JPH0431803B2 - - Google Patents

Info

Publication number
JPH0431803B2
JPH0431803B2 JP61276454A JP27645486A JPH0431803B2 JP H0431803 B2 JPH0431803 B2 JP H0431803B2 JP 61276454 A JP61276454 A JP 61276454A JP 27645486 A JP27645486 A JP 27645486A JP H0431803 B2 JPH0431803 B2 JP H0431803B2
Authority
JP
Japan
Prior art keywords
workpiece
cutting
cutting tool
flaw
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61276454A
Other languages
Japanese (ja)
Other versions
JPS63134108A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP27645486A priority Critical patent/JPS63134108A/en
Publication of JPS63134108A publication Critical patent/JPS63134108A/en
Publication of JPH0431803B2 publication Critical patent/JPH0431803B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、線あるいは棒状材の表面疵を除去す
るに当り、被削体の横ぶれがなく安定して切削除
去できる棒線材表面疵自動切削装置に関するもの
である。
Detailed Description of the Invention (Industrial Field of Application) The present invention is an automatic method for removing surface flaws from a wire or rod, which can be stably removed without horizontal wobbling of the workpiece. This invention relates to a cutting device.

(従来の技術) バネ鋼、軸受鋼、ステンレス鋼等のような特殊
棒鋼や線材製品の製造にあたつては、熱延前、素
材の表面疵を充分に除去した後、熱延処理に付し
てコイル化している。しかし、その素材での疵取
りは完全に除去することは不可避であり、従つ
て、熱延処理後のコイルの表面にはその深さ最大
0.2mm程度の疵が部分的に点在していることがあ
り、その表面疵の除去が必要である。
(Prior art) When manufacturing special steel bars and wire rod products such as spring steel, bearing steel, and stainless steel, the surface flaws of the material are thoroughly removed before hot rolling, and then the material is subjected to hot rolling treatment. It is made into a coil. However, it is unavoidable to completely remove the flaws in the material, so the surface of the coil after hot-rolling has the maximum depth.
There may be some scattered scratches of about 0.2mm, and it is necessary to remove these surface scratches.

従来、このような疵の除去手段として、人手に
よるグラインダー手入れが特公昭59−50453号、
特開昭56−114618号、特公昭58−24201号、特開
昭59−142054号等の各公報にて提案されている方
法および装置がある。
Traditionally, as a means of removing such scratches, manual grinder maintenance was proposed in Japanese Patent Publication No. 59-50453.
There are methods and devices proposed in various publications such as JP-A-56-114618, JP-A-58-24201, and JP-A-59-142054.

(本発明が解決しようとする問題点) 人手による手入れは冷間コイルを解きほぐし、
棒、線材の4周全体を目視して探傷するので作業
性がきわめて悪く能率的にも好ましくなく、人件
費が大巾にアツプする不利が生じる。
(Problem to be solved by the present invention) Manual maintenance involves loosening the cold coil,
Since flaws are detected by visually inspecting the entire four circumferences of the rod or wire, workability is extremely poor and efficiency is not desirable, and labor costs increase significantly.

そのため省力化、自動化をはかつた手段とし
て、最も有望な手段とみられる前記の特公昭59−
50453号公報についてみれば、以下のような欠点
がみうけられる。
Therefore, as a means of labor saving and automation, the above-mentioned special public service
Looking at Publication No. 50453, the following drawbacks can be seen.

すなわち、 (1) 切削力は受けローラ(理論的には1点)で受
けており、走行方向において切削バイト先端位
置と受けローラ回転中心を合せる必要がある
が、部品のガタ、摩耗等があり、この調整が極
めて難かしく、特に細物材において切削深さ変
動の要因となる。
In other words, (1) The cutting force is received by the receiving roller (theoretically at one point), and it is necessary to align the tip of the cutting tool with the center of rotation of the receiving roller in the running direction, but there may be rattling, wear, etc. of the parts. This adjustment is extremely difficult and causes variations in cutting depth, especially when cutting thin materials.

(2) 被削体の受けローラは1点ローラ(同一円周
では1点)で受けるため、表面疵切削時切削方
向に対して被削体が横振れし、表面疵の取り残
し、あるいは切削面形状の不具合などの原因と
なる。
(2) Since the receiving roller for the workpiece is supported at one point (one point for the same circumference), the workpiece may oscillate laterally with respect to the cutting direction when cutting surface flaws, resulting in surface flaws being left behind or the cutting surface This may cause problems with the shape.

