JPH07134984A - Cylindrical nonaqueous electrolyte secondary battery - Google Patents

Cylindrical nonaqueous electrolyte secondary battery

Info

Publication number
JPH07134984A
JPH07134984A JP5281028A JP28102893A JPH07134984A JP H07134984 A JPH07134984 A JP H07134984A JP 5281028 A JP5281028 A JP 5281028A JP 28102893 A JP28102893 A JP 28102893A JP H07134984 A JPH07134984 A JP H07134984A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
secondary battery
electrolyte secondary
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5281028A
Other languages
Japanese (ja)
Inventor
Masayuki Kageyama
雅之 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5281028A priority Critical patent/JPH07134984A/en
Publication of JPH07134984A publication Critical patent/JPH07134984A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a smooth progress of battery reaction, to secure a high battery capacity, and to provide an excellent cycle property. CONSTITUTION:In a cylindrical non-aqueous electrolyte secondary battery, a mixture consisting of a carbon material, which has (002) face spacing of 3.70Angstrom or more, a true density of less than 1.70g/cm<3>, and no heat generating peak at 700 deg.C or more by a differential thermal analysis in air flow, carbon fabric, and a binder at least is used as a negative electrode binding material. In this way, a negative electrode is sufficiently expands its volume, so that a clearance between a spiral electrode body outer circumference and a battery can inner circumference is filled up, and winding looseness of the electrode is prevented, and consequently, a proper pressure is generated between the negative electrode and the positive electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円筒型非水電解液二次
電池に関し、特に充放電サイクル特性の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical non-aqueous electrolyte secondary battery, and more particularly to improving charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型・軽量化を次々と実現させている。それに
伴い、移動用電源としての電池に対しても、益々小型・
軽量且つ高エネルギー密度のものが求められるようにな
っている。
2. Description of the Related Art Recent remarkable advances in electronic technology have made electronic devices smaller and lighter one after another. As a result, even smaller batteries are being used for mobile power sources.
Light weight and high energy density are required.

【0003】従来、一般用途の二次電池としては鉛電
池、ニッケル・カドミウム電池等の水溶液系電池が主流
であった。しかし、これらの電池はサイクル特性には優
れるものの、電池重量やエネルギー密度の点で十分満足
できるものとは言えない。
Conventionally, an aqueous solution type battery such as a lead battery or a nickel-cadmium battery has been mainly used as a secondary battery for general use. However, although these batteries have excellent cycle characteristics, they cannot be said to be sufficiently satisfactory in terms of battery weight and energy density.

【0004】一方、最近、負極にリチウムやリチウム合
金を用いた非水電解液二次電池が注目を集めている。こ
の電池は高エネルギー密度を有し、自己放電も少なく、
しかも軽量であり、二次電池として優れた特徴を有して
いる。しかし、充放電サイクルの繰り返しに伴い、リチ
ウムがデンドライト状に結晶成長し、セパレータの孔,
繊維の空隙を通過して、終には正極に到達し内部短絡を
起こすことや、リチウムが不活性化して粉末状に析出す
る等の欠点があり、このことが実用化への大きな障害に
なっている。
On the other hand, recently, a non-aqueous electrolyte secondary battery using lithium or a lithium alloy for the negative electrode has been attracting attention. This battery has high energy density, less self-discharge,
Moreover, it is lightweight and has excellent characteristics as a secondary battery. However, as the charge / discharge cycle is repeated, lithium grows into dendrite-like crystals, and
There are drawbacks such as passing through the voids of the fiber and finally reaching the positive electrode to cause an internal short circuit, and lithium deactivating and precipitating in powder form, which is a major obstacle to practical use. ing.

【0005】そこで、負極にリチウムやリチウムイオン
をドープ/脱ドープできるコークス類、グラファイト類
や有機高分子焼成体等の炭素質材料を使用する非水電解
液二次電池が提案されている。この電池は、上述のよう
な充放電サイクルの繰り返しによってリチウムがデンド
ライト状に結晶成長するといったことがなく、電池電圧
が高く、高エネルギー密度が得られることから大きな期
待がよせられている。
Therefore, there has been proposed a non-aqueous electrolyte secondary battery using a carbonaceous material such as coke, graphite, or a sintered body of an organic polymer capable of doping / dedoping lithium or lithium ions in the negative electrode. This battery has high expectations because it does not cause dendrite-like crystal growth of lithium due to repeated charge / discharge cycles as described above, and has a high battery voltage and high energy density.

【0006】この場合、負極に用いる炭素質材料として
は、例えば特開昭62−122066号公報,特開昭6
2−90863号公報等に開示されているように、(0
02)面の面間隔が3.40〜3.60Å、真密度が
1.70〜2.20g/cm3程度のものが用いられる
のが通常である。しかし、(002)面の面間隔,真密
度のような形態的パラメータが上記範囲の炭素質材料
は、リチウムのドープ可能量が不十分で、電池のエネル
ギー密度を決定する大きな要因であるところの炭素の単
位重量当たりの容量(mAh/g)を、理論値(理論的
には、炭素原子6個に対してリチウム原子1個の割合で
ドープされる)の半分程度しか得ることができないこと
が判明している。
In this case, examples of the carbonaceous material used for the negative electrode include, for example, JP-A-62-122066 and JP-A-6-62126.
As disclosed in Japanese Patent Publication No. 2-90863, etc., (0
It is usual to use those having a 02) plane spacing of 3.40 to 3.60Å and a true density of about 1.70 to 2.20 g / cm 3 . However, carbonaceous materials having morphological parameters such as (002) plane spacing and true density in the above ranges are insufficient in the amount of lithium that can be doped, and are a major factor in determining the energy density of a battery. The capacity per unit weight of carbon (mAh / g) can be obtained only about half of the theoretical value (theoretically, one carbon atom is doped to six carbon atoms). It's known.

【0007】そこで、さらに特開昭63−21795号
公報には(002)面の面間隔が、3.70Å以上,真
密度が1.70g/cm3 未満,且つ空気気流中に於け
る示差熱分析で700℃以上に発熱ピークを有しない炭
素質材料を負極に用いると、サイクル寿命に優れるだけ
でなく放電容量も大きな非水電解液二次電池が実現する
ことが示されている。
Therefore, in Japanese Patent Laid-Open No. 63-21795, the (002) plane spacing is 3.70 Å or more, the true density is less than 1.70 g / cm 3 , and the differential heat in air flow is It has been shown by analysis that when a carbonaceous material having no exothermic peak at 700 ° C. or higher is used for the negative electrode, a non-aqueous electrolyte secondary battery having not only excellent cycle life but also large discharge capacity is realized.

