JPH04319265A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH04319265A
JPH04319265A JP3112118A JP11211891A JPH04319265A JP H04319265 A JPH04319265 A JP H04319265A JP 3112118 A JP3112118 A JP 3112118A JP 11211891 A JP11211891 A JP 11211891A JP H04319265 A JPH04319265 A JP H04319265A
Authority
JP
Japan
Prior art keywords
electrolyte secondary
secondary battery
aqueous electrolyte
carbon material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3112118A
Other languages
Japanese (ja)
Other versions
JP3163642B2 (en
Inventor
Masayuki Nagamine
政幸 永峰
Naoyuki Date
伊達 尚幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11211891A priority Critical patent/JP3163642B2/en
Publication of JPH04319265A publication Critical patent/JPH04319265A/en
Application granted granted Critical
Publication of JP3163642B2 publication Critical patent/JP3163642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a high discharging capacity and a long cycle life and to lower the self-discharging ratio as well by prescribing morphologic parameters of a carbon material used for an anode within a set range. CONSTITUTION:A plastic mixture consisting of resin hardening by light and polycarbonate is injection-molded to give a substrate. When ultraviolet-rays are irradiated and three-dimensional cross-links are formed among the polycarbonate molecules, the morphological parameters are limited within a prescribed range and the resulting carbon material has a plurality of heat generating peaks and at least one heat generating peak of >=700 deg.C by differential thermal analysis under the conditions of >=53.65Angstrom of the plane distance of (002) planes and <1.70g/cm<3> of true density. When the material is used as an anode, a non- aqueous electrolyte secondary battery can have high discharging capacity and a long cycle life and lower the self-discharging ratio.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非水電解液二次電池に
関するものであり、特にその負極の改良に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to non-aqueous electrolyte secondary batteries, and particularly to improvements in the negative electrode thereof.

【0002】0002

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型化・軽量化を次々と実現させている。それ
に伴い、移動用電源としての電池に対しても益々小型・
軽量且つ高エネルギー密度のものが求められている。従
来、二次電池としては鉛電池,ニッケル・カドミウム電
池等の水溶液系二次電池が主流であった。しかし、これ
らの電池はサイクル特性には優れるものの、電池重量や
エネルギー密度、自己放電の点では十分満足できるもの
とは言えない。
BACKGROUND OF THE INVENTION The remarkable progress in electronic technology in recent years has led to successive miniaturization and weight reduction of electronic devices. Along with this, batteries as mobile power sources are becoming smaller and smaller.
Light weight and high energy density are required. Conventionally, aqueous solution secondary batteries such as lead batteries and nickel-cadmium batteries have been mainstream as secondary batteries. However, although these batteries have excellent cycle characteristics, they are not fully satisfactory in terms of battery weight, energy density, and self-discharge.

【0003】そこで、最近、上述のニッケルカドミウム
電池等に代わる二次電池としてリチウムあるいはリチウ
ム合金を負極に用いた非水電解液二次電池の研究・開発
が盛んに行われている。この非水電解液二次電池は高エ
ネルギー密度を有し、自己放電も少なく、しかも軽量で
あるという移動用電源として適した特徴を有するもので
ある。
[0003]Recently, therefore, research and development of non-aqueous electrolyte secondary batteries using lithium or lithium alloys as negative electrodes has been actively conducted as a secondary battery to replace the above-mentioned nickel-cadmium batteries and the like. This non-aqueous electrolyte secondary battery has high energy density, little self-discharge, and is lightweight, making it suitable as a mobile power source.

【0004】しかしながら、この非水電解液二次電池に
おいては、充放電サイクルの繰り返しに伴ってリチウム
が充電時にデンドライト状に結晶成長し、この結晶成長
したリチウムが正極に到達して内部ショートを引き起こ
す可能性を有しているため、十分なサイクル寿命が得ら
れず、このことが実用化への大きな障害となっている。
However, in this non-aqueous electrolyte secondary battery, lithium crystals grow in a dendrite shape during charging due to repeated charge/discharge cycles, and this crystal-grown lithium reaches the positive electrode, causing an internal short circuit. Because of this potential, a sufficient cycle life cannot be obtained, which is a major obstacle to practical application.

【0005】そこで、高エネルギー密度でしかもサイク
ル寿命の長い非水電解液二次電池として、負極に炭素材
料を使用した非水電解液二次電池が提案されている。こ
の非水電解液二次電池は、リチウムの炭素層間化合物が
電気化学的に容易に形成できることを利用したものであ
り、このような非水電解液二次電池に対して充電を行う
と、予め炭素材料に担持させたリチウム,正極活物質の
結晶構造中のリチウムあるいは電解液中に溶解している
リチウム等が負極の炭素層間へドープされる。そして、
リチウムがドープされた炭素材料はリチウム電極として
機能し、放電に伴ってリチウムを炭素層間から放出する
こととなる。
[0005] Therefore, a non-aqueous electrolyte secondary battery using a carbon material for the negative electrode has been proposed as a non-aqueous electrolyte secondary battery with high energy density and long cycle life. This non-aqueous electrolyte secondary battery takes advantage of the fact that carbon intercalation compounds of lithium can be easily formed electrochemically, and when such a non-aqueous electrolyte secondary battery is charged, Lithium supported on a carbon material, lithium in the crystal structure of a positive electrode active material, lithium dissolved in an electrolyte, or the like is doped between the carbon layers of the negative electrode. and,
The carbon material doped with lithium functions as a lithium electrode, and lithium is released from between the carbon layers during discharge.

