JPH04317339A - Ldd type mos field effect transistor having inverted t-shaped gate and manufacture thereof - Google Patents
Ldd type mos field effect transistor having inverted t-shaped gate and manufacture thereofInfo
- Publication number
- JPH04317339A JPH04317339A JP4013009A JP1300992A JPH04317339A JP H04317339 A JPH04317339 A JP H04317339A JP 4013009 A JP4013009 A JP 4013009A JP 1300992 A JP1300992 A JP 1300992A JP H04317339 A JPH04317339 A JP H04317339A
- Authority
- JP
- Japan
- Prior art keywords
- polycrystalline silicon
- gate
- inverted
- field effect
- effect transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 67
- 125000006850 spacer group Chemical group 0.000 claims abstract description 15
- 239000004065 semiconductor Substances 0.000 claims abstract description 11
- 150000002500 ions Chemical class 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 238000000059 patterning Methods 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 3
- 239000010703 silicon Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 23
- 239000003870 refractory metal Substances 0.000 claims description 9
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 239000012212 insulator Substances 0.000 claims 1
- 238000005530 etching Methods 0.000 abstract description 11
- 239000012535 impurity Substances 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 208000022010 Lhermitte-Duclos disease Diseases 0.000 description 21
- 230000000694 effects Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 101100345589 Mus musculus Mical1 gene Proteins 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- -1 arsenic ions Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42372—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
- H01L29/42376—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6656—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7836—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、ゲート電極を逆T字形
状に形成し、ドレインをLDD(Lightly Do
ped Drain )に形成する逆T字形状ゲート電
極のLDD型MOS電界効果トランジスタおよびその製
造方法に関するものである。[Industrial Application Field] The present invention has a gate electrode formed in an inverted T-shape, and a drain formed in an LDD (Lightly Do
The present invention relates to an LDD type MOS field effect transistor having an inverted T-shaped gate electrode formed in a ped drain) and a method for manufacturing the same.
【0002】0002
【従来の技術】サブミクロン(Sub−micron)
級大きさの素子、すなわち、たとえば0.5〜1μm以
下の大きさを有するMOS電界効果トランジスタに対す
る最近の技術動向は、いわゆるLDDを有するLDD型
MOS電界効果トランジスタの開発である。LDD型M
OS電界効果トランジスタは、性能および信頼性の面で
非常に優れた特性を示している。特に、LDD構造は、
熱電子効果を緩和させるので、狭チャネルNMOS電界
効果トランジスタによく採用されており、チャネル内で
の側方向最大電界を減少させるためにLDD構造は酸化
側壁スペーサを用いている。[Prior art] Sub-micron
A recent technological trend for MOS field effect transistors with class-sized devices, ie with dimensions below, for example, 0.5 to 1 μm, is the development of LDD type MOS field effect transistors with so-called LDDs. LDD type M
OS field effect transistors have shown very good characteristics in terms of performance and reliability. In particular, the LDD structure is
Commonly employed in narrow channel NMOS field effect transistors because they mitigate thermionic effects, LDD structures employ oxidized sidewall spacers to reduce the maximum lateral electric field within the channel.
【0003】しかしながら、LDD構造の採用に従って
側方向への最大電界および半導体基板に流れる電流が減
少され、ドレイン保持電圧が改善される半面、LDD構
造を有するMOS電界効果トランジスタは電流駆動能力
が低下し、信頼性が落ちる問題点がある。However, while the adoption of the LDD structure reduces the maximum lateral electric field and the current flowing through the semiconductor substrate and improves the drain holding voltage, the MOS field effect transistor having the LDD structure has a reduced current driving ability. , there is a problem of decreased reliability.
【0004】かかる問題点を改善するために、諸論文が
発表された。その一例を挙げると、IDEM Tech
nical Digest 1986,IEEE,p.
742〜745に発表された論文“A NOVEL S
UBMICRON LDD TRANSISTOR W
ITH INVERSE−T GATE STRUCT
URE”がある。この論文は、図1の(a)に示すよう
に、半導体基板1にゲート酸化層2、多結晶シリコン層
3および酸化層4が順次に積層され、写真蝕刻工程によ
って多結晶シリコンゲート5が形成される。このとき、
多結晶シリコンゲート5の形成の際、多結晶シリコンゲ
ート5以外の多結晶シリコン層3は全部蝕刻されなく、
ゲート酸化層2上に薄層3Aとなって残るようにする。
これは、逆T字形状を有する多結晶シリコンゲート5を
形成するためのものである。そして、n−不純物である
元素Pが注入されてn−LDD領域6が形成される。[0004] Various papers have been published in order to improve these problems. One example is IDEM Tech.
nical Digest 1986, IEEE, p.