【0008】[0008]

【発明が解決しようとする課題】ところが、特開昭63
−21795号公報に開示されているような形態的パラ
メータを有する炭素質材料は、大きなリチウムドープ量
を有するもののリチウムドープによる体積膨張率が小さ
いといった欠点がある。
However, Japanese Patent Laid-Open No. Sho 63-63
A carbonaceous material having a morphological parameter as disclosed in Japanese Patent Publication No. -21795 has a drawback in that it has a large lithium doping amount but has a small volume expansion coefficient due to lithium doping.

【0009】すなわち、リチウムのドープ/脱ドープが
可能な炭素質材料は、リチウムがドープされると体積が
膨張するといった特性を有する。炭素質材料を負極に用
いる非水電解液二次電池では、このような炭素質材料の
体積膨張を利用して各部材同士間に圧力を高め、接触性
を確保している。したがって、リチウムドープによる体
積膨張率の小さい炭素質材料を用いた場合には、このよ
うな作用が得られないために接触不良が生じ、電極反応
の円滑性が損なわれる。
That is, the carbonaceous material capable of being doped / dedoped with lithium has a characteristic that its volume expands when it is doped with lithium. In a non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode, the volume expansion of such a carbonaceous material is used to increase the pressure between the members to ensure contact. Therefore, when a carbonaceous material having a small volume expansion coefficient due to lithium doping is used, such an effect cannot be obtained, resulting in poor contact and impairing the smoothness of the electrode reaction.

【0010】このような不都合を解消するため、特開平
5−234593号公報では、コイン型の非水電解液二
次電池の負極ペレットに、上記形態的パラメータを有す
る炭素質材料の他に、リチウムのドープによって大きく
体積膨張する炭素質材料を添加することで、負極ペレッ
トとその上に積層される負極集電体との接触性を確保す
るようにしている。
In order to eliminate such inconvenience, in Japanese Patent Laid-Open No. 5-234593, a negative electrode pellet of a coin-type non-aqueous electrolyte secondary battery is used, in addition to the carbonaceous material having the above-mentioned morphological parameters, lithium. By adding a carbonaceous material that undergoes a large volume expansion due to the dope, the contact property between the negative electrode pellet and the negative electrode current collector laminated thereon is ensured.

【0011】しかしながら、これら炭素質材料を負極に
使用する非水電解液二次電池は、その高エネルギー密度
性,軽量性から、ビデオ・カメラやラップ・トップ・パ
ソコン等の比較的消費電流の大きな携帯電子機器への適
用が主流になるものと考えられる。比較的消費電流が大
きな電子機器に用いる供給電源の形式としては、板状負
極と板状正極とがセパレータを介して積層され、この積
層体が渦巻き状に巻回されてなる渦巻式電極体が円筒状
の電池缶内に収容された,円筒形式が好ましい。これ
は、上記渦巻式電極体が、電極面積が大きくとれ、耐重
負荷特性に優れるからである。
However, the non-aqueous electrolyte secondary battery using these carbonaceous materials as the negative electrode has a relatively large current consumption due to its high energy density and light weight. It is considered that the application to mobile electronic devices will become mainstream. As a type of power supply used for electronic devices having a relatively large current consumption, a spirally wound electrode body in which a plate-shaped negative electrode and a plate-shaped positive electrode are laminated with a separator interposed therebetween, and the laminated body is spirally wound A cylindrical form, housed in a cylindrical battery can, is preferred. This is because the spiral electrode body has a large electrode area and is excellent in heavy load resistance.

【0012】ところが、円筒型非水電解液二次電池の場
合には、コイン型の場合と異なり、炭素質材料の体積膨
張によって、渦巻式電極体の容量を大きくし、該渦巻式
電極体外周と電池缶内周のクリアランスを埋めて電極の
巻き緩みを防止するとともに、正極/負極間に適度な圧
力を生じさせることを期待している。したがって、コイ
ン型の非水電解液二次電池とは、炭素質材料に求められ
る体積膨張率や、炭素質材料の体積膨張が電極反応に及
ぼす効果が異なるものと考えられる。
However, in the case of the cylindrical non-aqueous electrolyte secondary battery, unlike the coin type, the volume expansion of the carbonaceous material increases the capacity of the spirally wound electrode body to increase the outer circumference of the spirally wound electrode body. It is hoped that the clearance around the inner circumference of the battery can will be filled in to prevent the electrode from loosening and that an appropriate pressure be generated between the positive electrode and the negative electrode. Therefore, it is considered that the non-aqueous electrolyte secondary battery of coin type is different in the volume expansion coefficient required for the carbonaceous material and the effect of the volume expansion of the carbonaceous material on the electrode reaction.

【0013】このため、コイン型非水電解液二次電池に
用いた手法,条件をそのまま円筒型非水電解液二次電池
に適用しても充放電サイクル特性のさらなる改善にはつ
ながらず、新たに条件を詳細に設定することが必要であ
る。
Therefore, even if the method and conditions used for the coin type non-aqueous electrolyte secondary battery are directly applied to the cylindrical non-aqueous electrolyte secondary battery, the charge and discharge cycle characteristics are not further improved. It is necessary to set the conditions in detail.

【0014】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、負極が十分に体積膨張
し、渦巻式電極体外周と電池缶内周のクリアランスが適
正であるとともに負極/正極間に適度な圧力が生じてお
り、高電池容量であって且つサイクル特性に優れた円筒
型非水電解液二次電池を提供することを目的とする。
Therefore, the present invention has been proposed in view of such a conventional situation, in which the negative electrode is sufficiently expanded in volume, the clearance between the outer circumference of the spiral electrode body and the inner circumference of the battery can is proper, and the negative electrode is / Providing an appropriate pressure between the positive electrodes, it is an object of the present invention to provide a cylindrical non-aqueous electrolyte secondary battery having a high battery capacity and excellent cycle characteristics.