また他の公知手段によれば、切削面積の増大は
避けられず歩留を大巾に低下させてしまう欠点が
ある。
In addition, other known means have the disadvantage that the cutting area inevitably increases, which greatly reduces the yield.

本発明は以上の問題点を解決するためになされ
たものである。
The present invention has been made to solve the above problems.

(問題点を解決するための手段) 本発明は棒鋼あるいは線材等の棒線材を被削体
とするものであつて、かかる被削体を長手方向に
走行させる走行通路上に被削体の周方向及び長手
方向の疵の位置を検出する探傷器を設けるととも
に、被削体の走行速度検出器を設け、探傷器によ
る疵の情報と、走行速度検出器による速度情報に
より切削バイト部を作動せしめて被削体の疵部分
のみを効率的に削除しようとするものであり、被
削体の直径とほぼ等しい最小内径を有し、且つ切
削バイトが被削体に向かう際切削バイトが干渉す
る部分を切欠したダイスガイドが、該被削体の長
手方向に間隔をおいて設け、該ダイスガイドと対
応する位置に先端が凹入状の切刃を有する切削バ
イトが被削体に向かつてそれぞれ独立して進退自
在に設けられ、該切削バイトは被削体の回わりに
あつて、且つ被削体の軸方向にずらされて3組以
上配置して全円周の切削を可能に構成したもので
ある。
(Means for Solving the Problems) The present invention uses a rod or wire rod such as a steel bar or a wire rod as a workpiece, and the workpiece is placed on a traveling path in which the workpiece is run in the longitudinal direction. A flaw detector is provided to detect the position of flaws in the direction and longitudinal direction, and a traveling speed detector of the workpiece is provided, and the cutting tool is operated based on flaw information from the flaw detector and speed information from the traveling speed detector. It is intended to efficiently remove only the flawed part of the workpiece, and has a minimum inner diameter approximately equal to the diameter of the workpiece, and the part that the cutting tool interferes with when heading toward the workpiece. A die guide with a notch is provided at intervals in the longitudinal direction of the workpiece, and a cutting tool having a concave cutting edge at a position corresponding to the die guide is mounted independently when facing the workpiece. The cutting tool is arranged so as to be able to move forward and backward, and three or more sets of cutting tools are arranged around the workpiece and are shifted in the axial direction of the workpiece to enable cutting of the entire circumference. be.

(実施例) 以下、本発明の実施例を図面に基づいて詳述す
る。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本発明の全体構成を示す説明図、第2
図はその要部詳細を示す正面図、第3図は第2図
の部分側面図、第4図は第2図のA−A断面図、
第5図Aは第2図a部の拡大図、第5図のBは同
図AのB−B断面図である。
FIG. 1 is an explanatory diagram showing the overall configuration of the present invention, and FIG.
The figure is a front view showing details of the main parts, Figure 3 is a partial side view of Figure 2, Figure 4 is a sectional view taken along line A-A in Figure 2,
5A is an enlarged view of part a in FIG. 2, and B in FIG. 5 is a sectional view taken along line BB in FIG.

第1図は本発明の全体構成を概略示しており、
1はサプライスタンドであり、これにコイル状に
架装された被削体である素線2は巻取機100に
巻取られる過程において、公知の回転プローブ形
渦巻探傷器等の探傷器3でその表面疵が検出され
る。また、その素線2の走行速度は速度計4で検
出されるとともに制御装置5により切削マシン
6、の駆動装置7,7A,7B,7Cを制御可能
としている。
FIG. 1 schematically shows the overall configuration of the present invention,
Reference numeral 1 denotes a supply stand, and a wire 2, which is a workpiece mounted in a coil shape on this stand, is wound with a flaw detector 3 such as a known rotating probe type vortex flaw detector in the process of being wound up by a winder 100. The surface flaws are detected. Further, the running speed of the wire 2 is detected by a speedometer 4, and a control device 5 can control drive devices 7, 7A, 7B, and 7C of the cutting machine 6.

すなわち、被削体素線2の円周方向及び長手方
向の疵の位置を探傷器3で検出し、該検出信号の
疵の深さ信号により切削マシン6の切削バイトに
予じめ付与されている切込量とバイト進退タイミ
ングを演算されている走行速度にあわせてバイト
駆動装置7A〜7Cを制御することにより、被削
体である素線2の走行通路長手方向に配置した切
削バイトによつて疵箇所のみ切削し除去するもの
である。
That is, the position of the flaw in the circumferential direction and longitudinal direction of the workpiece strand 2 is detected by the flaw detector 3, and the flaw depth signal of the detection signal is used to detect the position of the flaw applied in advance to the cutting tool of the cutting machine 6. By controlling the cutting tool drive devices 7A to 7C in accordance with the calculated cutting speed and the advancing/retracting timing of the cutting tool, the cutting tool placed in the longitudinal direction of the traveling path of the strand 2, which is the workpiece, is used. Only the flawed parts are cut and removed.