The paper “A NOVEL S” published in 742-745
UBMICRON LDD TRANSISTOR W
ITH INVERSE-T GATE STRUCT
URE". In this paper, as shown in FIG. 1(a), a gate oxide layer 2, a polycrystalline silicon layer 3, and an oxide layer 4 are sequentially stacked on a semiconductor substrate 1, and a polycrystalline silicon layer is formed by a photolithography process. A silicon gate 5 is formed.At this time,
When forming the polycrystalline silicon gate 5, all of the polycrystalline silicon layer 3 other than the polycrystalline silicon gate 5 is not etched;
A thin layer 3A remains on the gate oxide layer 2. This is for forming a polycrystalline silicon gate 5 having an inverted T shape. Element P, which is an n- impurity, is then implanted to form an n-LDD region 6.
【0005】図1の(b)に示すように、CVD(Ch
emical Vapor Deposition )
にて酸化層7が蒸着され、非等方性エッチングにより酸
化側壁スペーサ7Aが形成された後、パターン形成され
た酸化側壁スペーサ7Aの下部以外に残有する多結晶シ
リコン層3の薄層3Aがプラズマ多結晶シリコンエッチ
ングで除去される。次いで、n+ 不純物である砒素イ
オンを注入してソース−ドレイン領域8が形成される。As shown in FIG. 1(b), CVD (Ch
chemical vapor deposition)
After the oxide layer 7 is deposited and the oxide sidewall spacers 7A are formed by anisotropic etching, the remaining thin layer 3A of the polycrystalline silicon layer 3 except under the patterned oxide sidewall spacers 7A is exposed to plasma. Removed by polycrystalline silicon etching. Next, source-drain regions 8 are formed by implanting arsenic ions, which are n+ impurities.
【0006】図1の(c)に示すように、多結晶シリコ
ン層3の側壁に酸化側壁スペーサ7Aだけ残して、酸化
層4、7いずれもが除去されて逆T字形状の多結晶シリ
コンゲート5が製造される。As shown in FIG. 1C, both oxide layers 4 and 7 are removed, leaving only oxide sidewall spacers 7A on the sidewalls of polycrystalline silicon layer 3, resulting in an inverted T-shaped polycrystalline silicon gate. 5 is produced.
【0007】このとき、重要なことは、n+ ソース−
ドレイン領域8の形成の際、多結晶シリコンゲート5が
自己整列された状態においてn+ 不純物が注入される
ので最適なLnが得られるというものである。[0007] At this time, the important thing is that n+ source -
When forming the drain region 8, the n+ impurity is implanted while the polycrystalline silicon gate 5 is self-aligned, so that optimum Ln can be obtained.
【0008】しかしながら、前記のような工程にて逆T
字形状の多結晶シリコンゲートを製造するとき、多結晶
シリコン層3を積層した後、マスクを用いて多結晶シリ
コンゲート5の領域の部分をエッチングする過程におい
て、エッチング時間を調節して所定の厚さを有する多結
晶シリコン層3の薄層3Aを形成している。したがって
、この方法では多結晶シリコンゲート5の領域の部分に
形成される薄層3Aの厚さを正確に形成することができ
ないばかりではなく、容易でもない。また、n− 不純
物注入が多結晶シリコンゲート5の薄層3A部分を通じ
てなされるために、多結晶シリコンゲート5の膜質およ
び信頼性に影響を与えて微視的次元のMOS電界効果ト
ランジスタが有する特性の信頼性を低下させる1つの要
因になった。However, in the above process, the inverted T
When manufacturing a polycrystalline silicon gate in the shape of a polycrystalline silicon gate, after stacking the polycrystalline silicon layer 3, in the process of etching the region of the polycrystalline silicon gate 5 using a mask, the etching time is adjusted to obtain a predetermined thickness. A thin layer 3A of the polycrystalline silicon layer 3 having a certain thickness is formed. Therefore, with this method, not only is it not possible to accurately form the thickness of the thin layer 3A formed in the area of the polycrystalline silicon gate 5, but it is also not easy. In addition, since the n- impurity is implanted through the thin layer 3A of the polycrystalline silicon gate 5, the film quality and reliability of the polycrystalline silicon gate 5 are affected, and the characteristics of a microscopic MOS field effect transistor are affected. This became one of the factors that reduced the reliability of the system.