【0015】[0015]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の円筒型非水電解液二次電池は、板状負極
と板状正極とがセパレータを介して積層され、この積層
体が渦巻き状に巻回されることで構成された渦巻式電極
を有し、上記板状負極は、板状の負極集電体表面に、少
なくとも(002)面の面間隔が3.70Å以上,真密
度が1.70g/cm3 未満,且つ空気気流中における
示差熱分析で700℃以上に発熱ピークを有しない炭素
質材料と結着剤よりなる負極合剤が塗布されてなり、上
記板状正極は、板状の正極集電体表面に、少なくともリ
チウム遷移金属複合酸化物,導電剤及び結着剤よりなる
正極合剤が塗布されてなる非水電解液二次電池におい
て、上記負極合剤に、炭素繊維が添加されていることを
特徴とするものである。
In order to achieve the above object, a cylindrical non-aqueous electrolyte secondary battery of the present invention has a plate-shaped negative electrode and a plate-shaped positive electrode laminated via a separator, and the laminated The plate-shaped negative electrode has a spiral electrode formed by spirally winding a body, and the plate-shaped negative electrode has a surface interval of at least a (002) plane of 3.70 Å or more on the surface of the plate-shaped negative electrode current collector. The plate has a true density of less than 1.70 g / cm 3 and a negative electrode mixture consisting of a carbonaceous material and a binder, which has no exothermic peak at 700 ° C. or higher in a differential thermal analysis in an air stream, and is applied to the above plate. The positive electrode is a non-aqueous electrolyte secondary battery in which a positive electrode mixture composed of at least a lithium-transition metal complex oxide, a conductive agent and a binder is applied to the surface of a plate-shaped positive electrode current collector, A carbon fiber is added to the agent. .

【0016】また、上記負極合剤は、非水電解液の吸液
あるいはリチウムのドープによって体積が3〜14%の
膨張率で膨張することを特徴とするものである。
The negative electrode mixture is characterized in that it expands at a coefficient of expansion of 3 to 14% by absorbing a non-aqueous electrolyte or doping lithium.

【0017】円筒型非水電解液二次電池は、板状負極と
板状正極とがセパレータを介して積層され、この積層体
が渦巻き状に巻回されてなる渦巻式電極体が、円筒状の
電池缶内に収容されて構成されている。
In the cylindrical non-aqueous electrolyte secondary battery, a plate-shaped negative electrode and a plate-shaped positive electrode are laminated via a separator, and the spirally wound electrode body formed by spirally winding the laminated body has a cylindrical shape. It is housed and configured in a battery can.

【0018】本発明では、上記板状負極に用いる負極合
剤として、少なくとも(002)面の面間隔が3.70
Å以上,真密度が1.70g/cm3 未満,且つ空気気
流中における示差熱分析で700℃以上に発熱ピークを
有しない炭素質材料と、炭素繊維及び結着剤よりなる混
合物を用いることで、電池容量とサイクル特性の両立を
図ることとする。
In the present invention, the negative electrode mixture used for the plate-shaped negative electrode has a surface spacing of at least (002) planes of 3.70.
By using a mixture of carbonaceous material having a true density of Å or more and a true density of less than 1.70 g / cm 3 and having no exothermic peak at 700 ° C or more in a differential thermal analysis in an air stream, and carbon fiber and a binder. , Both battery capacity and cycle characteristics should be achieved.

【0019】すなわち、上記形態的パラメータを有する
炭素質材料は、リチウムドープ可能量が大きく、電池容
量を高める上では適している。しかし、リチウムがドー
プされたときの体積膨張率が小さく、負極合剤を体積膨
張させて渦巻式電極体外周と電池缶内周のクリアランス
を埋める,負極/正極間の圧力を高めるといった作用が
ほとんど得られない。このため、これと結合剤のみで負
極合剤を構成しても、電極反応の円滑性が得られない。
That is, the carbonaceous material having the above-mentioned morphological parameters has a large lithium doping amount and is suitable for increasing the battery capacity. However, the volume expansion coefficient when lithium is doped is small, and most of the functions are to expand the volume of the negative electrode mixture to fill the clearance between the outer circumference of the spirally wound electrode body and the inner circumference of the battery can, and to increase the pressure between the negative electrode and the positive electrode. I can't get it. Therefore, the smoothness of the electrode reaction cannot be obtained even if the negative electrode mixture is composed of only this and the binder.

【0020】ここで、負極合剤に上記形態的パラメータ
を有する炭素質材料の他に炭素繊維を添加すると、炭素
繊維はその炭素層間にリチウムがドープされること,及
び電解液を吸液することによって大きく体積膨張するの
で、上記形態的パラメータを有する炭素質材料が体積膨
張しなくとも、この炭素繊維によって渦巻式電極体外周
と電池缶内周のクリアランスが埋まり、負極/正極間の
圧力が十分高められる。したがって電極反応が円滑に進
行し、高い電池容量が確保されるとともに、優れた充放
電サイクル特性が得られることになる。
Here, when carbon fiber is added to the negative electrode mixture in addition to the carbonaceous material having the above-mentioned morphological parameters, the carbon fiber is doped with lithium between the carbon layers and absorbs the electrolytic solution. Because of the large volume expansion of the carbonaceous material having the above morphological parameters, the carbon fiber fills the clearance between the outer circumference of the spirally wound electrode body and the inner circumference of the battery can, so that the pressure between the negative electrode and the positive electrode is sufficient. To be enhanced. Therefore, the electrode reaction proceeds smoothly, a high battery capacity is secured, and excellent charge / discharge cycle characteristics are obtained.

【0021】上記炭素繊維を選択するに際しては、体積
膨張したときの形状,負極合剤に生じせしめる体積膨張
率,負極活物質としての性能に着目することが望まし
い。
When selecting the above-mentioned carbon fiber, it is desirable to pay attention to the shape when expanded in volume, the coefficient of volume expansion caused in the negative electrode mixture, and the performance as the negative electrode active material.

【0022】まず、体積膨張したときの形状が繊維の軸
方向に対して垂直方向に膨張するもの,いわゆる繊維の
径方向に膨張する結晶構造をもつものが好適である。こ
れは、炭素繊維が重なり合うことにより炭素繊維の膨れ
が直接電極体積の増加に反映され、効率の良い体積膨張
が得られるからである。
First, it is preferable that the shape when expanded in volume expands in the direction perpendicular to the axial direction of the fiber, that is, the one having a so-called crystal structure that expands in the radial direction of the fiber. This is because the swelling of the carbon fibers due to the overlapping of the carbon fibers is directly reflected in the increase of the electrode volume, and efficient volume expansion can be obtained.

【0023】また、負極合剤を厚み方向に3〜14%体
積膨張させ得るもの、さらに好ましくは負極合剤を厚み
方向に5〜12%体積膨張させ得るものを選定すること
が望ましい。負極合剤の体積膨張率が3%未満である
と、正極/負極間の圧力が不足し、電極反応が良好に進
行しない虞れがある。逆に、負極合剤の体積膨張率が1
4%を超えると、電池缶内における渦巻式電極体の占有
体積が大きくなり過ぎ、電解液の注入スペースが確保で
きなくなって電解液が不足する。
Further, it is desirable to select a material which can expand the negative electrode mixture by 3 to 14% in the thickness direction, and more preferably a material which can expand the negative electrode mixture by 5 to 12% in the thickness direction. When the volume expansion coefficient of the negative electrode mixture is less than 3%, the pressure between the positive electrode and the negative electrode may be insufficient, and the electrode reaction may not proceed satisfactorily. On the contrary, the volume expansion coefficient of the negative electrode mixture is 1
If it exceeds 4%, the volume occupied by the spirally-wound electrode body in the battery can becomes too large, and a space for injecting the electrolyte cannot be secured, resulting in a shortage of the electrolyte.