ここで本発明の特徴とするところは、ダイスガ
イドと組合せた切削バイトを3組以上設けて素線
の全周の切削を可能に構成した点にある。すなわ
ち、切削バイトが被削体に向かつて出入できるよ
うに該切削バイトが干渉する部分を切欠したダイ
スガイドに、独立して進退動作する切削バイトを
組合せてそれぞれ3組以上設けて素材の全周を切
削可能としている。
The feature of the present invention is that three or more sets of cutting tools combined with die guides are provided to enable cutting of the entire circumference of the wire. That is, three or more sets of cutting tools that move forward and backward independently are installed in a die guide in which the part where the cutting tool interferes is cut out so that the cutting tool can go in and out toward the workpiece, and the cutting tool can be moved in and out of the workpiece. It is possible to cut.

第2図以下をも参照すると切削マシン6の詳細
が示され、被削体である素線2の走行ライン即
ち、走行通路上にはその送り方向に間隔をおいて
ダイスガイド8A,8B,8Cが3個設けられて
いる。そのダイスガイド8A,8B,8Cはダイ
スガイド8Aで代表して第5図A,B、第6図
A,Bに示す如く被削体素線2の直径とほぼ等し
い最小内径を有し、切削バイト10Aが被削体に
向つて進退できるように該切削バイト10Aが干
渉する部分を切欠されている。そのダイスガイド
8Aは押え板23とボルト24によりダイス箱9
に固定され、さらにボルト25とナツト26で支
持腕18に固定されている。ダイスガイド8Aの
材質は伸線ダイスと同様に超硬合金等を使用する
とよい。
The details of the cutting machine 6 are shown by referring also to FIG. There are three. The die guides 8A, 8B, and 8C have a minimum inner diameter approximately equal to the diameter of the workpiece strand 2, as shown in FIGS. A portion where the cutting tool 10A interferes is cut out so that the cutting tool 10A can move forward and backward toward the workpiece. The die guide 8A is connected to the die box 9 by the holding plate 23 and the bolt 24.
It is further fixed to the support arm 18 with bolts 25 and nuts 26. As for the material of the die guide 8A, it is preferable to use cemented carbide or the like similarly to the wire drawing die.

一方、切削バイト10A,10B,10Cはダ
イスガイド8A,8B,8C内を案内される被削
体に対向して伸縮シリンダで示す駆動装置7A,
7B,7Cによりそれぞれ独立して半径方向に進
退自在とされ、該切削バイト10A,10B,1
0Cは素材2の送り方向に対して間隔をおいて設
けられ、円周方向に等間隔に、本実施例では120
度毎に設けてある。なお、切削バイトはその個数
が4個の場合には90度間隔で、また、切削バイト
個数が6個の場合には60度間隔で設けられ、切削
バイト10A,10B,10Cにそれぞれ対応し
てダイスガイド8A,8B,8Cが設けてある。
On the other hand, the cutting tools 10A, 10B, 10C are driven by a drive device 7A, which is a telescopic cylinder, facing the workpiece guided in the die guides 8A, 8B, 8C.
The cutting tools 10A, 10B, 1 can be independently moved forward and backward in the radial direction by the cutting tools 7B and 7C.
0C are provided at intervals in the feeding direction of the material 2, and are arranged at equal intervals in the circumferential direction, in this example 120
It is provided for each degree. In addition, when the number of cutting tools is 4, the cutting tools are provided at 90 degree intervals, and when the number of cutting tools is 6, they are provided at 60 degree intervals, corresponding to cutting tools 10A, 10B, and 10C, respectively. Dice guides 8A, 8B, and 8C are provided.

切削バイトは第8図A,Bに要部のみ拡大して
示す如く、被削体2の外周形状に沿う凹入状刃先
11A,11B,11Cを有する。本実施例では
円弧形の凹入状とされた所謂平バイトであり、各
刃先11A,11B,11Cのそれぞれは第9
図、第10図に示す如く切削時において被削体2
の軸方向からみて周方向に互いに重なり合う部分
11A′,11B′,11C′が形成されており、被
削体2の全周をかこみうるようにされている。
The cutting tool has concave cutting edges 11A, 11B, and 11C that follow the outer peripheral shape of the workpiece 2, as shown in FIGS. 8A and 8B with only the main parts enlarged. In this embodiment, it is a so-called flat cutting tool with an arcuate concave shape, and each of the cutting edges 11A, 11B, and 11C has a ninth
As shown in Fig. 10, the workpiece 2 is cut during cutting.
Portions 11A', 11B', and 11C' are formed which overlap each other in the circumferential direction when viewed from the axial direction of the workpiece 2, so that they can surround the entire circumference of the workpiece 2.