【0006】この炭素材料を負極とする非水電解液二次
電池は、高エネルギー密度であるとともに上述のリチウ
ムを負極とする非水電解液二次電池と異なり、リチウム
の結晶成長が生じないため、充放電サイクルの繰り返し
に耐える。このため、実用化へ向けて開発が進められて
おり、たとえばビデオ・カメラや携帯用パーソナルコン
ピュータ(いわゆるラップ・トップ・パソコン)等の比
較的消費電流が大きい機器の電源として対応すべく、電
池構造として渦巻式電極構造のもの等が提案されている
[0006] A non-aqueous electrolyte secondary battery using this carbon material as a negative electrode has a high energy density, and unlike the above-mentioned non-aqueous electrolyte secondary battery using lithium as a negative electrode, lithium crystal growth does not occur. , withstand repeated charge/discharge cycles. For this reason, development is progressing toward practical use, and for example, battery structures are being developed to serve as power sources for devices that consume relatively large currents, such as video cameras and portable personal computers (so-called laptop computers). For example, a spiral electrode structure has been proposed.

【0007】[0007]

【発明が解決しようとする課題】ところで、上述のよう
なビデオ・カメラ等に使用される機器用電源としては、
保存に伴う容量低下をできるだけ少なくすることが重要
となる。しかしながら、炭素材料を負極とする非水電解
液二次電池はリチウムあるいはリチウム合金を負極とし
て使用した非水電解液二次電池と比較して自己放電が大
きく、保存性の点において十分満足のいくものとは言え
なかった。そこで、本発明はこのような従来に実情に鑑
みて提案されたものであり、サイクル寿命が長く、高エ
ネルギー密度であるとともに自己放電率が高く保存性に
優れた非水電解液二次電池を提供することを目的とする
[Problem to be Solved by the Invention] By the way, as a power supply for equipment used in the above-mentioned video cameras, etc.,
It is important to minimize capacity loss due to storage. However, non-aqueous electrolyte secondary batteries that use carbon materials as negative electrodes have greater self-discharge than non-aqueous electrolyte secondary batteries that use lithium or lithium alloys as negative electrodes, and are not fully satisfactory in terms of storage stability. It couldn't be called anything. Therefore, the present invention was proposed in view of the actual situation, and provides a non-aqueous electrolyte secondary battery that has a long cycle life, high energy density, high self-discharge rate, and excellent storage stability. The purpose is to provide.

【0008】[0008]

【発明を解決するための手段】上述の課題を達成するた
めに、本発明の非水電解液二次電池は、(002)面の
面間隔が3.65Å以上,真密度が1.70g/cm3
 未満であり、且つ示差熱分析において複数の発熱ピー
クを有するとともに700℃以上に少なくとも1つの発
熱ピークを有する炭素質材料を負極とすることを特徴と
する。
Means for Solving the Invention In order to achieve the above-mentioned problems, the nonaqueous electrolyte secondary battery of the present invention has a (002) plane spacing of 3.65 Å or more and a true density of 1.70 g/ cm3
The carbonaceous material is characterized in that the negative electrode is made of a carbonaceous material that has a temperature of less than 700° C., has a plurality of exothermic peaks in differential thermal analysis, and has at least one exothermic peak at 700° C. or higher.

【0009】本発明の非水電解液二次電池においては、
長サイクル寿命を得るとともに自己放電率の低減を図る
ために、負極として、(002)面の面間隔が3.65
Å以上、好ましくは3.70Å以上、真比重1.70g
/cm3 未満であり、且つ空気気流中における示差熱
分析で発熱ピークが複数個存在し、少なくとも1個が7
00℃以上に存在する炭素材料を使用する。
In the non-aqueous electrolyte secondary battery of the present invention,
In order to obtain a long cycle life and reduce the self-discharge rate, the negative electrode has a (002) plane spacing of 3.65.
Å or more, preferably 3.70 Å or more, true specific gravity 1.70 g
/cm3, and there are multiple exothermic peaks in differential thermal analysis in an air stream, with at least one being less than 7 cm3.
A carbon material that exists at temperatures above 00°C is used.

【0010】このような性質を有する炭素材料としては
、有機材料を焼成等の手法により炭素化した炭素質材料
が挙げられる。炭素化の出発原料となる有機材料として
は、フルフリルアルコールあるいはフルフラールのホモ
ポリマー又はコポリマーよりなるフラン樹脂が好適であ
る。具体的には、フルフラール+フェノール、フルフリ
ルアルコール+ジメチロール尿素、フルフリルアルコー
ル、フルフリルアルコール+ホルムアルデヒド、フルフ
リルアルコール+フルフラール、フルフラール+ケトン
類等よりなる重合体が挙げられる。これらフラン樹脂を
適当な温度で焼成すると、上述の性質((002)面の
面間隔が3.65Å以上、真比重1.70g/cm3 
未満であり、且つ空気流中に於ける示差熱分析で発熱ピ
ークを複数個持ち、少なくとも1個が700℃以上に存
在する)を有する炭素質材料が得られ、この得られた炭
素質材料は、電池の負極材として非常に良好な特性を示
す。
[0010] Examples of carbon materials having such properties include carbonaceous materials obtained by carbonizing organic materials by a method such as firing. As the organic material serving as the starting material for carbonization, furan resin made of furfuryl alcohol or a homopolymer or copolymer of furfural is suitable. Specifically, polymers consisting of furfural + phenol, furfuryl alcohol + dimethylol urea, furfuryl alcohol, furfuryl alcohol + formaldehyde, furfuryl alcohol + furfural, furfural + ketones, etc. can be mentioned. When these furan resins are fired at an appropriate temperature, they have the above-mentioned properties ((002) plane spacing of 3.65 Å or more, true specific gravity of 1.70 g/cm3).
A carbonaceous material is obtained which has multiple exothermic peaks (at least one of which is present at temperatures of 700°C or higher) in differential thermal analysis in an air stream, and this obtained carbonaceous material has , exhibits very good properties as a negative electrode material for batteries.