【0024】さらに、リチウムのドープ/脱ドープ量が
大きく、充放電の繰り返しによって不活性化するリチウ
ム量の少ないもの,すなわち体積膨張性能のみならず負
極活物質としての性能にも優れたものを用いるとより望
ましい。
Further, a material having a large amount of lithium doping / dedoping and a small amount of lithium which is inactivated by repeated charging / discharging, that is, a material having excellent performance as a negative electrode active material as well as volume expansion performance is used. And more desirable.

【0025】ここで、この炭素繊維を負極合剤に多量に
含有させて負極活物質としての機能のほとんどを担わせ
ることも考えられるが、負極合剤中の炭素繊維の含有量
があまり多くなると、負極合剤体積密度が上がらない、
負極合剤スラリーを負極集電体に塗布する際に電極不良
が多発する等の繊維形状であるが故の様々な不都合が生
じ、好ましくない。なお、通常の場合、炭素繊維は、極
少量の添加によって負極合剤に3〜14%体積膨張させ
ることができ、この範囲の体積膨張を生じさせるだけの
添加量であれば、以上のような不都合を生じることはな
い。
Here, it is conceivable that a large amount of this carbon fiber is contained in the negative electrode mixture so that most of the function as the negative electrode active material is fulfilled, but if the content of carbon fiber in the negative electrode mixture becomes too large. , The negative electrode mixture volume density does not increase,
When the negative electrode mixture slurry is applied to the negative electrode current collector, various inconveniences occur due to the fiber shape such as frequent occurrence of electrode defects, which is not preferable. In the usual case, the carbon fiber can be expanded by 3 to 14% in the negative electrode mixture by adding a very small amount, and if the addition amount is such that the volume expansion in this range occurs, There is no inconvenience.

【0026】以上のような負極合剤に混合される、(0
02)面の面間隔が3.70Å以上,真密度が1.70
g/cm3 未満,且つ空気気流中に於ける示差熱分析で
700℃以上に発熱ピークを有しない炭素質材料として
は、以下に例示するものがある。
Mixing with the negative electrode mixture as described above, (0
02) surface spacing is 3.70Å or more, and true density is 1.70.
The following are examples of carbonaceous materials having a heat generation peak of less than 700 g / cm 3 and less than 700 ° C. in a differential thermal analysis in an air stream.

【0027】すなわち、有機材料を焼成等の手法により
炭素化して得られる炭素質材料が挙げられる。炭素化の
出発原料としてはフルフリルアルコールあるいはフルフ
ラールのホモポリマー、コポリマーよりなるフラン樹脂
が好適である。具体的にはフルフラール+フェノール、
フルフリルアルコール+ジメチロール尿素、フルフリル
アルコール+ホルムアルデヒド、フルフリルアルコール
+フルフラール、フルフラール+ケトン類等よりなる重
合体が非水電解液二次電池用負極活物質として良好な特
性を示す。
That is, a carbonaceous material obtained by carbonizing an organic material by a technique such as firing may be mentioned. A furan resin composed of a furfuryl alcohol or furfural homopolymer or copolymer is suitable as a starting material for carbonization. Specifically, furfural + phenol,
Polymers composed of furfuryl alcohol + dimethylol urea, furfuryl alcohol + formaldehyde, furfuryl alcohol + furfural, furfural + ketones and the like show good characteristics as a negative electrode active material for a non-aqueous electrolyte secondary battery.

【0028】あるいは、原材料として水素/炭素原子比
0.6〜0.8の石油ピッチを用い、これらに酸素を含
む官能基を導入し、いわゆる酸素架橋を施して酸素含有
量10〜20重量%の前駆体とした後、焼成して得られ
る炭素質材料も好適である。
Alternatively, petroleum pitch having a hydrogen / carbon atomic ratio of 0.6 to 0.8 is used as a raw material, a functional group containing oxygen is introduced into these, and so-called oxygen cross-linking is performed to obtain an oxygen content of 10 to 20% by weight. A carbonaceous material obtained by firing after the precursor of is also suitable.

【0029】さらには、前記フラン樹脂や石油ピッチ等
を炭素化する際にリン化合物、あるいはホウ素化合物を
添加することにより、リチウムに対するドープ量を大き
なものとした炭素質材料も使用可能である。
Further, it is also possible to use a carbonaceous material having a large doping amount with respect to lithium by adding a phosphorus compound or a boron compound when carbonizing the furan resin or petroleum pitch.

【0030】また、上記炭素繊維としては、気相法によ
り得られる気相成長系炭素繊維、有機高分子繊維を一連
の段階的加熱処理によってもとの繊維の形状を保ったま
ま炭素化して得られるもの、ピッチなどの紡糸,不融化
処理等の後に炭素化して得られるもの等がある。例えば
ポリアクリロニトリル系、セルロース系、ポリビニルア
ルコール系、フェノール系、ピッチ系等の炭素質及び黒
鉛質繊維を単独もしくは二種類以上混合して使用するこ
とができる。
The carbon fibers may be obtained by carbonizing vapor-grown carbon fibers or organic polymer fibers obtained by a vapor phase method by a series of stepwise heat treatment while maintaining the original fiber shape. And those obtained by carbonization after spinning of pitch or the like, infusibilizing treatment, and the like. For example, polyacrylonitrile-based, cellulose-based, polyvinyl alcohol-based, phenol-based, pitch-based carbonaceous and graphite fibers can be used alone or in combination of two or more.

【0031】一方、上記板状正極に用いられる正極合剤
は、正極活物質,導電剤及び結着剤よりなる正極合剤が
塗布されてなるものである。正極活物質としては、二酸
化マンガン、五酸化バナジウムのような遷移金属化合物
や、硫化鉄等の遷移金属カルコゲン化合物、さらにはこ
れらとリチウムとの複合化合物を用いることができる。
On the other hand, the positive electrode mixture used for the plate-like positive electrode is formed by applying a positive electrode mixture comprising a positive electrode active material, a conductive agent and a binder. As the positive electrode active material, a transition metal compound such as manganese dioxide or vanadium pentoxide, a transition metal chalcogen compound such as iron sulfide, or a composite compound of these and lithium can be used.