【0009】かかる従来の技術よりもう少し改善された
さらに他の技術が、IEDM Technical D
igest 1989,IEEE,p.765〜768
に発表された論文“A Self−Aligned I
nverse−T Gate Fully Overl
apped LDD Device for Sub−
Half Micron CMOS”に記載されている
。この論文は、逆T字形状の多結晶シリコンゲート内の
多結晶シリコン層でサンドイッチされた酸化あるいはT
iNバッファ層が介されている。ここで用いられた酸化
およびTiNバッファ層は多結晶シリコン層に対して良
いエッチ選択性を示すというものである。[0009] Still another technique, which is slightly improved over such conventional techniques, is the IEDM Technical D
igest 1989, IEEE, p. 765-768
A paper published in “A Self-Aligned I
nverse-T Gate Fully Overl
applied LDD Device for Sub-
Half Micron CMOS”. This paper describes the use of oxidized or T
An iN buffer layer is interposed therebetween. The oxidized and TiN buffer layers used here exhibit good etch selectivity to the polycrystalline silicon layer.
【0010】したがって、多結晶シリコン層の厚さ調節
が可能であり、均一に形成されることができる。Therefore, the thickness of the polycrystalline silicon layer can be adjusted and uniformly formed.
【0011】[0011]
【発明が解決しようとする課題】すなわち、図2に示す
ように、多結晶シリコンゲートを構成する第1の多結晶
シリコン層11と第2の多結晶シリコン層12との間に
酸化あるいはTiNバッファ層13を用いて、第1の多
結晶シリコン層11のエッチングの際、前記バッファ層
13によりエッチストップになるようにすることにより
、前述した諸問題を解決しているが、MOS電界効果ト
ランジスタの構造および動作特性上必要でないバッファ
層13が多結晶シリコン層11、12の間に残るように
なるため、サブミクロン級のMOS電界効果トランジス
タの動作特性に悪い影響を与えるようになる。[Problems to be Solved by the Invention] That is, as shown in FIG. 2, there is an oxidation or TiN buffer between the first polycrystalline silicon layer 11 and the second polycrystalline silicon layer 12 constituting the polycrystalline silicon gate. The above-mentioned problems are solved by using the buffer layer 13 as an etch stop when etching the first polycrystalline silicon layer 11. Since the buffer layer 13, which is not necessary in terms of structure and operating characteristics, remains between the polycrystalline silicon layers 11 and 12, the operating characteristics of the submicron-level MOS field effect transistor are adversely affected.
【0012】したがって、本発明は前記のような問題点
に勘案してなされたもので、本発明の目的は、多結晶シ
リコンゲート内に不必要な層がなく、各層の厚さを安定
させるように調節できるようにすることにより所望のM
OS素子を製作するようにするサブミクロン級大きさ以
下の逆T字形状ゲート電極のLDD型MOS電界効果ト
ランジスタおよびその製造方法を提供することである。Therefore, the present invention has been made in consideration of the above-mentioned problems, and an object of the present invention is to eliminate unnecessary layers within a polycrystalline silicon gate and to stabilize the thickness of each layer. By making it possible to adjust the desired M
An object of the present invention is to provide an LDD type MOS field effect transistor having an inverted T-shaped gate electrode with a submicron size or less, and a method for manufacturing the same, for manufacturing an OS device.
【0013】本発明の他の目的は、サブミクロン級大き
さ以下のCMOS素子の製造工程上、電流駆動能力を増
大させ、酸化トラッピング効果による信頼性を改善する
逆T字形状ゲート電極のLDD型MOS電界効果トラン
ジスタおよびその製造方法を提供することである。Another object of the present invention is to provide an LDD type inverted T-shaped gate electrode to increase current drive capability and improve reliability due to oxidation trapping effect in the manufacturing process of CMOS devices of submicron size or smaller. An object of the present invention is to provide a MOS field effect transistor and a method for manufacturing the same.