【0011】あるいは、原料として水素/炭素原子比0
.6〜0.8の石油ピッチを用い、これに酸素を含む官
能基を導入し、いわゆる酸素架橋を施して酸素含有量1
0〜20重量%の前駆体とした後、焼成して得られる炭
素質材料も好適である。さらには、前記フラン樹脂や石
油ピッチ等を炭素化する際にリン化合物、あるいはホウ
素化合物を添加することにより、リチウムに対するドー
プ量を大きなものとした炭素質材料も使用可能である。
Alternatively, the hydrogen/carbon atomic ratio is 0 as a raw material.
.. Using petroleum pitch of 6 to 0.8, oxygen-containing functional groups are introduced into it and so-called oxygen crosslinking is performed to reduce the oxygen content to 1.
A carbonaceous material obtained by firing the precursor in an amount of 0 to 20% by weight is also suitable. Furthermore, it is also possible to use a carbonaceous material in which the amount of lithium doped is increased by adding a phosphorus compound or a boron compound when carbonizing the furan resin, petroleum pitch, or the like.

【0012】一方、上記非水電解液二次電池に使用され
る正極材料としては、十分なリチウムを含んだ材料を使
用するのが好ましく、たとえば一般式LiMO2 (た
だしMはCo、Niの少なくとも一種を表す。)で表さ
れる複合金属酸化物や、リチウムを含んだ層間化合物等
が使用される。特に、LiCoO2 、LiCo0.8
 Ni0.2 O2 は、高電圧、高エネルギー密度,
良好なサイクル特性を得る点で望ましい。
On the other hand, as the positive electrode material used in the above-mentioned non-aqueous electrolyte secondary battery, it is preferable to use a material containing sufficient lithium, such as the general formula LiMO2 (where M is at least one of Co and Ni). ) and intercalation compounds containing lithium are used. In particular, LiCoO2, LiCo0.8
Ni0.2 O2 has high voltage, high energy density,
This is desirable in terms of obtaining good cycle characteristics.

【0013】また、電解液としては、たとえばリチウム
塩を電解液とし、これを有機溶媒に溶解した電解液が用
いられる。ここで、有機溶媒としては、特に限定される
ものではないが、たとえばプロプレンカーボネート、エ
チレンカーボネート、ジエチルカーボネート、1,2−
ジメトキシエタン、1,2−ジエトキシエタン、γ−ブ
チロラクトン、テトラヒドロフラン、1,3−ジオキソ
ラン、4−メチル−1,3−ジオキソラン、ジエチルエ
ーテル、スルホラン、メチルスルホラン、アセトニトリ
ル、プロピオニトリル等の単独もしくは二種類以上の混
合溶媒が使用できる。電解質も従来より公知のものがい
ずれも使用でき、LiClO4 ,LiAsF6 ,L
iPF6 ,LiBF4 ,LiB(C6 H5 )4
 ,LiCl,LiBr,CH3 SO3 Li,CF
3 SO3 Li等がある。
[0013] As the electrolytic solution, for example, an electrolytic solution containing a lithium salt dissolved in an organic solvent is used. Here, the organic solvent is not particularly limited, but for example, propene carbonate, ethylene carbonate, diethyl carbonate, 1,2-
Dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, etc. alone or A mixed solvent of two or more types can be used. Any conventionally known electrolytes can be used, including LiClO4, LiAsF6, L
iPF6, LiBF4, LiB(C6H5)4
, LiCl, LiBr, CH3 SO3 Li, CF
3 SO3 Li etc.

【0014】[0014]

【作用】炭素質材料を負極とする非水電解英二次電池に
おいて、(002)面の面間隔が3.65Å以上,真密
度が1.70g/cm3 未満であり、且つ示差熱分析
において複数の発熱ピークを有するとともに700℃以
上に少なくとも1つの発熱ピークを有するという条件を
満たす炭素質材料を使用すると、大放電容量,長サイク
ル寿命が得られるとともに、自己放電率が低減する。
[Function] In a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode, the interplanar spacing of the (002) plane is 3.65 Å or more, the true density is less than 1.70 g/cm3, and multiple When a carbonaceous material that satisfies the conditions of having an exothermic peak and at least one exothermic peak at 700° C. or higher is used, a large discharge capacity and a long cycle life can be obtained, and the self-discharge rate can be reduced.