【0032】電解液としては、例えばリチウム塩を電解
質とし、これを有機溶媒に溶解した電解液が用いられ
る。有機溶媒としては、特に限定されるものではない
が、例えばプロピレンカーボネイト、エチレンカーボネ
ート、ジエチルカーボネイト、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、γ−ブチロラクトン、
テトラヒドロフラン、1,3−ジオキソラン、4−メチ
ル−1,3−ジオキソラン、ジエチルエーテル、スルホ
ラン、メチルスルホラン、アセトニトリル、プロピオニ
トリル等の単独もしくは二種類以上の混合溶媒が使用で
きる。
As the electrolytic solution, for example, an electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used. The organic solvent is not particularly limited, for example, propylene carbonate, ethylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone,
Tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like can be used alone or in combination of two or more kinds.

【0033】電解質も従来より公知のものがいずれも使
用でき、LiClO4 、LiAsF 6 、LiPF6 、L
iBF4 、LiB(C6 5 4 、LiCl、LiB
r、CH3 SO3 Li、CF3 SO3 Li等がある。
Any known electrolyte can be used as the electrolyte.
Can be used, LiClOFour, LiAsF 6, LiPF6, L
iBFFour, LiB (C6HFive)Four, LiCl, LiB
r, CH3SO3Li, CF3SO3There are Li and the like.

【0034】[0034]

【作用】本発明の円筒型非水電解液二次電池は、円筒状
の電池缶内に渦巻式電極体が収納されてなるものであっ
て、特に負極を構成する負極合剤として、(002)面
の面間隔が3.70Å以上,真密度が1.70g/cm
3 未満,且つ空気気流中における示差熱分析で700℃
以上に発熱ピークを有しない炭素質材料と、炭素繊維及
び結着剤が混合されてなる混合物を用いる。
The cylindrical non-aqueous electrolyte secondary battery of the present invention comprises a spirally wound electrode body housed in a cylindrical battery can, and in particular (002) ) Surface spacing is 3.70Å or more, and true density is 1.70 g / cm
Less than 3 and 700 ℃ by differential thermal analysis in air flow
A mixture obtained by mixing the above-mentioned carbonaceous material having no exothermic peak, carbon fiber and a binder is used.

【0035】このような負極合剤を用いる円筒型の非水
電解液二次電池では、上記形態的パラメータを有する炭
素質材料がリチウムドープ可能量が大きいことから高電
池容量が獲得される。
In the cylindrical type non-aqueous electrolyte secondary battery using such a negative electrode mixture, a high battery capacity is obtained because the carbonaceous material having the above-mentioned morphological parameters has a large lithium doping amount.

【0036】また、この炭素質材料とともに混合される
炭素繊維が、その炭素層間にリチウムがドープされるこ
と及び電解液を吸液することによって大きく膨張するの
で、この膨張を反映して負極合剤が体積膨張し、渦巻式
電極体外周と電池缶内周のクリアランスが埋まって電極
の緩みが防止されるとともに負極/正極間に適度な圧力
が生じる。したがって、電極反応が円滑に進行し、良好
な充放電サイクル特性が得られる。
Further, the carbon fiber mixed with this carbonaceous material expands greatly due to the fact that the carbon layers are doped with lithium and absorbs the electrolytic solution. Therefore, this expansion is reflected and the negative electrode mixture is reflected. Expands in volume, filling the clearance between the outer circumference of the spirally wound electrode body and the inner circumference of the battery can to prevent the electrode from loosening and to generate an appropriate pressure between the negative electrode and the positive electrode. Therefore, the electrode reaction proceeds smoothly, and good charge / discharge cycle characteristics can be obtained.

【0037】[0037]

【実施例】以下、本発明の好適な実施例について、図
1,図2を用いて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail below with reference to FIGS.

【0038】実施例1 本実施例で作成した円筒型非水電解液二次電池の縦断面
図を図1に示す。上記円筒型非水電解液二次電池は以下
のようにして作成した。
Example 1 A longitudinal sectional view of a cylindrical non-aqueous electrolyte secondary battery prepared in this example is shown in FIG. The cylindrical non-aqueous electrolyte secondary battery was prepared as follows.

【0039】まず、負極1は次のようにして作製した。
出発原料として石油ピッチを用い、これに酸素を含む官
能基を10〜20重量%導入(いわゆる酸素架橋)した
後、不活性ガス気流中1000℃で焼成して、ガラス状
炭素に近い性質を持った炭素質材料を得た。この材料に
ついてX線回折測定を行った結果、(002)面の面間
隔は3.76Åであった。またピクノメータ法により真
比重を測定したところ、1.58g/cm3 であった。
この炭素質材料を粉砕し、平均粒径10μmの炭素質材
料粉末とした。
First, the negative electrode 1 was manufactured as follows.
Petroleum pitch is used as a starting material, and 10 to 20% by weight of a functional group containing oxygen is introduced into this (so-called oxygen cross-linking), followed by firing at 1000 ° C. in an inert gas stream to have properties similar to glassy carbon. A carbonaceous material was obtained. As a result of X-ray diffraction measurement of this material, the spacing between (002) planes was 3.76Å. The true specific gravity was measured by the pycnometer method and found to be 1.58 g / cm 3 .
This carbonaceous material was pulverized to obtain a carbonaceous material powder having an average particle diameter of 10 μm.

【0040】このようにして得た炭素質材料粉末を負極
活物質担持体とし、これを87重量部、気相成長法炭素
繊維(VGCF:昭和電工社製)を3重量部、さらに結
着剤となるポリフッ化ビニリデン(PVDF)を10重
量部をはかり採って混合し、負極合剤を調製した。この
負極合剤を、溶剤であるN−メチルピロリドンに分散さ
せて負極合剤スラリー(ペースト状)とした。
The carbonaceous material powder thus obtained was used as a negative electrode active material carrier, 87 parts by weight of this, 3 parts by weight of vapor grown carbon fiber (VGCF: Showa Denko KK), and a binder. Then, 10 parts by weight of polyvinylidene fluoride (PVDF) to be used was weighed and mixed to prepare a negative electrode mixture. This negative electrode mixture was dispersed in N-methylpyrrolidone as a solvent to prepare a negative electrode mixture slurry (paste form).

【0041】そして、負極集電体9となる厚さ10μm
の帯状銅箔の両面に、この負極合剤スラリーを塗布、乾
燥させた後、圧縮成型して帯状負極1を作製した。な
お、電極の寸法は、幅41.5mm、長さ720mmに
設計し、成型後の負極合剤の厚さは両面共に80μmで
同一とした。
The thickness of the negative electrode current collector 9 is 10 μm.
This negative electrode material mixture slurry was applied to both surfaces of the strip-shaped copper foil of 1 above, dried, and then compression molded to prepare strip-shaped negative electrode 1. The electrode was designed to have a width of 41.5 mm and a length of 720 mm, and the thickness of the negative electrode mixture after molding was 80 μm on both sides and was the same.