【0014】本発明のさらに他の目的は、耐火金属と、
逆T字形状の多結晶シリコンゲートの構造にn− およ
びn+ LDDを形成するにおいて、選択蝕刻を用いて
それぞれ自己整列(Self−aligne )させる
ことにより、素子の製造に制御が容易であるようにして
素子の製造に従う信頼性および生産歩留を向上させるこ
とができる逆T字形状ゲート電極のLDD型MOS電界
効果トランジスタおよびその製造方法を提供することで
ある。[0014] Still another object of the present invention is to provide a refractory metal;
In forming n- and n+ LDDs in an inverted T-shaped polycrystalline silicon gate structure, selective etching is used to self-align them, thereby facilitating device manufacturing control. An object of the present invention is to provide an LDD type MOS field effect transistor with an inverted T-shaped gate electrode, which can improve the reliability and production yield in manufacturing the device, and a method for manufacturing the same.
【0015】[0015]
【課題を解決するための手段】前記目的を達成するため
の本発明のMOS電界効果トランジスタの製造方法は、
半導体基板上に第1のゲート酸化層、多結晶シリコン層
および金属層を順次に形成する工程と、パターニングし
て多結晶シリコンゲートを形成した後、低濃度ドレイン
およびソース領域を形成するためにイオンを注入する工
程と、第2の多結晶シリコン層と低温酸化層を積層しパ
ターニングして多結晶シリコンゲートの側壁にスペーサ
を形成する工程と、残有する前記第2の多結晶シリコン
層を除去し高濃度のイオンを注入する工程とからなるこ
とを特徴としている。[Means for Solving the Problems] A method for manufacturing a MOS field effect transistor of the present invention for achieving the above object includes:
A process of sequentially forming a first gate oxide layer, a polycrystalline silicon layer, and a metal layer on a semiconductor substrate, and after patterning to form a polycrystalline silicon gate, ionization is performed to form lightly doped drain and source regions. a step of depositing and patterning a second polycrystalline silicon layer and a low-temperature oxide layer to form spacers on the sidewalls of the polycrystalline silicon gate; and a step of removing the remaining second polycrystalline silicon layer. It is characterized by a step of implanting ions at a high concentration.
【0016】また、本発明の逆T字形状ゲート電極のL
DD型MOS電界効果トランジスタは、半導体基板上に
形成され、側壁にスペーサを有する逆T字形状の多結晶
シリコンゲートと、この多結晶シリコンゲートの下部内
側にそれぞれ形成される低濃度イオンのドレインおよび
ソース領域と、前記多結晶シリコンゲートの表面にシリ
シデーションされる耐火金属層を備えることを特徴とし
ている。Further, the L of the inverted T-shaped gate electrode of the present invention
A DD type MOS field effect transistor is formed on a semiconductor substrate, and includes an inverted T-shaped polycrystalline silicon gate with a spacer on the sidewall, and a drain and a low concentration ion drain formed inside the lower part of the polycrystalline silicon gate, respectively. The method is characterized by comprising a source region and a refractory metal layer silicidated on the surface of the polycrystalline silicon gate.
【0017】[0017]
【実施例】以下、本発明の実施例を添付の図3の(a)
〜(d)および図4を参照して詳細に説明する。[Example] Hereinafter, an example of the present invention will be described as shown in FIG. 3(a) attached.
This will be described in detail with reference to (d) to (d) and FIG.
【0018】まず、図3の(a)に示すように、半導体
基板21上に第1のゲート酸化層22、n+ 多結晶シ
リコン層23および耐火金属層24が順次に蒸着される
。
このとき、第1のゲート酸化層22は、たとえばSiO
2 などで200オングストローム程度の厚さで積層さ
れ、耐火金属としてはTiあるいはWを用いた。First, as shown in FIG. 3A, a first gate oxide layer 22, an n+ polycrystalline silicon layer 23, and a refractory metal layer 24 are sequentially deposited on a semiconductor substrate 21. At this time, the first gate oxide layer 22 is made of, for example, SiO
2 to a thickness of about 200 angstroms, and Ti or W was used as the refractory metal.
【0019】そして、図3の(b)に示すように多結晶
シリコンゲートに該当する幅を残し、写真蝕刻方法にて
n+ 多結晶シリコン層23および耐火金属層24を蝕
刻する。このとき、第1のゲート酸化層22が露出され
るように写真蝕刻し、n− 不純物イオンを注入してn
− LDD25を形成する。Then, as shown in FIG. 3B, the n+ polycrystalline silicon layer 23 and the refractory metal layer 24 are etched by photolithography, leaving a width corresponding to the polycrystalline silicon gate. At this time, photolithography is performed so that the first gate oxide layer 22 is exposed, and n- impurity ions are implanted to form an n
- Form LDD25.