【0015】これは以下の理由によるものと推測される
。すなわち、リチウムをドープした炭素は、その層間距
離〔(002)面の面間隔〕d002 が3.65Åで
あると、リチウムをドープする際に層間距離が拡大する
ことになる。したがって、d002 <3.65Åの炭
素質材料では、層間を拡げなければならない分だけリチ
ウムのドープが困難になるものと考えられ、これによっ
てドープ量が少なくなるものと考えられる。一方、真密
度ρは、前記層間距離と密接な関係にあり、ρ>1.7
0g/cm3 となると前述の層間距離を確保すること
が難しくなり、やはりドープ量が減少する。上記非水電
解液二次電池において使用される炭素材料は、(002
)面の面間隔が3.65Å以上,真密度が1.70g/
cm3 未満とされている。したがって炭素層間にリチ
ウムが多量にドープされることとなり、これにより、電
池の長サイクル寿命,大放電容量が達成されるものと推
測される。また、上記炭素材料は示差熱分析で発熱ピー
クを複数有し、このうち少なくとも1つが700℃以上
にある。非水電解液二次電池において、その自己放電率
は、負極となる炭素材料の構造に影響されるものと考え
られる。そして、示差熱分析での発熱ピークの少なくと
も1つが700℃以上に有るような構造を有する炭素材
料を使用すると、炭素材料にドープされたリチウムが放
出され難くなる等の理由により、自己放電率が低減し、
高い保存性が得られるものと推測される。
[0015] This is presumably due to the following reasons. That is, when carbon doped with lithium has an interlayer distance (distance between (002) planes) d002 of 3.65 Å, the interlayer distance increases upon doping with lithium. Therefore, in a carbonaceous material with d002 <3.65 Å, it is considered that doping with lithium becomes difficult due to the need to widen the interlayer distance, and this is considered to reduce the amount of doping. On the other hand, the true density ρ has a close relationship with the interlayer distance, and ρ>1.7
When it becomes 0 g/cm3, it becomes difficult to secure the above-mentioned interlayer distance, and the doping amount also decreases. The carbon material used in the non-aqueous electrolyte secondary battery is (002
) The spacing between the surfaces is 3.65 Å or more, and the true density is 1.70 g/
It is said to be less than cm3. Therefore, a large amount of lithium is doped between the carbon layers, which is presumed to achieve a long cycle life and a large discharge capacity of the battery. Further, the carbon material has a plurality of exothermic peaks in differential thermal analysis, and at least one of these peaks is at 700° C. or higher. In non-aqueous electrolyte secondary batteries, the self-discharge rate is considered to be influenced by the structure of the carbon material that serves as the negative electrode. If a carbon material with a structure in which at least one exothermic peak in differential thermal analysis is at 700°C or higher is used, the self-discharge rate will decrease due to reasons such as the lithium doped in the carbon material becoming difficult to release. reduce,
It is presumed that high storage stability can be obtained.

【0016】[0016]

【実施例】本発明の好適な実施例について実験結果の基
づいて説明する。
EXAMPLE A preferred example of the present invention will be described based on experimental results.

【0017】実施例1 本実施例は、(002)面の面間隔が3.75Å,真比
重が1.58g/cm3 示差熱分析での発熱ピークが
669℃と705℃にある炭素材料を負極とする非水電
解液二次電池の例である。
Example 1 In this example, a carbon material with a (002) plane spacing of 3.75 Å, a true specific gravity of 1.58 g/cm3, and exothermic peaks at 669°C and 705°C in differential thermal analysis was used as a negative electrode. This is an example of a non-aqueous electrolyte secondary battery.

【0018】先ず、図1に示す非水電解液二次電池を作
成するために、負極1を次のようにして作製した。
First, in order to fabricate the non-aqueous electrolyte secondary battery shown in FIG. 1, the negative electrode 1 was fabricated as follows.

【0019】出発原料として石油ピッチを用い、これに
酸素を含む官能基を10〜20重量%導入(いわゆる酸
素架橋)した後、不活性ガス気流中1200℃で焼成し
て、ガラス状炭素に近い性質を持った炭素質材料を得た
。この材料について、X線回折測定をおこなった結果、
(002)面の面間隔は3.75Åであり、ピクノメー
タ法により真比重を測定した結果、真比重は1.58g
/cm3 であった。また、空気気流中で示差熱分析を
行ったところ、669℃と705℃に発熱ピークが存在
した。この炭素材料を粉砕し、平均粒径10μmの炭素
材料粉末とした。
Petroleum pitch is used as a starting material, and after introducing 10 to 20% by weight of oxygen-containing functional groups (so-called oxygen crosslinking), it is calcined at 1200°C in an inert gas stream to produce a product close to glassy carbon. A carbonaceous material with specific properties was obtained. As a result of X-ray diffraction measurement of this material,
The spacing of the (002) plane is 3.75 Å, and as a result of measuring the true specific gravity using the pycnometer method, the true specific gravity is 1.58 g.
/cm3. Further, when differential thermal analysis was performed in an air stream, exothermic peaks were found at 669°C and 705°C. This carbon material was pulverized to obtain carbon material powder with an average particle size of 10 μm.

【0020】このようにして得た炭素質材料粉末を負極
活物質担持体とし、これを90重量部、結着材としてポ
リフッ化ビニリデン(PVDF)10重量部を混合し、
負極合剤を調製した。この負極合剤を、溶剤であるN−
メチル−2−ピロリドンに分散させてスラリー(ペース
ト状)にした。そして、負極集電体として厚さ10μm
の帯状の銅箔を用い、この集電体の両面に負極合剤スラ
リーを塗布し、溶剤を乾燥後、ローラープレス機により
圧縮成形して、これを幅41.5mm、長さ700mm
にスリット帯状負極1とした。
The thus obtained carbonaceous material powder was used as a negative electrode active material carrier, and 90 parts by weight of this was mixed with 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder,
A negative electrode mixture was prepared. This negative electrode mixture is mixed with N-
It was dispersed in methyl-2-pyrrolidone to form a slurry (paste). The thickness of the negative electrode current collector is 10 μm.
Using a strip-shaped copper foil, a negative electrode mixture slurry was applied to both sides of the current collector, and after drying the solvent, compression molding was performed using a roller press machine to form a sheet with a width of 41.5 mm and a length of 700 mm.
A slit strip-shaped negative electrode 1 was prepared.

【0021】次いで正極2を下記に示す如く作製した。 炭酸リチウム0.5モルと炭酸コバルト1モルを混合し
、900℃の空気中で5時間焼成して正極活物質となる
LiCoO2 を得た。そして、このLiCoO2 を
91重量部、導電剤としてグラファイト6重量部、結着
剤としてポリフッ化ビニリデン3重量部を混合し、正極
合剤とした。この正極合剤をN−メチルピロリドンに分
散させてスラリー(ペースト状)にした。
[0021] Next, a positive electrode 2 was prepared as shown below. 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate were mixed and fired in air at 900° C. for 5 hours to obtain LiCoO2 as a positive electrode active material. Then, 91 parts by weight of this LiCoO2, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture. This positive electrode mixture was dispersed in N-methylpyrrolidone to form a slurry (paste).