そして、第3図、第4図にバイト10Aで代表
して示す如くバイトホルダー12に抜差し自在に
押嵌されボルト13にて締結されている。
As shown in FIGS. 3 and 4 by a cutting tool 10A, it is press-fitted into a cutting tool holder 12 so as to be freely insertable and removable, and fastened with a bolt 13.

なお、本実施例では、バイト(以下、バイト1
0Aで代表する)は調整ねじ14によつて一定高
さXmmに調整されてそのバイトホルダー12がス
ライドユニツト15に嵌合されてボルト16にて
固定され、スライドユニツト15は基台17に放
射方向として延設された支持腕18のスライダ1
8Aに摺動自在に嵌合されるとともに左右横方向
は調整ねじ16Aによつて調整固定自在とされて
いる。
Note that in this embodiment, byte (hereinafter, byte 1
The tool (represented by 0A) is adjusted to a constant height of X mm with the adjusting screw 14, and its tool holder 12 is fitted into the slide unit 15 and fixed with bolts 16, and the slide unit 15 is attached to the base 17 in the radial direction. Slider 1 of support arm 18 extended as
8A, and can be adjusted and fixed in left and right directions by adjusting screws 16A.

支持腕18の延設端にバイト駆動装置7A,7
B,7Cが本例では伸縮油圧シリンダが設けてあ
り、そのピストンロツド19にねじ連結棒20を
螺着せしめ該棒端面を調整ねじ14の頭部に対応
させて隔置させている。
Bit drive devices 7A, 7 are installed at the extending end of the support arm 18.
In this example, telescopic hydraulic cylinders B and 7C are provided, and a threaded connecting rod 20 is screwed onto the piston rod 19 of the cylinder, and the end surface of the rod is spaced apart so as to correspond to the head of the adjusting screw 14.

ねじ連結棒20にはナツト21,22が螺合さ
れており、上部ナツト21は連結棒20の突出長
さを調整するもので、前述のバイト高さ調整ねじ
14との組合せによりバイト10Aの切込深さ、
つまり、被削体2の表面疵の切削深さを調整する
ものである。
Nuts 21 and 22 are screwed onto the threaded connecting rod 20, and the upper nut 21 is used to adjust the protruding length of the connecting rod 20, and in combination with the above-mentioned cutting tool height adjustment screw 14, the cutting tool 10A can be cut. depth,
In other words, the cutting depth of surface flaws on the workpiece 2 is adjusted.

又、下部ナツト22は連結棒20の戻り距離即
ち、バイト10Aと被削体2間の距離Hを調整す
るものであり、このことは、制御装置5の信号を
受けて駆動装置7Aが伸長動作し、スライダ18
Aの案内を介してスライドユニツト15の降下に
より切削バイト10Aが作動して被削体2を一定
深さまで切込むに要する時間を調整するものであ
り、つまり、切削バイト10Aの切込角度を、バ
イト形状、種類、被削体の材質、走行速度によつ
て最適条件となるように調整するものである。
Further, the lower nut 22 is used to adjust the return distance of the connecting rod 20, that is, the distance H between the cutting tool 10A and the workpiece 2. and slider 18
The cutting tool 10A is operated by lowering the slide unit 15 through the guide A, and the time required to cut into the workpiece 2 to a certain depth is adjusted. In other words, the cutting angle of the cutting tool 10A is adjusted to Adjustments are made to the optimum conditions depending on the shape and type of cutting tool, material of the workpiece, and traveling speed.

ところで、切削バイトで切削時に生ずる被削体
の反力はダイスガイドの内面で受けているが、そ
の反力による内面の摩耗が大きい場合は内面に潤
滑剤を送入することが望ましい。すなわち、第6
図Aは側断面図、BはAのC−C断面図にその一
実施例図を示す如く、ダイスガイド断面内に潤滑
剤の送入孔Pを貫設し、潤滑口θより水溶性切削
油等を圧送し潤滑溝Qを通して被削体2とダイス
ガイド8A間の潤滑を行うことによりダイスガイ
ド8Aの寿命延長を図ることができる。
Incidentally, the reaction force of the workpiece that is generated during cutting with the cutting tool is received by the inner surface of the die guide, and if the inner surface wears out due to the reaction force is large, it is desirable to feed lubricant into the inner surface. That is, the sixth
As shown in Figure A is a side sectional view and Figure B is a cross-sectional view taken along line C-C in A, a lubricant feed hole P is provided in the cross section of the die guide, and water-soluble cutting is carried out from the lubricant port θ. By pumping oil or the like and lubricating the workpiece 2 and the die guide 8A through the lubrication groove Q, it is possible to extend the life of the die guide 8A.