【0020】ここで、多結晶シリコンゲートが形成でき
るようにTiあるいはWのような耐火金属を工程初期段
階において蒸着して蝕刻する前記の一連の工程は、多結
晶シリコンゲートの両側の領域に自己整列的にn− お
よびn+ ソース−ドレイン領域を形成するためのもの
であって、n− LDD25のドーズ(dose)量お
よび長さを素子の設計に応じて調節が可能であるように
するものである。さらに、n− LDD25は多結晶シ
リコンゲートの下部に位置するようになることにより、
電流駆動能力がドレインの固有抵抗により低下されなく
、n− ドーズを縮めることができるのでホットキャリ
ア(hot carrier )効果が改善される。Here, in order to form a polycrystalline silicon gate, the above-mentioned series of steps of depositing and etching a refractory metal such as Ti or W at the initial stage of the process creates a self-containing layer on both sides of the polycrystalline silicon gate. This is for forming n- and n+ source-drain regions in an aligned manner, and allows the dose and length of the n- LDD 25 to be adjusted according to the device design. be. Furthermore, by positioning the n-LDD 25 under the polycrystalline silicon gate,
The current driving ability is not reduced by the specific resistance of the drain, and the n-dose can be reduced, so that the hot carrier effect is improved.
【0021】特に、n− LDD25を多結晶シリコン
ゲートの下部に形成させることにより酸化トラッピング
に起因する素子の縮退(degradation )を
縮めることができて、平均寿命時間を延長させることが
できる。In particular, by forming the n-LDD 25 under the polycrystalline silicon gate, it is possible to reduce device degradation caused by oxidation trapping, thereby extending the average life time.
【0022】図3の(b)はMOS電界効果トランジス
タの基本構成要素であるゲート、ソースおよびドレイン
が形成されたことを示すものであり、次いで図3の(c
)に示すように第2のn+ 多結晶シリコン層26と第
2の酸化層27を全面にかけて蒸着しパターニング作業
を行なう。このとき、形成された酸化層27はLTO(
Low Temperature Oxidatioi
n)で形成し、パターニングは図3の(d)に示すよう
に多結晶シリコンゲートが逆T字状の形状となるように
して前記酸化層27がスペーサとして残るようにする。
ここで、スペーサ27として用いられる材質としては、
フリンジングフィールド効果を増大させるためにTa2
O5 のように誘電率が大きい物質を用いるのが好ま
しい。FIG. 3(b) shows that the gate, source, and drain, which are the basic components of a MOS field effect transistor, have been formed, and then FIG. 3(c)
), a second n+ polycrystalline silicon layer 26 and a second oxide layer 27 are deposited over the entire surface and patterned. At this time, the formed oxide layer 27 is LTO (
Low Temperature
n), and patterning is performed so that the polycrystalline silicon gate has an inverted T-shape as shown in FIG. 3(d), so that the oxide layer 27 remains as a spacer. Here, the material used for the spacer 27 is as follows:
Ta2 to increase the fringing field effect
It is preferable to use a substance with a high dielectric constant, such as O5.
【0023】本発明によればスペーサの幅は、耐火金属
の選択的蝕刻性により前記したLTOの厚さに従い決定
されるよりは、RIE(Reactive Ion E
tching)の条件に従い調節されることができる。According to the present invention, the width of the spacer is determined by RIE (Reactive Ion E) rather than being determined according to the thickness of the LTO described above due to the selective etching property of the refractory metal.
tching).
【0024】次いで、図3の(d)に示すように、スペ
ーサが形成された領域以外に残存する第2の酸化層27
および多結晶シリコンゲートの上部にあるn+ 多結晶
シリコン層26をエッチングして除去し、n+ イオン
を注入して所定の逆T字形状ゲート電極のLDD型MO
S電界効果トランジスタが形成される。Next, as shown in FIG. 3(d), the second oxide layer 27 remaining in the area other than the area where the spacer is formed is removed.
Then, the n+ polycrystalline silicon layer 26 on the top of the polycrystalline silicon gate is etched and removed, and n+ ions are implanted to form an LDD type MO with a predetermined inverted T-shaped gate electrode.