【0042】正極2は次のようにして作製した。炭酸リ
チウム0.5モルと炭酸コバルト1モルを混合し、空気
中、温度900℃で5時間焼成してLiCoO2 を得
た。
The positive electrode 2 was manufactured as follows. 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate were mixed and fired in air at a temperature of 900 ° C. for 5 hours to obtain LiCoO 2 .

【0043】このLiCoO2 を正極活物質とし、これ
を91重量部、導電剤となるグラファイトを6重量部、
結着剤となるポリフッ化ビニリデンを3重量部はかりと
って混合し、正極合剤を調製した。この正極合剤をN−
メチルピロリドンに分散させて正極スラリー(ペースト
状)とした。
This LiCoO 2 was used as a positive electrode active material, 91 parts by weight of this, 6 parts by weight of graphite as a conductive agent,
3 parts by weight of polyvinylidene fluoride serving as a binder was weighed and mixed to prepare a positive electrode mixture. This positive electrode mixture is N-
It was dispersed in methylpyrrolidone to obtain a positive electrode slurry (paste form).

【0044】この正極スラリーを、正極集電体10とな
る厚さ20μmの帯状のアルミニウム箔の両面に均一に
塗布,乾燥させた後、圧縮成型して帯状正極2を作製し
た。なお、電極の寸法は、幅39.5mm、長さ660
mmに設計し、成型後の合剤厚さは両面共に80μmで
同一とした。
This positive electrode slurry was uniformly applied on both sides of a 20 μm thick band-shaped aluminum foil which will be the positive electrode current collector 10, dried, and then compression molded to form a band-shaped positive electrode 2. The electrodes have a width of 39.5 mm and a length of 660.
The thickness of the mixture after molding was 80 μm and the same on both sides.

【0045】以上のようにして作成された帯状負極1と
帯状正極2を、厚さ25μm,幅44.0mmの微多孔
性ポリプロピレンフィルムをセパレータ3として、負極
1、セパレータ3、正極2、セパレータ3の順に積層
し、この積層体を渦巻状に多数回巻回した。そして、最
外周に位置するセパレータ最終端部を、幅40mmのテ
ープで固定することで外径19.6mm,高さ44.0
mmの渦巻式電極体を作製した。
The strip-shaped negative electrode 1 and the strip-shaped positive electrode 2 produced as described above are used as a negative electrode 1, a separator 3, a positive electrode 2, and a separator 3 with a microporous polypropylene film having a thickness of 25 μm and a width of 44.0 mm as a separator 3. Was laminated in this order, and this laminated body was spirally wound many times. Then, by fixing the final end portion of the separator located at the outermost periphery with a tape having a width of 40 mm, the outer diameter is 19.6 mm and the height is 44.0.
A mm type spiral electrode body was produced.

【0046】上記渦巻式電極体を、ニッケルめっきを施
した鉄製電池缶5内に収納し、電極体上下両面に絶縁板
4を配置した。そして、正極集電体10からアルミニウ
ム製正極リード12を導出して電池蓋7に、負極集電体
9からニッケル製負極リード11を導出して電池缶5に
溶接した。
The spiral electrode body was housed in a nickel-plated iron battery can 5, and insulating plates 4 were arranged on the upper and lower surfaces of the electrode body. Then, the aluminum positive electrode lead 12 was led out from the positive electrode collector 10 to the battery lid 7, and the nickel negative electrode lead 11 was led out from the negative electrode collector 9 and welded to the battery can 5.

【0047】この渦巻式電極体が収納された電池缶5の
中に、プロピレンカーボネートとジエチルカーボネート
との等容量混合溶媒にLiPF6 を1モル/1なる割合
で溶解させた電解液を注入した。そして、アスファルト
で表面を塗布した絶縁封口ガスケット6を介して電池缶
5をかしめることにより、電流遮断機構を有する安全弁
装置8並びに電池蓋7を固定し、電池内の気密性を保持
させることで直径20mm、高さ50mmの円筒型非水
電解液二次電池を作成した。
An electrolytic solution prepared by dissolving LiPF 6 in a mixed solvent of equal volume of propylene carbonate and diethyl carbonate at a ratio of 1 mol / 1 was injected into the battery can 5 accommodating the spiral electrode body. Then, by caulking the battery can 5 through the insulating sealing gasket 6 whose surface is coated with asphalt, the safety valve device 8 having the current cutoff mechanism and the battery lid 7 are fixed, and the airtightness inside the battery is maintained. A cylindrical non-aqueous electrolyte secondary battery having a diameter of 20 mm and a height of 50 mm was prepared.

【0048】実施例2 負極合剤の、負極活物質担持体として混合する炭素質材
料の混合量を89重量部、気相法炭素繊維(VGCF:
昭和電工社製)の混合量を1重量部にしたこと以外は実
施例1と同様にして円筒型非水電解液二次電池を作成し
た。
Example 2 89 parts by weight of the carbonaceous material mixed as the negative electrode active material carrier in the negative electrode mixture was used, and the vapor grown carbon fiber (VGCF:
A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the mixing amount of (Showa Denko KK) was 1 part by weight.

【0049】実施例3 負極合剤の、負極活物質担持体として混合する炭素質材
料の混合量を89重量部、気相法炭素繊維(VGCF:
昭和電工社製)の混合量を5重量部にしたこと以外は実
施例1と同様にして円筒型非水電解液二次電池を作成し
た。
Example 3 89 parts by weight of the carbonaceous material to be mixed as the negative electrode active material supporting material in the negative electrode mixture, the vapor grown carbon fiber (VGCF:
A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the mixing amount of (Showa Denko KK) was changed to 5 parts by weight.

【0050】比較例1 負極合剤に、気相法炭素繊維(VGCF:昭和電工社
製)を混合せずに、負極活物質担持体として混合する炭
素質材料の混合量を90重量部にしたこと以外は実施例
1と同様にして円筒型非水電解液二次電池を作成した。
Comparative Example 1 Without mixing the vapor grown carbon fiber (VGCF: Showa Denko KK) into the negative electrode mixture, the amount of the carbonaceous material mixed as the negative electrode active material carrier was set to 90 parts by weight. A cylindrical non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except for the above.

【0051】さらに実施例1,実施例2,比較例1と同
様な方法で各合計20個の円筒型非水電解液二次電池を
作成した。
Further, in the same manner as in Example 1, Example 2, and Comparative Example 1, a total of 20 cylindrical non-aqueous electrolyte secondary batteries were prepared.