【0022】次に、正極集電体として厚さ20μmの帯
状のアルミニウム箔を用い、この集電体の両面に均一に
正極合剤スラリーを塗布し、溶剤を乾燥後、圧縮成形し
て帯状正極2を作製した。なお、電極の幅は39.5m
mとした。
Next, a strip-shaped aluminum foil with a thickness of 20 μm is used as a positive electrode current collector, and a positive electrode mixture slurry is uniformly applied to both sides of the current collector. After drying the solvent, compression molding is performed to obtain a strip-shaped positive electrode. 2 was produced. The width of the electrode is 39.5m.
It was set as m.

【0023】上述のようにして作成された帯状負極1、
帯状正極2及び厚さ25μm、幅44mmの微多孔性ポ
リプロピレンフィルムより成るセパレータ3を負極、セ
パレータ、正極、セパレータの順に積層し、厚さ0.4
mmの積層体とした。この積層体を渦巻型に多数回巻回
し、最外周セパレータ最終端部をテープ20で固定し、
電極を作製した。なお、この渦巻式電極の、中心部の中
空部分の内径は3.5mm、外径は19.7mmであっ
た。
[0023] The strip-shaped negative electrode 1 produced as described above,
A strip-shaped positive electrode 2 and a separator 3 made of a microporous polypropylene film with a thickness of 25 μm and a width of 44 mm were laminated in the order of negative electrode, separator, positive electrode, and separator to a thickness of 0.4 μm.
It was made into a laminate of mm. This laminate is wound in a spiral shape many times, and the final end of the outermost separator is fixed with tape 20.
An electrode was created. Note that the inner diameter of the hollow portion at the center of this spiral electrode was 3.5 mm, and the outer diameter was 19.7 mm.

【0024】上記渦巻式電極を、ニッケルめっきを施し
た鉄製電池缶5に収納した。そして渦巻式電極上下両面
には絶縁板4を配設し、アルミニウム製正極リード12
を正極集電体から導出して電池蓋7に、ニッケル製負極
リード11を負極集電体から導出して電池缶5に溶接し
た。この電池缶5の中にプロピレンカーボネートと1,
2−ジメトキシエタンとの等容量混合溶媒中にLiPF
6 を1モル/lの割合で溶解した電解液を注入した。 最後に、アスファルトで表面を塗布した絶縁封口ガスケ
ットを介して電池缶5をかしめることにより、電池蓋7
を固定して電池内の機密性を保持し、直径20mm、高
さ50mmの円筒型非水電解液二次電池(実施例電池1
)を作成した。
The spiral electrode described above was housed in a nickel-plated iron battery can 5. An insulating plate 4 is provided on both the upper and lower surfaces of the spiral electrode, and an aluminum positive electrode lead 12 is provided.
was led out from the positive electrode current collector and welded to the battery lid 7, and a nickel negative electrode lead 11 was led out from the negative electrode current collector and welded to the battery can 5. Inside this battery can 5 are propylene carbonate and 1,
LiPF in an equal volume mixed solvent with 2-dimethoxyethane
An electrolytic solution in which 6 was dissolved at a ratio of 1 mol/l was injected. Finally, by caulking the battery can 5 through the insulating sealing gasket whose surface is coated with asphalt, the battery lid 7
A cylindrical non-aqueous electrolyte secondary battery (Example Battery 1) with a diameter of 20 mm and a height of 50 mm was used.
)It was created.

【0025】実施例2 本実施例は、(002)面の面間隔が3.73Å,真比
重が1.58g/cm3 示差熱分析での発熱ピークが
680℃と726℃にある炭素材料を負極とする非水電
解液二次電池の例である。
Example 2 In this example, a carbon material having a (002) plane spacing of 3.73 Å, a true specific gravity of 1.58 g/cm3, and exothermic peaks at 680°C and 726°C in differential thermal analysis was used as a negative electrode. This is an example of a non-aqueous electrolyte secondary battery.

【0026】実施例1と同様に石油ピッチを酸素架橋し
た後、不活性ガス気流中1300℃で焼成し、ガラス状
炭素に近い性質を持った炭素材料を得た。この材料のX
線回折測定を行った結果、(002)面の面間隔は3.
73Åであり、ピクノメーター法による真比重は、1.
58g/cm3 であった。また空気気流中での示差熱
分析では、発熱ピークが680℃、及び、726℃に存
在した。この炭素質材料を粉砕し、平均粒径10μmと
した。このようにして得た炭素材料粉末を負極活物質担
持体とすること以外は、実施例1と同様にして、直径2
0mm、高さ50mmの円筒型非水電解液二次電池(実
施例電池2)を作成した。
After crosslinking petroleum pitch with oxygen in the same manner as in Example 1, it was fired at 1300° C. in an inert gas stream to obtain a carbon material having properties similar to glassy carbon. X of this material
As a result of line diffraction measurement, the spacing of the (002) plane was 3.
73 Å, and the true specific gravity by pycnometer method is 1.
It was 58g/cm3. Further, in differential thermal analysis in an air stream, exothermic peaks existed at 680°C and 726°C. This carbonaceous material was pulverized to have an average particle size of 10 μm. The procedure was the same as in Example 1 except that the carbon material powder obtained in this way was used as a negative electrode active material carrier.
A cylindrical non-aqueous electrolyte secondary battery (Example Battery 2) with a diameter of 0 mm and a height of 50 mm was created.