また、切削バイトで切削時の被削体の横ぶれを
完全に防止する場合は、第7図に示すような切削
バイト10Aの出入りする位置前後のダイスガイ
ド8Aの孔内径W,W′をそれぞれ被削体の直径
d,d′より小さく設けて、適度の減面率で伸線す
るとよい。すなわち、切削バイト10Aの前後の
ダイスガイド孔8A′,8A″で引抜き挾持するも
のであり、被削体の横ぶれが全くなく安定して自
動疵取りができる。また、この引抜きにより疵取
り切削部の表面ならしも同時に可能である。
In addition, if the cutting tool is used to completely prevent horizontal wobbling of the workpiece during cutting, the hole inner diameters W and W' of the die guide 8A before and after the position where the cutting tool 10A enters and exits as shown in FIG. It is preferable to make the wire smaller than the diameters d and d' of the workpiece and draw the wire at an appropriate area reduction rate. That is, the cutting tool 10A is pulled out and held between the front and rear die guide holes 8A' and 8A'', and automatic flaw removal can be performed stably without any horizontal wobbling of the workpiece. It is also possible to level the surface of the part at the same time.

(作用) 次に、切削マシン6による被削体2に対する表
面疵の自動切削除去について説明すると、被削体
2がサプライスタンド1から巻取機100に巻取
られていくラインにおいてまず表面疵が全くない
無疵部分が巻取られている時には探傷器3は作動
しないので、3個の切削バイト10A,10B,
10Cは定位置で停止状態にあり、被削体2はダ
イスガイド8A,8B,8Cによる走行通路を経
て捲取機100側に巻取られていくことになる。
(Function) Next, to explain automatic cutting and removal of surface flaws on the workpiece 2 by the cutting machine 6, surface flaws are first removed on the line where the workpiece 2 is wound up from the supply stand 1 to the winding machine 100. Since the flaw detector 3 does not operate when the part without any defects is being wound, the three cutting tools 10A, 10B,
10C is in a stopped state at a fixed position, and the workpiece 2 is wound up to the winding machine 100 side through a traveling path by the die guides 8A, 8B, and 8C.

今、被削体2に表面疵があり、これを探傷器3
によつて検出することにより、該疵部分の切削指
令が発信されれば、この指令を受けてその疵部分
と対応する切削バイト10A,10B,10Cが
油圧シリンダで示す駆動装置7A,7B,7Cの
伸長により予じめ定められた切削量だけ切削除去
することになる。
There is a surface flaw on the workpiece 2, which is detected by the flaw detector 3.
When a command to cut the flawed part is issued, the cutting tools 10A, 10B, 10C corresponding to the flawed part are activated by drive devices 7A, 7B, 7C using hydraulic cylinders. By elongation, a predetermined cutting amount is removed.

このようにして表面疵部分が切削除去されて通
過した時は、切削終りの指令によつて駆動装置7
A,7B,7Cが縮少動作して切削バイト10
A,10B,10Cを旧位置に復し、再び次の疵
発見による切削指令に待機するのである。
When the surface flaws have been cut off and passed, the drive device 7 receives a command to finish cutting.
A, 7B, 7C reduce and cut cutting tool 10
A, 10B, and 10C are returned to their old positions, and the machine waits again for the next cutting command due to the discovery of a flaw.

第9図乃至第11図を参照して前記制御装置5
による制御要領を具体的に説明すると、探傷器3
によつて素線2の疵の深さを検出するプローブか
らの電気信号と素線の疵が素線の円周方向のどの
部分にあるかを検出するプローブからの電気信号
とを取り出している。
With reference to FIGS. 9 to 11, the control device 5
To specifically explain the control procedure using flaw detector 3,
The electric signal from the probe that detects the depth of the flaw in the wire 2 and the electric signal from the probe that detects in which part of the wire the flaw is located in the circumferential direction of the wire are extracted. .