An S field effect transistor is formed.
【0025】図3の(d)において、蝕刻処理により上
部に露出された金属層24は、以後に応用素子の製作の
際、シリシデーション(silicidation)さ
れる。In FIG. 3D, the upper portion of the metal layer 24 exposed through the etching process is subsequently subjected to silicidation during fabrication of applied devices.
【0026】本発明による逆T字形状ゲート電極のLD
D型MOS電界効果トランジスタは、図4に示すように
、CMOS工程においてNMOS電界効果トランジスタ
を製造するのに用いられることができる。すなわち、半
導体基板に素子分離のためのフィールド酸化膜28の間
に形成されるアクティブ領域であるP− ウェル29の
領域内に前記のような本発明の逆T字形状ゲート電極の
LDD型MOS電界効果トランジスタが形成される。こ
の素子は、隣接して形成されるPMOS電界効果トラン
ジスタと連結されてCMOSを形成することができ、さ
らに、応用に応じてはROM(Read Only M
emory)、RAM(Random Access
Memory)などの記憶装置ないしはMOS電界効果
トランジスタを用いる半導体記憶装置の応用にいずれも
適用される。LD with inverted T-shaped gate electrode according to the present invention
D-type MOS field effect transistors can be used to fabricate NMOS field effect transistors in a CMOS process, as shown in FIG. That is, the LDD type MOS electric field of the inverted T-shaped gate electrode of the present invention as described above is generated in the region of the P-well 29, which is an active region formed between the field oxide films 28 for element isolation on the semiconductor substrate. An effect transistor is formed. This element can be connected with a PMOS field effect transistor formed adjacently to form a CMOS, and furthermore, depending on the application, a ROM (Read Only M
memory), RAM (Random Access
The present invention is applicable to applications such as memory devices (Memory) or semiconductor memory devices using MOS field effect transistors.
【0027】[0027]
【発明の効果】以上から詳細に説明したように、本発明
は、初期工程で多結晶シリコンゲートのパターニングの
ためのマスクを一度だけ用いてn− およびn+ LD
Dが形成されるため、工程作業が容易で、工程モニタに
も適合している。さらに、LTOの厚さによりスペーサ
の厚さを調節しなければならない従来の方式に比べて、
RIEを用いて厚さの調節がさらに容易で、また、多結
晶シリコンゲートの構造内に望ましくない層が発生しな
く、ドレイン側の側方向最大電界の影響が最小化される
改善された逆T字形状ゲート電極のLDD型MOS電界
効果トランジスタが得られるようになる。As described above in detail, the present invention can form n- and n+ LDs by using a mask for patterning polycrystalline silicon gates only once in the initial process.
Since D is formed, process work is easy and it is suitable for process monitoring. Furthermore, compared to the conventional method in which the thickness of the spacer must be adjusted according to the thickness of the LTO,
Improved inverted T that is easier to tune the thickness using RIE, eliminates unwanted layers within the structure of the polysilicon gate, and minimizes the effects of maximum lateral electric field on the drain side. Thus, an LDD type MOS field effect transistor having a gate electrode shaped like a letter can be obtained.
【図1】従来の逆T字形状ゲート電極のLDD型MOS
電界効果トランジスタの製造工程の一例を順に示す図で
ある。[Figure 1] Conventional LDD type MOS with inverted T-shaped gate electrode
FIG. 1 is a diagram sequentially showing an example of a manufacturing process of a field effect transistor.
【図2】従来の逆T字形状ゲート電極のLDD型MOS
電界効果トランジスタの他の例を示す断面図である。[Figure 2] Conventional LDD type MOS with inverted T-shaped gate electrode
FIG. 3 is a cross-sectional view showing another example of a field effect transistor.
【図3】本発明による逆T字形状ゲート電極のLDD型
MOS電界効果トランジスタの製造工程を順に示す断面
図である。FIG. 3 is a cross-sectional view sequentially showing the manufacturing process of an LDD type MOS field effect transistor with an inverted T-shaped gate electrode according to the present invention.
【図4】本発明の適用実施例を示す断面図である。FIG. 4 is a sectional view showing an application example of the present invention.
