JPH06168722A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH06168722A
JPH06168722A JP4341455A JP34145592A JPH06168722A JP H06168722 A JPH06168722 A JP H06168722A JP 4341455 A JP4341455 A JP 4341455A JP 34145592 A JP34145592 A JP 34145592A JP H06168722 A JPH06168722 A JP H06168722A
Authority
JP
Japan
Prior art keywords
case
battery
magnesium
discharge capacity
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4341455A
Other languages
Japanese (ja)
Inventor
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4341455A priority Critical patent/JPH06168722A/en
Publication of JPH06168722A publication Critical patent/JPH06168722A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To restrict reduction of a charge capacity in case of a high-rate discharge, and reduce deterioration of a discharge capacity if high-rate charges and discharges are repeated in case of a secondary battery by displacing part of cobalt of LiCoO2 by magnesium. CONSTITUTION:LiMgxCo1-xO2-y (0<x<1, 0<y<0.5, x=2y) obtained by displacing part of cobalt in LiCoO by magnesium is used for positive electrode active material. In case of LiMg0.5Co0.95O1.75, for example, an electron conductivity is improved by about 1000 times compared to that of LiCoO2, and as a result of changing addition quantity of magnesium, the electron conductivity is improved in case that the value of (x) in LiMgxCo1-xO2-y (0<x<1, 0<y<0.5, x=2y) is 0.04 or more. Reduction of a charge/discharge capacity at the time of a high-rate discharge can thus be reduced, and reduction of the charge/ discharge capacity after repeating cycles can be restricted in case of a secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質二次電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術とその課題】電子機器の急激な小形軽量化
に伴い、小形で軽量かつ高エネルギー密度の電池が求め
られている。これら要求を満たす電池として、非水電解
質電池が有望である。なかでも正極活物質にα-NaCrO2
タイプの層状 LiCoO2 を用いた非水電解質電池は、4V
級のきわめて高い電圧を示すので高エネルギー密度の電
池として期待されている。
2. Description of the Related Art Along with the rapid reduction in size and weight of electronic equipment, there is a demand for small, lightweight batteries with high energy density. Non-aqueous electrolyte batteries are promising as batteries that meet these requirements. Among them, α-NaCrO 2 is used as the positive electrode active material.
Type non-aqueous electrolyte battery using layered LiCoO 2 is 4V
It is expected to be used as a battery with high energy density because it shows extremely high voltage of the class.

【0003】しかし、 LiCoO2 は電気絶縁性の物質(J.
van Elp ら(Physi.Rev.B.,44,6090(1991))なので高率
放電時に電池の内部抵抗が増大して放電容量が低下する
という問題点があった。
However, LiCoO 2 is an electrically insulating substance (J.
Since van Elp et al. (Physi. Rev. B., 44,6090 (1991)), there is a problem that the internal resistance of the battery increases and the discharge capacity decreases at the high rate discharge.

【0004】[0004]

【課題を解決するための手段】本発明は、LiMgx Co1-x
O2-y (0<x<1,0<y<0.5,x=2y) を正極活物質に用いた非
水電解質電池を用いることにより前記問題を解決するも
のである。
The present invention provides a LiMg x Co 1-x
The problem is solved by using a non-aqueous electrolyte battery using O 2−y (0 <x <1,0 <y <0.5, x = 2y) as the positive electrode active material.

【0005】[0005]

【作用】発明者らは、 LiCoO2 のコバルトの一部をマグ
ネシウムで置換すると LiCoO2の電子伝導性が著しく向
上することを見いだした。すなわち、図1に示すように
新物質のLiMg0.5 Co0.95 O1.75は、 LiCoO2 に比較して
常温で電子伝導度が約1000倍に向上した。また、マ
グネシウム添加量を種々変えて検討した結果、図2に示
すようにLiMgx Co1-x O2-y (0<x<1,0<y<0.5,x=2y) の
x値が0.04以上の場合に電子伝導度が向上することがわ
かった。
The present inventors have found that substituting a part of cobalt in LiCoO 2 with magnesium significantly improves the electron conductivity of LiCoO 2 . That is, as shown in FIG. 1, the new substance, LiMg 0.5 Co 0.95 O 1.75, had an electron conductivity improved about 1000 times at room temperature as compared with LiCoO 2 . Moreover, as a result of studying various amounts of added magnesium, as shown in FIG. 2, the x value of LiMg x Co 1-x O 2-y (0 <x <1,0 <y <0.5, x = 2y) It was found that the electron conductivity is improved when 0.04 or more.