【0027】実施例3 本実施例は、(002)面の面間隔が3.71Å,真比
重が1.58g/cm3 示差熱分析での発熱ピークが
691℃と737℃にある炭素材料を負極とする非水電
解液二次電池の例である。
Example 3 In this example, a carbon material having a (002) plane spacing of 3.71 Å, a true specific gravity of 1.58 g/cm3, and exothermic peaks at 691°C and 737°C in differential thermal analysis was used as a negative electrode. This is an example of a non-aqueous electrolyte secondary battery.

【0028】実施例1と同様に石油ピッチを酸素架橋し
た後、不活性ガス気流中1400℃で焼成し、ガラス状
炭素に近い性質を持った炭素材料を得た。この材料のX
線回折測定を行った結果、(002)面の面間隔は、3
.71Åであり、ピクノメーター法による真比重は、1
.58g/cm3 であった。また、空気気流中での示
差熱分析では、発熱ピークが691℃、及び、737℃
に存在した。この炭素質材料を粉砕し、平均粒径10μ
mとした。このようにして得た炭素質材料粉末を負極活
物質担持体とすること以外は、実施例1と同様にして、
直径20mm、高さ50mmの円筒型非水電解液二次電
池(実施例電池3)を作成した。
After crosslinking petroleum pitch with oxygen in the same manner as in Example 1, it was fired at 1400° C. in an inert gas stream to obtain a carbon material having properties similar to glassy carbon. X of this material
As a result of line diffraction measurement, the spacing of the (002) plane is 3
.. 71 Å, and the true specific gravity according to the pycnometer method is 1
.. It was 58g/cm3. In addition, in differential thermal analysis in an air stream, the exothermic peaks were 691°C and 737°C.
existed in This carbonaceous material is crushed and the average particle size is 10μ.
It was set as m. In the same manner as in Example 1, except that the carbonaceous material powder obtained in this way was used as a negative electrode active material carrier,
A cylindrical non-aqueous electrolyte secondary battery (Example Battery 3) with a diameter of 20 mm and a height of 50 mm was created.

【0029】実施例4 本実施例は、(002)面の面間隔が3.67Å,真比
重が1.59g/cm3 示差熱分析での発熱ピークが
704℃と758℃にある炭素材料を負極とする非水電
解液二次電池の例である。
Example 4 In this example, a carbon material having a (002) plane spacing of 3.67 Å, a true specific gravity of 1.59 g/cm3, and exothermic peaks at 704°C and 758°C in differential thermal analysis was used as a negative electrode. This is an example of a non-aqueous electrolyte secondary battery.

【0030】実施例1と同様に石油ピッチを酸素架橋し
た後、不活性ガス気流中1600℃で焼成し、ガラス状
炭素に近い性質を持った炭素材料を得た。この材料のX
線回折測定を行った結果、(002)面の面間隔は、3
.67Åであり、ピクノメーター法による真比重は、1
.59g/cm3 であった。また、空気気流中での示
熱差分析では、発熱ピークが704℃、及び758℃に
存在した。この炭素質材料を粉砕し、平均粒径10μm
とした。このようにして得た炭素質材料粉末を負極活物
質担持体とすること以外は実施例1と同様にして、直径
20mm、高さ50mmの円筒型非水電解液二次電池(
実施例電池4)を作成した。
After crosslinking petroleum pitch with oxygen in the same manner as in Example 1, it was fired at 1600° C. in an inert gas stream to obtain a carbon material having properties similar to glassy carbon. X of this material
As a result of line diffraction measurement, the spacing of the (002) plane is 3
.. 67 Å, and the true specific gravity according to the pycnometer method is 1
.. It was 59g/cm3. Further, in differential thermal analysis in an air stream, exothermic peaks were found at 704°C and 758°C. This carbonaceous material is crushed and the average particle size is 10 μm.
And so. A cylindrical nonaqueous electrolyte secondary battery with a diameter of 20 mm and a height of 50 mm (
Example battery 4) was created.

【0031】比較例1 本比較例は、(002)面の面間隔が3.79Å,真比
重が1.58g/cm3 示差熱分析での発熱ピークが
639℃にある炭素材料を負極とする非水電解液二次電
池の例である。
Comparative Example 1 This comparative example uses a carbon material as a negative electrode, which has a spacing of (002) planes of 3.79 Å, a true specific gravity of 1.58 g/cm3, and an exothermic peak at 639°C in differential thermal analysis. This is an example of a water electrolyte secondary battery.

【0032】実施例1と同様に石油ピッチを酸素架橋し
た後、不活性ガス気流中1000℃で焼成し、ガラス状
炭素に近い性質を持った炭素材料を得た。この材料のX
線回折測定を行った結果、(002)面の面間隔は、3
.79Åであり、ピクノメーター法による真比重は、1
.58g/cm3 であった。また、空気気流中での示
差熱分析では、発熱ピークが639℃に存在した。この
炭素質材料粉末を粉砕し、平均粒径10μmとした。こ
のようにして得た炭素材料粉末を負極活物質担持体とす
ること以外は、実施例1と同様にして、直径20mm、
高さ50mmの円筒型非水電解液二次電池(比較例電池
1)を作成した。
After crosslinking petroleum pitch with oxygen in the same manner as in Example 1, it was fired at 1000° C. in an inert gas stream to obtain a carbon material having properties similar to glassy carbon. X of this material
As a result of line diffraction measurement, the spacing of the (002) plane is 3
.. 79 Å, and the true specific gravity according to the pycnometer method is 1
.. It was 58g/cm3. Further, in differential thermal analysis in an air stream, an exothermic peak existed at 639°C. This carbonaceous material powder was pulverized to have an average particle size of 10 μm. A diameter of 20 mm, a diameter of 20 mm,
A cylindrical non-aqueous electrolyte secondary battery (Comparative Example Battery 1) with a height of 50 mm was created.