前述の切削マシン6は進退自在の切削バイト3
個以上から構成され、各々のバイト10A,10
B,10Cが本例では120度間隔でかつ長手方向
間隔をおいて設けられており、疵検出用のプロー
ブから疵信号(深さ)が発生した時にはその位
置、つまり、探傷器3とバイト設定距離は速度計
4と同期させ、かつ角度の位置をパルス位置より
判断してそれぞれのバイト10A,10B,10
Cが作動されるようにするのである。
The aforementioned cutting machine 6 has a cutting tool 3 that can move forward and backward.
each byte 10A, 10
In this example, B and 10C are provided at 120 degree intervals and at intervals in the longitudinal direction, and when a flaw signal (depth) is generated from the flaw detection probe, the position, that is, the flaw detector 3 and the bite setting The distance is synchronized with the speedometer 4, and the angular position is judged from the pulse position and the respective bites 10A, 10B, 10
C is activated.

プローブの動作の角度について詳述すれば、第
9図及び第10図に示す如く、固定側の近接スイ
ツチS1の位置を0度の基点0とし、疵検出用プ
ローブ3Aが回転する時そのプローブがどの角度
の位置にあるかを解るように1回転間を例えば36
パルスの信号に変換させ1〜12パルスの時はバイ
ト10AのリレーR1が作動し、13〜24パルスの
時にはバイト10BのリレーR2が作動し、25〜
36パルスの時にはバイト10CのリレーR3が作
動するようにする。
To explain the angle of operation of the probe in detail, as shown in FIGS. 9 and 10, the position of the proximity switch S1 on the fixed side is set as the base point 0 of 0 degrees, and when the flaw detection probe 3A rotates, the probe moves. For example, 36 times per revolution to understand the angle position.
When the signal is converted into a pulse signal, the relay R1 of the bite 10A is activated when the pulse is 1 to 12, and the relay R2 of the bite 10B is activated when the pulse is 13 to 24.
At the time of 36 pulses, relay R3 of bite 10C is activated.

即ち、第11図に示すように疵深さ信号と疵の
位置(距離と角度)の信号の3つの信号を同期化
させて各々のバイトの動作指令を送り、各々のバ
イトの動作は3つの信号が同時に受けた時のみ動
作することができるのである。
That is, as shown in Figure 11, three signals, a flaw depth signal and a flaw position (distance and angle) signal, are synchronized to send operation commands for each bite, and the operation of each bite is controlled by three signals. It can only operate when the signals are received simultaneously.

また、表面疵が隣り合う場合、又はバイトの切
削範囲の中間に存在する場合は、隣り合う2個以
上のバイトが作動して表面疵を切削除去可能であ
る。
Further, when surface flaws are adjacent to each other or are present in the middle of the cutting range of the cutting tools, two or more adjacent cutting tools can be operated to cut and remove the surface flaws.

例えば第8図Aに示すPの部分に疵が存在する
場合にはバイト10Cと10Aとが作動して切削
するのであり、P1の部分に存在する場合には、
バイト10A,10Bが作動し、同様にしてP2
の場合にはバイト10C,10Bが作動し切削す
るのであり、各バイト10A,10B,10Cの
作動範囲(切込深さ、切削角度)は常に一定であ
ることから、隣り合う2個以上のバイトが作動し
た場合でも所定深さ以上切削することがないので
ある。
For example, if there is a flaw in the part P shown in FIG.
Bits 10A and 10B operate, and P2
In this case, the cutting tools 10C and 10B operate and cut, and since the operating range (depth of cut, cutting angle) of each cutting tool 10A, 10B, 10C is always constant, two or more adjacent cutting tools Even if the machine is activated, it will not cut more than a predetermined depth.

(発明の効果) 本発明は以上詳述したように独立して進退動作
する3個以上の切削バイト10A,10B,10
Cは、ダイスガイド8A,8B,8C内を通過案
内しながら被削体2を切削するので、従来受ロー
ラで切削反力を受けるときの切削バイトと受けロ
ーラ回転中心の難かしい位置合せが不要で被削体
の横振れによる表面疵の取り残し、切削面形状の
不具合などがなく、かつ細物材の切削深さも安定
する。
(Effects of the Invention) As described in detail above, the present invention provides three or more cutting tools 10A, 10B, 10 that move forward and backward independently.
Since C cuts the workpiece 2 while guiding it through the die guides 8A, 8B, and 8C, there is no need for difficult alignment of the cutting tool and the center of rotation of the receiving roller, which is conventionally required when receiving a cutting reaction force using the receiving roller. There are no surface flaws left behind or defects in the shape of the cut surface due to lateral vibration of the workpiece, and the cutting depth of thin materials is also stable.