【0006】このように活物質そのものの電子伝導性が
向上した結果、本発明のリチウムコバルトマグネシウム
複合酸化物LiMgx Co1-x O2-y (0<x<1,0<y<0.5,x=2y)
を活物質に用いた非水電解液電池は、後の実施例でしめ
すように高率放電時の放電容量の低下が抑制され、また
二次電池の場合には高率充放電を繰り返した場合にも放
電容量の低下が少ない。
As a result of the improved electronic conductivity of the active material itself, the lithium cobalt magnesium composite oxide LiMg x Co 1-x O 2-y (0 <x <1,0 <y <0.5, x = 2y)
The non-aqueous electrolyte battery using as an active material, the decrease in the discharge capacity at the time of high rate discharge is suppressed as shown in the examples below, and in the case of a secondary battery, when high rate charge / discharge is repeated. Moreover, the decrease in discharge capacity is small.

【0007】[0007]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
EXAMPLES The present invention will be described below with reference to preferred examples.

【0008】正極活物質を次のようにして合成した。炭
酸リチウム、四三酸化コバルトおよび炭酸マグネシウム
をリチウム:コバルト:マグネシウム原子比が1:(1-x):
x になるように混合し、温度900 ℃で16時間空気中で熱
分解して本発明の非水電解質電池に用いる活物質リチウ
ムコバルトマグネシウム複合酸化物LiMgx Co1-x O2- y
(0<x<1,0<y<0.5,x=2y) を合成した。また、炭酸リチウ
ムと四三酸化コバルトとをリチウム:コバルト原子比で
1:1 になるように混合し、温度900 ℃で16時間空気中で
熱分解して従来の非水電解質電池に用いる活物質、α-N
aCrO2 タイプの層状リチウムコバルト複合酸化物( LiC
oO2 )を合成した。
A positive electrode active material was synthesized as follows. Lithium carbonate, cobalt trioxide and magnesium carbonate having a lithium: cobalt: magnesium atomic ratio of 1: (1-x):
were mixed so that the x, active material lithium cobalt-magnesium composite oxide used in the non-aqueous electrolyte battery of the present invention is thermally decomposed in 16 hours in air at a temperature 900 ℃ LiMg x Co 1-x O 2- y
(0 <x <1,0 <y <0.5, x = 2y) was synthesized. In addition, lithium carbonate and cobalt tetraoxide are used in a lithium: cobalt atomic ratio.
Α-N, the active material used in conventional non-aqueous electrolyte batteries after being mixed in a 1: 1 ratio and pyrolyzed in air at 900 ℃ for 16 hours
aCrO 2 type layered lithium cobalt composite oxide (LiC
oO 2 ) was synthesized.

【0009】上記活物質に導電剤としてのカーボン粉末
および結着剤としてのフッ素樹脂粉末とを90:3 :7 の
重量比で混合し、この混合物0.165gを電極成形金型に投
入して直径が16mmで厚さが約0.7mm の円板状に成形し
た。この成形体を温度250 ℃で真空乾燥処理して正極板
とした。
Carbon powder as a conductive agent and fluororesin powder as a binder were mixed with the above active material in a weight ratio of 90: 3: 7, and 0.165 g of this mixture was charged into an electrode molding die to obtain a diameter. It was formed into a disc with a thickness of 16 mm and a thickness of about 0.7 mm. This molded body was vacuum-dried at a temperature of 250 ° C. to obtain a positive electrode plate.

【0010】負極板は、黒鉛と結着剤としてのフッ素樹
脂粉末とを91:9の重量比で混合し、この混合物を正極板
と同様の金型を用いて直径16mm,厚さ0.5mm に加圧成形
したのち温度250 ℃で真空乾燥処理して得た。
For the negative electrode plate, graphite and fluororesin powder as a binder were mixed in a weight ratio of 91: 9, and this mixture was made into a diameter of 16 mm and a thickness of 0.5 mm using the same mold as the positive electrode plate. It was obtained by pressure molding and then vacuum drying at a temperature of 250 ° C.