【0033】比較例2 比較として、(002)面の面間隔が3.62Å,真比
重が1.60g/cm3 示差熱分析での発熱ピークが
798℃にある炭素材料を負極とする非水電解液二次電
池の例である。
Comparative Example 2 For comparison, non-aqueous electrolysis using a carbon material as a negative electrode with a (002) plane spacing of 3.62 Å, true specific gravity of 1.60 g/cm3, and an exothermic peak of 798°C in differential thermal analysis. This is an example of a liquid secondary battery.

【0034】実施例1と同様に石油ピッチを酸素架橋し
た後、不活性ガス気流中1800℃で焼成し、ガラス状
炭素に近い性質を持った炭素材料を得た。この材料のX
線回折測定を行った結果、(002)面の面間隔は、3
.62Åであり、ピクノメーター法による真比重は、1
.60g/cm3 であった。また、空気気流中での示
差熱分析では、発熱ピークが798℃、に存在した。こ
の炭素質材料粉末を粉砕し、平均粒径10μmとした。 このようにして得た炭素材料粉末を負極活物質担持体と
すること以外は、実施例1と同様にして、直径20mm
、高さ50mmの円筒型非水電解液二次電池(比較例電
池2)を作成した。
After crosslinking petroleum pitch with oxygen in the same manner as in Example 1, it was fired at 1800° C. in an inert gas stream to obtain a carbon material having properties similar to glassy carbon. X of this material
As a result of line diffraction measurement, the spacing of the (002) plane is 3
.. 62 Å, and the true specific gravity according to the pycnometer method is 1
.. It was 60g/cm3. Further, in differential thermal analysis in an air stream, an exothermic peak existed at 798°C. This carbonaceous material powder was pulverized to have an average particle size of 10 μm. A diameter of 20 mm was prepared in the same manner as in Example 1, except that the carbon material powder thus obtained was used as a negative electrode active material carrier.
A cylindrical non-aqueous electrolyte secondary battery (Comparative Example Battery 2) with a height of 50 mm was prepared.

【0035】以上のように作成された実施例電池1〜4
および比較例電池1,2について、充放電を100サイ
クル行った後の容量維持率および自己放電率について検
討を行った。なお、容量維持率は、充電上限電圧を4.
1V、充電電流を1Aに設定し、2.5時間の定電圧定
電流充電後、6Ωの定負荷で、終止電圧2.75Vまで
放電させる充放電サイクルを繰り返し、10サイクル目
(初期容量)及び、100サイクル目の放電容量を記録
し、これらの値から算出した。また、自己放電率は、1
01サイクル目に充電上限電圧を4.1V、充電電流を
1Aに設定し、2.5時間の定電圧定電流充電後、22
℃の温度下に720時間保存し、その後、6Ω定負荷で
、終止電圧2.75Vまで放電して得られた容量を10
0サイクル目の放電容量と比較することによって算出し
た。
Example batteries 1 to 4 prepared as described above
For Comparative Example Batteries 1 and 2, the capacity retention rate and self-discharge rate after 100 cycles of charging and discharging were examined. The capacity maintenance rate is determined by setting the charging upper limit voltage to 4.
After 2.5 hours of constant voltage and constant current charging with a charging current of 1 V and a charging current of 1 A, repeat the charge/discharge cycle of discharging to a final voltage of 2.75 V with a constant load of 6 Ω. The discharge capacity at the 100th cycle was recorded and calculated from these values. Also, the self-discharge rate is 1
In the 01st cycle, the charging upper limit voltage was set to 4.1 V and the charging current was set to 1 A, and after 2.5 hours of constant voltage constant current charging, 22
℃ for 720 hours, and then discharged to a final voltage of 2.75V under a constant load of 6Ω.
It was calculated by comparing it with the discharge capacity at the 0th cycle.

【0036】各電池の容量維持率および自己放電率の測
定結果を表1に示す。
Table 1 shows the measurement results of the capacity retention rate and self-discharge rate of each battery.

【表1】[Table 1]

【0037】表1に示すように、実施例電池1〜実施例
電池4は、比較例電池1,2に比べて自己放電率が低く
、保存による放電容量低下が非常に小さい。また、初期
容量も大きくしかも容量維持率が高い。したがって、こ
れらの結果から、(002)面の面間隔が3.65Å以
上、真比重1.70g/cm3 未満であり、且つ空気
気流中に於ける示差熱分析で発熱ピークが複数個存在し
、少なくとも1個が700℃以上に存在するという条件
を満たす炭素材料を使用することにより、大容量,長サ
イクル寿命,低自己放電率が達成されることが示された
。また、容量維持率が実施例電池1,2,3,4の順に
優れることから、(002)面の面間隔が3.70Å以
上の炭素材料を使用した場合に、特に放電容量の優れる
非水電解液二次電池が得られることがわかった。
As shown in Table 1, Examples Batteries 1 to 4 have lower self-discharge rates than Comparative Examples Batteries 1 and 2, and the decrease in discharge capacity due to storage is very small. Furthermore, the initial capacity is large and the capacity retention rate is high. Therefore, from these results, the interplanar spacing of the (002) plane is 3.65 Å or more, the true specific gravity is less than 1.70 g/cm3, and multiple exothermic peaks are present in differential thermal analysis in an air stream. It has been shown that large capacity, long cycle life, and low self-discharge rate can be achieved by using a carbon material that satisfies the condition that at least one carbon material exists at a temperature of 700° C. or higher. In addition, since the capacity retention rate was superior in the order of Example Batteries 1, 2, 3, and 4, it was found that when a carbon material with a (002) plane spacing of 3.70 Å or more was used, a non-aqueous battery with particularly excellent discharge capacity It was found that an electrolyte secondary battery could be obtained.