このように本発明によれば、表面疵切削時にも
被削体の振れがなく通材が安定しており表面疵自
動切削における品質の安定、向上が期待できる。
As described above, according to the present invention, there is no runout of the workpiece even during surface flaw cutting, and the threading is stable, and it is expected that quality stability and improvement in automatic surface flaw cutting can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の全体構成を示す説明図、第2
図は切削マシンの正面図、第3図は同一部の詳細
を示す半欠側面図、第4図は第2図のA−A断面
図、第5図Aは第2図a部の拡大図、第5図Bは
第5図A正面図のB−B断面図、第6図Aはダイ
スガイド断面内に潤滑剤送入孔を貫設した一実施
例の説明図、第6図Bは同上C−C断面図、第7
図は引抜き挾持ダイスガイドの説明図、第8図
A,Bは切削前と切削中のそれぞれの切削バイト
と被削体の対応関係を示す説明図、第9図から第
11図は制御装置における制御手段を示し、第9
図は素線、バイト、回転プローブの相関図、第1
0図はバイトとパルス信号の説明図、第11図は
そのリレー図である。 2は被削体(素線)、3は探傷器、4は速度計、
5は制御装置、6は切削マシン、7,7A,7
B,7Cは駆動装置、8A,8B,8Cはダイス
ガイド、9はダイス箱、10A,10B,10C
は切削バイト、θは潤滑口、Pは潤滑剤の送入
孔、Qは潤滑溝。
FIG. 1 is an explanatory diagram showing the overall configuration of the present invention, and FIG.
The figure is a front view of the cutting machine, Figure 3 is a half-cut side view showing details of the same part, Figure 4 is a sectional view taken along line A-A in Figure 2, and Figure 5A is an enlarged view of part a in Figure 2. , FIG. 5B is a sectional view taken along line B-B of the front view of FIG. Same as above C-C sectional view, No. 7
The figure is an explanatory diagram of the drawing clamp die guide, Figures 8A and B are explanatory diagrams showing the correspondence between the cutting tool and the workpiece before and during cutting, and Figures 9 to 11 are diagrams of the control device. 9, showing the control means;
The figure is a correlation diagram of wire, cutting tool, and rotating probe, 1st
FIG. 0 is an explanatory diagram of the bite and pulse signals, and FIG. 11 is a relay diagram thereof. 2 is the workpiece (wire), 3 is the flaw detector, 4 is the speed meter,
5 is a control device, 6 is a cutting machine, 7, 7A, 7
B, 7C are drive devices, 8A, 8B, 8C are dice guides, 9 is dice box, 10A, 10B, 10C
is the cutting tool, θ is the lubrication port, P is the lubricant inlet, and Q is the lubrication groove.

Claims (1)

【特許請求の範囲】 1 線あるいは棒状の被削体(素線)の表面疵に
ついて長手方向並びに円周方向に疵位置を検出す
る探傷器と、被削体の走行速度を検出する速度検
出器と、これら探傷器および速度検出器から情報
を受けて作動する切削バイトにより被削体の疵を
切削除去する棒線材表面疵自動切削装置におい
て、被削体の直径とほぼ等しい最小内径を有し、
且つ切削バイトが被削体に向かう際切削バイトが
干渉する部分を切欠したダイスガイドが、該被削
体の走行通路長手方向に間隔をおいて設けられ、
該ダイスガイドと対応する位置に先端が凹入状の
切刃を有する切削バイトが被削体に向かつてそれ
ぞれ独立して進退自在に設けられ、該切削バイト
は被削体の回わりにあつて、且つ被削体の軸方向
にずらされて3組以上配置されており、さらに該
切削バイトのそれぞれの切刃は切削時において被
削体の軸方向から見ると周方向に互に重なり合う
部分が形成されて、被削体の全周をかこみうるよ
うにされていることを特徴とする棒線状の表面疵
自動切削装置。 2 ダイスガイド断面内に潤滑剤の送入孔を貫設
したことを特徴とする特許請求の範囲第1項記載
の棒線材の表面疵自動切削装置。 3 ダイスガイドの孔の内径が被削体の直径より
小として設けたことを特徴とする特許請求の範囲
第1項記載の棒線材の表面疵自動切削装置。
[Claims] 1. A flaw detector that detects the position of surface flaws in the longitudinal and circumferential directions of a wire or rod-shaped workpiece (wire), and a speed detector that detects the running speed of the workpiece. In an automatic rod and wire rod surface flaw cutting device that cuts and removes flaws on the workpiece using a cutting tool that operates upon receiving information from these flaw detectors and speed detectors, the bar and wire rod surface flaw cutting equipment has a minimum inner diameter approximately equal to the diameter of the workpiece. ,
and die guides are provided at intervals in the longitudinal direction of the travel path of the workpiece, and die guides are cut out at portions where the cutting tool interferes when the cutting tool heads toward the workpiece,
A cutting tool having a cutting edge with a recessed tip at a position corresponding to the die guide is provided so as to be able to move forward and backward independently toward the workpiece, and the cutting tool is placed around the workpiece, Three or more sets are arranged offset in the axial direction of the workpiece, and each cutting edge of the cutting tool forms a portion that overlaps with the circumferential direction when viewed from the axial direction of the workpiece during cutting. 1. An automatic surface flaw cutting device in the form of a wire rod, which is capable of encircling the entire circumference of a workpiece. 2. The automatic surface flaw cutting device for rods and wires according to claim 1, characterized in that a lubricant inlet hole is provided in the cross section of the die guide. 3. The automatic surface flaw cutting device for rods and wire rods according to claim 1, wherein the inner diameter of the hole in the die guide is smaller than the diameter of the workpiece.
JP27645486A 1986-11-21 1986-11-21 Automatic cutting device for surface flaw of bar wire material Granted JPS63134108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27645486A JPS63134108A (en) 1986-11-21 1986-11-21 Automatic cutting device for surface flaw of bar wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27645486A JPS63134108A (en) 1986-11-21 1986-11-21 Automatic cutting device for surface flaw of bar wire material