【0011】上記の正極板と負極板を用いて図3に示す
ようなボタン形電池を試作した。図は、電池の縦断面図
である。図中1は、ステンレス(SUS304)鋼板を打ち抜き
加工した正極端子を兼ねるケース、2はステンレス(SUS
U304) 鋼板を打ち抜き加工した負極端子を兼ねる封口板
であり、その内壁には負極板3が当接されている。5は
有機電解液を含浸したポリプロピレンからなるセパレー
ター、6は正極板であり正極端子を兼ねるケース1の開
口端部を内方へかしめ、ガスケット4を介して負極端子
を兼ねる封口板2の外周を締め付けることにより密閉封
口している。
A button type battery as shown in FIG. 3 was manufactured by using the above positive electrode plate and negative electrode plate. The figure is a vertical cross-sectional view of a battery. In the figure, 1 is a case that also functions as a positive electrode terminal made by stamping a stainless steel (SUS304) steel plate, and 2 is a stainless steel (SUS 304)
U304) A sealing plate that also functions as a negative electrode terminal made by punching a steel plate, and the negative electrode plate 3 is in contact with the inner wall of the sealing plate. Reference numeral 5 is a separator made of polypropylene impregnated with an organic electrolyte, 6 is a positive electrode plate, and the opening end of the case 1 which also functions as a positive electrode terminal is swaged inward, and the outer periphery of the sealing plate 2 which also functions as a negative electrode terminal is inserted through a gasket 4. It is closed and sealed by tightening.

【0012】有機電解液にはエチレンカーボネート(E
C)とジメチルカーボネート(DMC )とジエチルカーボ
ネート(DEC )とを体積比2:2:1で混合した溶媒
に、6フッ化燐酸リチウムを1モル/リットルの濃度で
溶解させたものを用いた。さらに電解液に過塩素酸リチ
ウムを10ppm添加した。
Ethylene carbonate (E
C), dimethyl carbonate (DMC) and diethyl carbonate (DEC) were mixed in a volume ratio of 2: 2: 1, and lithium hexafluorophosphate was dissolved at a concentration of 1 mol / liter. Furthermore, 10 ppm of lithium perchlorate was added to the electrolytic solution.

【0013】正極活物質にLiMgx Co1-x O2-y (0<x<1,
0<y<0.5,x=2y) を用いた本発明の非水電解質電池であっ
て、x=0.03のものを(A)、x=0.05のものを(B)、x=
0.08のものを(C)、x=0.1 のものを(D)と呼ぶ。ま
た、正極活物質にLiCoO2を用いたことの他は、本発明の
非水電解質電池と同様の構成とした比較電池を(ア)と
呼ぶ。
LiMg x Co 1-x O 2-y (0 <x <1,
0 <y <0.5, x = 2y) of the non-aqueous electrolyte battery of the present invention, where x = 0.03 is (A), x = 0.05 is (B), x =
The one with 0.08 is called (C) and the one with x = 0.1 is called (D). Another possible using LiCo O2 as the positive electrode active material, referred to comparative battery was made to have the structure as a non-aqueous electrolyte battery of the present invention and (a).

【0014】次に、これらの電池を電流密度2mA/cm
2 で、端子電圧が4.1Vに至るまで充電して、つづいて、
同じく2mA/cm2 で、端子電圧が2.75V に達するまで放電
する充放電サイクル寿命試験を室温下で100 サイクルお
こなった。2mA/cm2 は、非水電解質電池では極めて高い
電流密度である。各電池の初期の放電容量と35サイク
ル後の放電容量とを表1に示す。
Next, these batteries are connected to each other at a current density of 2 mA / cm.
In 2 , charge until the terminal voltage reaches 4.1V, then continue,
Similarly, a charge / discharge cycle life test was performed at room temperature for 100 cycles at 2 mA / cm 2 where the terminal voltage reached 2.75 V. 2 mA / cm 2 is a very high current density in a non-aqueous electrolyte battery. Table 1 shows the initial discharge capacity and the discharge capacity after 35 cycles of each battery.

【0015】[0015]

【表1】 表1から明かなように、本発明の電池(A)、(B)、
(C)、(D)は、比較のための電池(ア)に比べ初期
の放電容量が大きく、35サイクル後の放電容量の減少
も抑制されている。
[Table 1] As is clear from Table 1, the batteries (A), (B) of the present invention,
(C) and (D) have a larger initial discharge capacity than the battery (A) for comparison, and the decrease in discharge capacity after 35 cycles is suppressed.