【0052】そして、これら電池について、上限電圧
4.2V,電流1Aの条件で定電流充電を2.5時間行
った後、抵抗6Ω,終止電圧2.75Vの条件で定抵抗
の放電を行うとった充放電サイクルを繰り返し行った。
そして、1サイクル終了後の電池を充電状態で分解し、
帯状負極の負極合剤厚みを測定した。また、10サイク
ル目の容量(以下、初期容量と称す)及び150サイク
ル目の容量を測定した。
Then, with respect to these batteries, constant current charging was performed for 2.5 hours under the conditions of the upper limit voltage of 4.2 V and the current of 1 A, and then the constant resistance was discharged under the conditions of resistance 6Ω and final voltage 2.75 V. The charging / discharging cycle was repeated.
Then, disassemble the battery after one cycle in the charged state,
The thickness of the negative electrode mixture of the strip negative electrode was measured. Further, the capacity at the 10th cycle (hereinafter referred to as the initial capacity) and the capacity at the 150th cycle were measured.

【0053】各電池について、負極合剤へのVGCFの
添加量,負極を電池に組み込む前の負極合剤厚み,充放
電サイクルを1サイクル行った後の負極合剤厚み及び1
0サイクル目容量,150サイクル目容量(いずれも電
池20個の平均値)を表1に示す。また、負極合剤の膨
張率と容量保持率の関係を図2に示す。
For each battery, the amount of VGCF added to the negative electrode mixture, the thickness of the negative electrode mixture before incorporating the negative electrode into the battery, the thickness of the negative electrode mixture after one charge / discharge cycle, and 1
Table 1 shows the 0th cycle capacity and the 150th cycle capacity (both are the average values of 20 batteries). Further, FIG. 2 shows the relationship between the expansion rate and the capacity retention rate of the negative electrode mixture.

【0054】[0054]

【表1】 [Table 1]

【0055】表1からわかるように、負極合剤にVGC
Fを添加した実施例1〜実施例3の電池では、負極合剤
に炭素繊維を添加していない比較例の電池に比べて、充
放電を1サイクル行ったときの負極合剤の膨張量が大き
い。
As can be seen from Table 1, VGC was added to the negative electrode mixture.
In the batteries of Examples 1 to 3 to which F was added, the expansion amount of the negative electrode mixture after one cycle of charging and discharging was higher than that of the battery of the comparative example in which carbon fiber was not added to the negative electrode mixture. large.

【0056】このことから、負極合剤に添加する炭素繊
維を添加することは、負極合剤の体積膨張率を増大さ
せ、電極反応を円滑化する上で有効であることがわか
る。
From this, it is understood that adding the carbon fiber to be added to the negative electrode mixture is effective in increasing the volume expansion coefficient of the negative electrode mixture and smoothing the electrode reaction.

【0057】しかし、図2を見ると、負極合剤の膨張率
には適正範囲があり、膨張率が3〜14%の範囲では高
い容量保持率が得られるものの、負極合剤の膨張率が3
%未満の範囲あるいは14%を超えた範囲では、十分な
容量保持率が得られないことがわかる。
However, as shown in FIG. 2, the expansion coefficient of the negative electrode mixture has an appropriate range, and a high capacity retention rate is obtained in the expansion coefficient range of 3 to 14%, but the expansion coefficient of the negative electrode mixture is high. Three
It can be seen that in the range of less than 14% or the range of more than 14%, sufficient capacity retention cannot be obtained.

【0058】負極合剤の膨張率が3%未満であるときに
容量保持率が不足したのは、渦巻式電極体外周と電池缶
内周のクリアランスが十分に埋まっておらず、正極/負
極間に十分な圧力が生じていないからである。一方、負
極合剤の膨張率が14%を超えた範囲で十分な容量保持
率が得られなかったのは、負極合剤の占有体積が大きく
なり過ぎて電解液を注入するスペースが確保できなくな
り、電解液が不足したからである。
When the expansion coefficient of the negative electrode mixture was less than 3%, the capacity retention rate was insufficient because the clearance between the outer circumference of the spirally wound electrode body and the inner circumference of the battery can was not sufficiently filled, and This is because there is not enough pressure generated in. On the other hand, the reason why a sufficient capacity retention ratio could not be obtained in the range where the expansion ratio of the negative electrode mixture exceeded 14% was that the volume occupied by the negative electrode mixture became too large and the space for injecting the electrolyte solution could not be secured. , Because of lack of electrolyte.

【0059】したがって、炭素繊維を負極合剤に混合す
るに際しては、負極合剤の膨張率が3〜14%、より好
ましくは5〜12%となるような量で混合することが望
ましいことがわかる。
Therefore, when the carbon fibers are mixed with the negative electrode mixture, it is desirable to mix them in such an amount that the expansion coefficient of the negative electrode mixture is 3 to 14%, more preferably 5 to 12%. .

【0060】[0060]

【発明の効果】以上の説明からも明らかなように、本発
明の円筒型非水電解液二次電池は、負極合剤として、少
なくとも(002)面の面間隔が3.70Å以上,真密
度が1.70g/cm3 未満,且つ空気気流中における
示差熱分析で700℃以上に発熱ピークを有しない炭素
質材料と、炭素繊維及び結着剤よりなる混合物を用いる
ので、負極が十分に体積膨張し、これにより渦巻式電極
体外周と電池缶内周のクリアランスが埋まり、負極/正
極間に適度な圧力が生じる。したがって、電池反応が円
滑に進行し、高い電池容量が確保できるとともに優れた
サイクル特性が得られる。
As is apparent from the above description, the cylindrical non-aqueous electrolyte secondary battery of the present invention has, as a negative electrode mixture, at least a (002) plane spacing of 3.70Å or more and a true density. Of less than 1.70 g / cm 3 and a carbonaceous material having no exothermic peak at 700 ° C. or more in a differential thermal analysis in an air stream, and a mixture of carbon fiber and a binder are used, so that the negative electrode has a sufficient volume. It expands, thereby filling the clearance between the outer circumference of the spirally wound electrode body and the inner circumference of the battery can, and an appropriate pressure is generated between the negative electrode and the positive electrode. Therefore, the battery reaction proceeds smoothly, a high battery capacity can be secured, and excellent cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した円筒型非水電解液二次電池の
一構成例を示す概略縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view showing one structural example of a cylindrical non-aqueous electrolyte secondary battery to which the present invention is applied.

【図2】負極合剤の膨張率と容量保持率の関係を示す特
性図である。
FIG. 2 is a characteristic diagram showing the relationship between the expansion rate and the capacity retention rate of a negative electrode mixture.