【0038】そして、たとえば示差熱分析での発熱ピー
クのすべてが700℃未満に存在する炭素材料を使用し
た場合(比較例電池1)には、自己放電率が大きくなっ
て、十分な保存性が得られなくなり、一方(002)面
の面間隔が3.65Å未満の炭素材料を使用すると(比
較例電池2)、容量および容量維持率が不足することが
わかった。
For example, when a carbon material whose exothermic peaks in differential thermal analysis are all below 700°C is used (Comparative Example Battery 1), the self-discharge rate becomes large and the storage stability is insufficient. On the other hand, it was found that when a carbon material with a (002) plane spacing of less than 3.65 Å was used (Comparative Example Battery 2), the capacity and capacity retention rate were insufficient.

【0039】[0039]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池は、負極に使用する炭素材料の
形態的パラメータを所定の範囲に規定しているので、大
放電容量,長サイクル寿命が得られるとともに自己放電
率の低減を図ることが可能である。したがって、ラップ
・トップ・パソコン,ビデオ・カメラ等,比較的消費電
力の大きい機器に対しても十分な電力量を供給すること
ができ、しかもサイクル寿命,保存性に優れるので、実
用性の点でも優れた機器用電源となる。
Effects of the Invention As is clear from the above explanation, the non-aqueous electrolyte secondary battery of the present invention has the morphological parameters of the carbon material used for the negative electrode within a predetermined range. It is possible to obtain high capacity and long cycle life, and also to reduce the self-discharge rate. Therefore, it can supply sufficient power even to devices with relatively high power consumption such as laptops, computers, video cameras, etc. Moreover, it has excellent cycle life and storage stability, so it is also practical. Makes an excellent power source for equipment.

【0040】[0040]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】円筒型非水電解液二次電池の構成例を示す断面
図である。
FIG. 1 is a cross-sectional view showing a configuration example of a cylindrical non-aqueous electrolyte secondary battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  (002)面の面間隔が3.65Å以
上,真密度が1.70g/cm3 未満であり、且つ示
差熱分析において複数の発熱ピークを有するとともに7
00℃以上に少なくとも1つの発熱ピークを有する炭素
質材料を負極とすることを特徴とする非水電解液二次電
池。
Claim 1: The (002) plane has a spacing of 3.65 Å or more, a true density of less than 1.70 g/cm3, and has multiple exothermic peaks in differential thermal analysis.
A non-aqueous electrolyte secondary battery characterized in that a carbonaceous material having at least one exothermic peak at 00° C. or higher is used as a negative electrode.
JP11211891A 1991-04-18 1991-04-18 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3163642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11211891A JP3163642B2 (en) 1991-04-18 1991-04-18 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11211891A JP3163642B2 (en) 1991-04-18 1991-04-18 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04319265A true JPH04319265A (en) 1992-11-10
JP3163642B2 JP3163642B2 (en) 2001-05-08

Family

ID=14578633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11211891A Expired - Lifetime JP3163642B2 (en) 1991-04-18 1991-04-18 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3163642B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613197A1 (en) * 1993-02-25 1994-08-31 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonaceous electrode material for secondary battery
US6475461B1 (en) 1995-03-30 2002-11-05 Nippon Sanso Corporation Porous carbonaceous material, manufacturing method therefor and use thereof
WO2007040007A1 (en) * 2005-09-09 2007-04-12 Kureha Corporation Negative electrode material for nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and nonaqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613197A1 (en) * 1993-02-25 1994-08-31 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonaceous electrode material for secondary battery
US6475461B1 (en) 1995-03-30 2002-11-05 Nippon Sanso Corporation Porous carbonaceous material, manufacturing method therefor and use thereof
WO2007040007A1 (en) * 2005-09-09 2007-04-12 Kureha Corporation Negative electrode material for nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and nonaqueous electrolyte secondary battery
JPWO2007040007A1 (en) * 2005-09-09 2009-04-16 株式会社クレハ Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and negative electrode and non-aqueous electrolyte secondary battery
US7858239B2 (en) 2005-09-09 2010-12-28 Kureha Corporation Negative electrode material for non-aqueous electrolyte secondary battery, process for producing the same, negative electrode, and non-aqueous electrolyte secondary battery
JP5065901B2 (en) * 2005-09-09 2012-11-07 株式会社クレハ Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and negative electrode and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3163642B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP3019421B2 (en) Non-aqueous electrolyte secondary battery
US6884546B1 (en) Secondary battery
CA2055305C (en) Nonaqueous electrolyte secondary battery
JP3200867B2 (en) Non-aqueous electrolyte secondary battery
JPH06150971A (en) Cylindrical nonaqueous electrolyte secondary battery
KR100975875B1 (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
US8377598B2 (en) Battery having an electrolytic solution containing difluoroethylene carbonate
JP3633223B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JPH06295744A (en) Nonaqueous secondary battery
JP3153922B2 (en) Non-aqueous electrolyte secondary battery
JPH07335262A (en) Nonaqueous electrolyte secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JPH07134984A (en) Cylindrical nonaqueous electrolyte secondary battery
JP4717275B2 (en) Non-aqueous secondary battery
JP3501365B2 (en) Non-aqueous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
JPH09320593A (en) Nonaqueous electrolyte secondary battery
JP3337077B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2005310662A (en) Nonaqueous electrolyte secondary battery
JPH04280082A (en) Nonaqueous electrolyte secondary battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP3104264B2 (en) Coin type non-aqueous electrolyte secondary battery
JPH1197015A (en) Nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080302

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11