【0016】なお、上記実施例では、負極として炭素材
料を用い、電解液に有機電解液を用いたが、本発明の非
水電解質電池においては、LiMgx Co1-x O2-y (0<x<1,
0<y<0.5,x=2y) を正極活物質に用いておれば負極活物質
や電解液は基本的に限定されない。すなわち、従来の非
水電解質電池に用いられている負極活物質、たとえば純
リチウム、リチウム合金などを負極活物質に用いること
ができる。また、電解液に他の有機溶媒、例えばエチレ
ンカーボネイト、プロピレンカーボネートなどの環状エ
ステル類およびテトラハイドロフラン,ジオキソランな
どのエーテル類を単独もしくは2種以上を混合して用い
ても良い。あるいは、有機固体電解質や無機固体電解質
を電解質に用いてもよい。同様に、支持電解質、セパレ
ーター、電極基体、電池ケースの材質なども基本的に限
定されない。
In the above examples, the carbon material was used as the negative electrode and the organic electrolytic solution was used as the electrolytic solution. However, in the non-aqueous electrolyte battery of the present invention, LiMg x Co 1-x O 2-y (0 <x <1,
If 0 <y <0.5, x = 2y) is used for the positive electrode active material, the negative electrode active material and the electrolytic solution are basically not limited. That is, the negative electrode active material used in the conventional non-aqueous electrolyte battery, for example, pure lithium or lithium alloy, can be used as the negative electrode active material. In addition, other organic solvents such as cyclic esters such as ethylene carbonate and propylene carbonate and ethers such as tetrahydrofuran and dioxolane may be used alone or in combination in the electrolyte solution. Alternatively, an organic solid electrolyte or an inorganic solid electrolyte may be used as the electrolyte. Similarly, the materials for the supporting electrolyte, the separator, the electrode substrate, the battery case, etc. are not basically limited.

【0017】なお、前記の実施例に係る電池はボタン電
池であるが、円筒形、角形またはペーパー形電池に本発
明を適用しても同様の効果が得られる。また、高率放電
性能を向上させる効果は、実施例の二次電池だけでなく
LiMgx Co1-x O2-y (0<x<1,0<y<0.5,x=2y) を用いた非
水電解質一次電池においても同様に得られる。
Although the batteries according to the above embodiments are button batteries, the same effect can be obtained by applying the present invention to cylindrical, prismatic or paper type batteries. Further, the effect of improving the high rate discharge performance is not limited to the secondary battery of the embodiment.
The same can be obtained in the non-aqueous electrolyte primary battery using LiMg x Co 1-x O 2-y (0 <x <1,0 <y <0.5, x = 2y).

【0018】[0018]

【発明の効果】上述のごとく、本発明の非水電解質電池
は、高率放電時の放電容量の低下が少なく、また二次電
池の場合には、サイクルを繰り返したのちの放電容量の
減少が抑制されるという効果がある。
As described above, the non-aqueous electrolyte battery of the present invention has a small decrease in discharge capacity during high rate discharge, and, in the case of a secondary battery, has a decrease in discharge capacity after repeated cycles. It has the effect of being suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水電解質電池に用いるリチウムコバ
ルトマグネシウム複合酸化物と従来のリチウムコバルト
複合酸化物との電子伝導度を比較を示す図。
FIG. 1 is a diagram showing a comparison of electron conductivity between a lithium cobalt magnesium composite oxide used in a non-aqueous electrolyte battery of the present invention and a conventional lithium cobalt composite oxide.

【図2】リチウムコバルトマグネシウム複合酸化物のマ
グネシウム添加量を変化させた場合の電子伝導度の変化
を示す図。
FIG. 2 is a diagram showing a change in electronic conductivity when the amount of added magnesium in a lithium cobalt magnesium composite oxide is changed.

【図3】非水電解質二次電池の一例であるボタン電池の
内部構造を示した図である。
FIG. 3 is a diagram showing an internal structure of a button battery which is an example of a non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極 1 Battery Case 2 Sealing Plate 3 Negative Electrode 4 Gasket 5 Separator 6 Positive Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】LiMgx Co1-x O2-y (0<x<1,0<y<0.5,x=2y)
を正極活物質に用いた非水電解質電池。
1. LiMg x Co 1-x O 2-y (0 <x <1,0 <y <0.5, x = 2y)
A non-aqueous electrolyte battery using as a positive electrode active material.
JP4341455A 1992-11-26 1992-11-26 Nonaqueous electrolyte battery Pending JPH06168722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4341455A JPH06168722A (en) 1992-11-26 1992-11-26 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4341455A JPH06168722A (en) 1992-11-26 1992-11-26 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH06168722A true JPH06168722A (en) 1994-06-14