【符号の説明】[Explanation of symbols]

1・・・帯状負極 2・・・帯状正極 3・・・セパレータ 4・・・絶縁板 5・・・電池缶 6・・・封口ガスケット 7・・・電池蓋 8・・・安全弁装置 9・・・負極集電体 10・・・正極集電体 11・・・負極リード 12・・・正極リード 1 ... Strip negative electrode 2 ... Strip positive electrode 3 ... Separator 4 ... Insulating plate 5 ... Battery can 6 ... Sealing gasket 7 ... Battery lid 8 ... Safety valve device 9 ... Negative electrode current collector 10 ... Positive electrode current collector 11 ... Negative electrode lead 12 ... Positive electrode lead

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 板状負極と板状正極とがセパレータを介
して積層され、この積層体が渦巻き状に巻回されること
で構成された渦巻状電極を有し、 上記板状正極は、板状の正極集電体表面に、少なくとも
リチウム遷移金属複合酸化物,導電剤及び結着剤よりな
る正極合剤が塗布されてなり、 上記板状負極は、板状の負極集電体表面に、少なくとも
(002)面の面間隔が3.70Å以上,真密度が1.
70g/cm3 未満,且つ空気気流中における示差熱分
析で700℃以上に発熱ピークを有しない炭素質材料
と、炭素繊維及び結着剤よりなる負極合剤が塗布されて
なることを特徴とする円筒型非水電解液二次電池。
1. A plate-shaped negative electrode and a plate-shaped positive electrode are laminated with a separator interposed therebetween, and a spiral electrode is formed by winding the laminated body in a spiral shape. A plate-shaped positive electrode current collector surface is coated with a positive electrode mixture composed of at least a lithium-transition metal composite oxide, a conductive agent and a binder, and the plate-shaped negative electrode is formed on the plate-shaped negative electrode current collector surface. , At least the (002) plane spacing is 3.70 Å or more, and the true density is 1.
A carbonaceous material having an exothermic peak of less than 70 g / cm 3 and having an exothermic peak at 700 ° C. or more in a differential thermal analysis in an air stream, and a negative electrode mixture composed of carbon fiber and a binder, are applied. Cylindrical non-aqueous electrolyte secondary battery.
【請求項2】 上記負極合剤は、非水電解液の吸液ある
いはリチウムのドープによって3〜14%の膨張率で体
積膨張することを特徴とする請求項1記載の円筒型非水
電解液二次電池。
2. The cylindrical nonaqueous electrolytic solution according to claim 1, wherein the negative electrode mixture undergoes volume expansion at a coefficient of expansion of 3 to 14% due to absorption of the nonaqueous electrolytic solution or dope of lithium. Secondary battery.
JP5281028A 1993-11-10 1993-11-10 Cylindrical nonaqueous electrolyte secondary battery Withdrawn JPH07134984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5281028A JPH07134984A (en) 1993-11-10 1993-11-10 Cylindrical nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5281028A JPH07134984A (en) 1993-11-10 1993-11-10 Cylindrical nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH07134984A true JPH07134984A (en) 1995-05-23

Family

ID=17633288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5281028A Withdrawn JPH07134984A (en) 1993-11-10 1993-11-10 Cylindrical nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07134984A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117576A (en) * 1997-02-26 2000-09-12 Rohm Co., Ltd. Battery device
CN1061474C (en) * 1996-12-25 2001-01-31 中国科学院化学研究所 Lithium ion battery and manufacture thereof
JP2002231316A (en) * 2001-01-30 2002-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2003051309A (en) * 2001-08-06 2003-02-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2003077346A1 (en) * 2002-03-13 2003-09-18 Matsushita Electric Industrial Co., Ltd. Battery and method for manufacturing spiral electrode group for use therein
JP2005276516A (en) * 2004-03-23 2005-10-06 Nec Tokin Corp Secondary battery and its manufacturing method
CN114062929A (en) * 2021-11-15 2022-02-18 蜂巢能源科技有限公司 Design method of lithium battery expansion space and equipment for designing lithium battery expansion space

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061474C (en) * 1996-12-25 2001-01-31 中国科学院化学研究所 Lithium ion battery and manufacture thereof
US6117576A (en) * 1997-02-26 2000-09-12 Rohm Co., Ltd. Battery device
JP2002231316A (en) * 2001-01-30 2002-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP4719982B2 (en) * 2001-01-30 2011-07-06 パナソニック株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2003051309A (en) * 2001-08-06 2003-02-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2003077346A1 (en) * 2002-03-13 2003-09-18 Matsushita Electric Industrial Co., Ltd. Battery and method for manufacturing spiral electrode group for use therein
CN100456548C (en) * 2002-03-13 2009-01-28 松下电器产业株式会社 Battery and method for manufacturing spiral electrode group for use therein
US7501201B2 (en) 2002-03-13 2009-03-10 Panasonic Corporation Battery and method for manufacturing spiral electrode group for use therein
JP2005276516A (en) * 2004-03-23 2005-10-06 Nec Tokin Corp Secondary battery and its manufacturing method
CN114062929A (en) * 2021-11-15 2022-02-18 蜂巢能源科技有限公司 Design method of lithium battery expansion space and equipment for designing lithium battery expansion space
CN114062929B (en) * 2021-11-15 2023-09-22 蜂巢能源科技有限公司 Design method of expansion space of lithium battery and equipment for designing expansion space of lithium battery

Similar Documents

Publication Publication Date Title
JP3152226B2 (en) Non-aqueous electrolyte secondary battery, method for producing the same, and carbon material composition
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
JP3019421B2 (en) Non-aqueous electrolyte secondary battery
JPH04237971A (en) Nonaqueous electrolyte secondary battery
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JP5121035B1 (en) Lithium ion secondary battery
JP4595145B2 (en) Non-aqueous electrolyte battery
KR102519441B1 (en) Composite negative electrode active material for lithium secondary battery, an anode comprising the same, and the lithium secondary battery comprising the anode
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
KR102206590B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
KR20080029479A (en) Cathode active material, lithium secondary battery comprising same, and hybrid capacitor comprising same
JP2007048717A (en) Battery
JP3633223B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JPH07134984A (en) Cylindrical nonaqueous electrolyte secondary battery
JPH06295744A (en) Nonaqueous secondary battery
JP3579340B2 (en) Non-aqueous electrolyte secondary battery
JPH1074502A (en) Nonaqueous electrolyte secondary battery
JP3153922B2 (en) Non-aqueous electrolyte secondary battery
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JP3458389B2 (en) Non-aqueous electrolyte secondary battery
JP4717275B2 (en) Non-aqueous secondary battery
JP3501365B2 (en) Non-aqueous electrolyte secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JP3337077B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3104264B2 (en) Coin type non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130