Battery electrode and method for manufacturing the same, and battery
JP2019054010A (en) * 2010-01-18 2019-04-04 エネヴェート・コーポレーション Composite material for electrochemical storage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361343C (en) * 2002-05-30 2008-01-09 松下电器产业株式会社 Lithium ion secondary battery
US7335448B2 (en) 2002-05-30 2008-02-26 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
CN100452527C (en) * 2002-05-30 2009-01-14 松下电器产业株式会社 Lithium ion secondary battery
US7935445B2 (en) 2002-05-30 2011-05-03 Panasonic Corporation Lithium ion secondary battery
JP2010040277A (en) * 2008-08-04 2010-02-18 Seiko Epson Corp Battery electrode and method for manufacturing the same, and battery
JP2019054010A (en) * 2010-01-18 2019-04-04 エネヴェート・コーポレーション Composite material for electrochemical storage
JP2022031371A (en) * 2010-01-18 2022-02-18 エネヴェート・コーポレーション Composite material for electrochemical storage

Similar Documents

Publication Publication Date Title
CN100463281C (en) Battery
EP2169756B1 (en) Lithium secondary battery
JP4038699B2 (en) Lithium ion battery
US5576119A (en) Rechargeable electrochemical alkali-metal cells
CN100456551C (en) Battery
JPH09213338A (en) Battery and lithium ion secondary battery
WO2003044882A1 (en) Electrode active material, electrode, lithium ion secondary cell, method for producing electrode active material, and method for producing lithium ion secondary cell
EP3070767A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
WO2009050585A1 (en) Lithium secondary battery
JP3471238B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH11283664A (en) Solid-electrolyte battery
JP2003282064A (en) Compound current collector
JP2008166156A (en) Storage element
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2009064715A (en) Positive electrode and lithium secondary battery using the same
US20180212235A1 (en) Lithium secondary battery and method for manufacturing same
US20140315084A1 (en) Method and apparatus for energy storage
JP2007157388A (en) Nonaqueous electrolyte secondary battery
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
EP4024503A1 (en) Lithium secondary battery
JP4145762B2 (en) Nonaqueous electrolyte secondary battery
JP6926910B2 (en) Rechargeable battery
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
JP2003162997A (en) Negative electrode for secondary battery and secondary battery using the same
JPH11238527A (en) Nonaqueous secondary battery