Publications (2)

Publication Number Publication Date
JPS63134108A JPS63134108A (en) 1988-06-06
JPH0431803B2 true JPH0431803B2 (en) 1992-05-27

Family

ID=17569660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27645486A Granted JPS63134108A (en) 1986-11-21 1986-11-21 Automatic cutting device for surface flaw of bar wire material

Country Status (1)

Country Link
JP (1) JPS63134108A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196961A (en) * 1989-12-26 1991-08-28 Takano Kikai:Kk Cutting attachment
JPH0482666A (en) * 1990-07-24 1992-03-16 Takano Kikai:Kk Flaw removing device for rod

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596721A (en) * 1979-01-17 1980-07-23 Philips Nv Receiver
JPS5796721A (en) * 1980-12-05 1982-06-16 Nippon Koshuha Kogyo Kk Control method and device of automatically cutting surface flaw in linear or bar-shaped material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596721A (en) * 1979-01-17 1980-07-23 Philips Nv Receiver
JPS5796721A (en) * 1980-12-05 1982-06-16 Nippon Koshuha Kogyo Kk Control method and device of automatically cutting surface flaw in linear or bar-shaped material

Also Published As

Publication number Publication date
JPS63134108A (en) 1988-06-06

Similar Documents

Publication Publication Date Title
TW353781B (en) Wire saw and method for cutting wafers from a workpiece
WO1991008076A1 (en) Apparatus and method for cutting mults from billets
US5255581A (en) Peeling machine
US20050028658A1 (en) Apparatus and method for slotting a pipe
JPH0431803B2 (en)
JP2000246537A (en) Flying shear
JPH06155140A (en) Method and device for cutting cold pilger rolled pipe into shortened length
CN2535172Y (en) Rotary-cutting pipe-cutting machine
JPH0696206B2 (en) Rotary broaching machine for rotationally symmetrical workpieces
US20020108478A1 (en) Apparatus and method for slotting a pipe
US4070739A (en) Manufacture of metal strip
US4116095A (en) Metal sawing or milling machine
JPS6062453A (en) Surface scraping method of wire rod and device thereof
JPS5950453B2 (en) Automatic cutting device for surface flaws on wire or bar-shaped materials
RU2288076C2 (en) Tube working method and apparatus for performing the same
JPS59142054A (en) Removing method and device of surface flaw on wire rod
RU2012437C1 (en) Method of inside dressing of pipes with longitudinal weld and device for its accomplishment
JPH07299625A (en) Method and device for cutting rodor tube material or tube bloom
SU709283A2 (en) Portable machine for cutting stationary tubes
US6617849B1 (en) Device for the nondestructive testing of especially hot bar shaped rolling material
JPS6334012A (en) Automatic cutting device for surface fault of wire rod
CN214768998U (en) Tailstock convenient to adjust
CA2434993A1 (en) Apparatus and method for slotting a pipe
CN110170690B (en) Automatic milling and assembling mechanism for automotive tubular part
SU1144806A1 (en) Tube-working machine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term