Family

ID=18346206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4341455A Pending JPH06168722A (en) 1992-11-26 1992-11-26 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH06168722A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054511A1 (en) * 2000-12-27 2002-07-11 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary cell and cell using the same
WO2003049216A1 (en) * 2001-12-06 2003-06-12 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell
CN1297022C (en) * 2003-03-25 2007-01-24 三洋电机株式会社 Non-aqueous electrolyte secondary cell, positive pole active matter and its producing method
CN100424925C (en) * 2003-12-18 2008-10-08 三洋电机株式会社 Non-aqueous electrolyte secondary cell
EP1981103A1 (en) * 2007-04-04 2008-10-15 Samsung SDI Co., Ltd. Positive electrode and rechargeable lithium battery including same
US7462421B2 (en) 2003-02-12 2008-12-09 Panasonic Corporation Lithium ion secondary battery
JP2009120480A (en) * 2001-08-03 2009-06-04 Toda Kogyo Corp Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
US7851088B2 (en) 2003-03-25 2010-12-14 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US8808915B2 (en) 2006-11-20 2014-08-19 Samsung Sdi Co., Ltd. Rechargeable lithium battery
CN106104868A (en) * 2014-03-11 2016-11-09 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6991752B2 (en) 2000-12-27 2006-01-31 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary cell and cell using the same
WO2002054511A1 (en) * 2000-12-27 2002-07-11 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary cell and cell using the same
JP2009120480A (en) * 2001-08-03 2009-06-04 Toda Kogyo Corp Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
WO2003049216A1 (en) * 2001-12-06 2003-06-12 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell
US7179565B2 (en) 2001-12-06 2007-02-20 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell
US7462421B2 (en) 2003-02-12 2008-12-09 Panasonic Corporation Lithium ion secondary battery
US7851088B2 (en) 2003-03-25 2010-12-14 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN1297022C (en) * 2003-03-25 2007-01-24 三洋电机株式会社 Non-aqueous electrolyte secondary cell, positive pole active matter and its producing method
CN100424925C (en) * 2003-12-18 2008-10-08 三洋电机株式会社 Non-aqueous electrolyte secondary cell
US7939207B2 (en) 2003-12-18 2011-05-10 Sanyo Electric Co., Ltd. Non-aqueous electrolyte lithium ion secondary cell with improved cycle characteristics and method for fabricating the same
US8808915B2 (en) 2006-11-20 2014-08-19 Samsung Sdi Co., Ltd. Rechargeable lithium battery
EP1981103A1 (en) * 2007-04-04 2008-10-15 Samsung SDI Co., Ltd. Positive electrode and rechargeable lithium battery including same
US8268486B2 (en) 2007-04-04 2012-09-18 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
CN106104868A (en) * 2014-03-11 2016-11-09 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery
CN106104868B (en) * 2014-03-11 2018-07-13 三洋电机株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
EP1936731B1 (en) Rechargeable lithium battery
JP2006202702A (en) Nonaqueous electrolyte secondary battery
KR20090092104A (en) Electrode comprising niobium oxide and lithium battery using the same
US9917302B2 (en) Electrode active material for lithium secondary battery, method of preparing the electrode active material, electrode for lithium secondary battery including the same, and lithium secondary battery using the same
JP7169772B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
KR20140090097A (en) Nonaqueous electrolyte secondary battery
JPH07296853A (en) Method for charging
JP2005259617A (en) Lithium ion secondary battery
JPH06168722A (en) Nonaqueous electrolyte battery
JP4770426B2 (en) Winding type power storage device
US8530093B2 (en) Electrode active material, method of preparing the same, electrode for lithium secondary battery which includes the same, and lithium secondary battery using the electrode
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JP3530174B2 (en) Positive electrode active material and lithium ion secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH09120837A (en) Nonaqueous electrolyte secondary battery
US20170047608A1 (en) Rechargeable lithium battery including same
JP3451602B2 (en) Non-aqueous electrolyte battery
JPH10112306A (en) Secondary battery
JP2006331749A (en) Manufacturing method of lithium battery
JPH11214042A (en) Nonaqueous electrolyte secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JP7277626B2 (en) Non-aqueous electrolyte battery
JPH08111233A (en) Solid electrolytic secondary battery
JP7308641B2 (en) Non-aqueous electrolyte battery