21 半導体基板 22 第1のゲート酸化層 23 多結晶シリコン層 24 金属層 26 第2の多結晶シリコン層 27 低温酸化層 21 Semiconductor substrate 22 First gate oxide layer 23 Polycrystalline silicon layer 24 Metal layer 26 Second polycrystalline silicon layer 27 Low temperature oxidation layer
Claims (8)
多結晶シリコン層および金属層を順次に形成する工程と
、パターニングして多結晶シリコンゲートを形成した後
、低濃度ドレインおよびソース領域を形成するためにイ
オンを注入する工程と、第2の多結晶シリコン層と低温
酸化層を積層しパターニングして多結晶シリコンゲート
の側壁にスペーサを形成する工程と、残有する前記第2
の多結晶シリコン層を除去し高濃度のイオンを注入する
工程とからなることを特徴とする、逆T字形状ゲート電
極のLDD型MOS電界効果トランジスタの製造方法。1. A first gate oxide layer on a semiconductor substrate;
sequentially forming a polycrystalline silicon layer and a metal layer, patterning to form a polycrystalline silicon gate, and then implanting ions to form lightly doped drain and source regions; a step of stacking and patterning a silicon layer and a low-temperature oxide layer to form spacers on the sidewalls of the polycrystalline silicon gate;
1. A method for manufacturing an LDD type MOS field effect transistor with an inverted T-shaped gate electrode, comprising the steps of removing a polycrystalline silicon layer and implanting high concentration ions.
で形成することを特徴とする、請求項1に記載の逆T字
形状ゲートのLDD型MOS電界効果トランジスタの製
造方法。2. The method of manufacturing an LDD type MOS field effect transistor with an inverted T-shaped gate according to claim 1, wherein the metal layer is formed of a refractory metal such as Ti or W.
の内側にまで注入してドレインおよびソース領域を形成
することを特徴とする、請求項1に記載の逆T字形状ゲ
ートのLDD型MOS電界効果トランジスタの製造方法
。3. The LDD type MOS field effect with an inverted T-shaped gate according to claim 1, wherein the drain and source regions are formed by implanting low concentration ions to the inside of the polycrystalline silicon gate. Method of manufacturing transistors.
パターニング作業の際、第1のゲート酸化層が露出され
るまで行なうことを特徴とする、請求項1に記載の逆T
字形状ゲートのLDD型MOS電界効果トランジスタの
製造方法。4. The inverted T patterning according to claim 1, characterized in that the patterning operation for forming the polycrystalline silicon gate is performed until the first gate oxide layer is exposed.
A method for manufacturing an LDD type MOS field effect transistor with a shape gate.
a2 O5 であることを特徴とする、請求項1に記載
の逆T字形状ゲートのLDD型MOS電界効果トランジ
スタの製造方法。5. The spacer is made of a high dielectric constant insulator or T
The method for manufacturing an LDD type MOS field effect transistor with an inverted T-shaped gate according to claim 1, wherein the inverted T-shaped gate is a2O5.
てNMOS電界効果トランジスタの工程に含まれること
を特徴とする、請求項1に記載の逆T字形状ゲートのL
DD型MOS電界効果トランジスタの製造方法。6. L of the inverted T-shaped gate according to claim 1, characterized in that each step is included in a step of an NMOS field effect transistor in a CMOS process.
A method for manufacturing a DD type MOS field effect transistor.
ーサを有する逆T字形状の多結晶シリコンゲートと、こ
の多結晶シリコンゲートの下部内側にそれぞれ形成され
る低濃度イオンのドレインおよびソース領域と、前記多
結晶シリコンゲートの表面にシリシデーション(sil
icidation)される耐火金属層を備えることを
特徴とする、逆T字形状ゲートのLDD型MOS電界効
果トランジスタ。7. An inverted T-shaped polycrystalline silicon gate formed on a semiconductor substrate and having spacers on sidewalls, and a drain and source region for low concentration ions formed respectively inside the lower part of the polycrystalline silicon gate. , silicidation (silicidation) is applied to the surface of the polycrystalline silicon gate.
1. An LDD type MOS field effect transistor with an inverted T-shaped gate, characterized in that it is provided with a refractory metal layer subjected to oxidation.
NMOS電界効果トランジスタであることを特徴とする
、請求項7に記載の逆T字形状ゲートのLDD型MOS
電界効果トランジスタ。8. The inverted T-shaped gate LDD type MOS according to claim 7, wherein the manufactured device is an NMOS field effect transistor constituting a CMOS.
Field effect transistor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR3121 | 1991-02-26 | ||
KR910003121 | 1991-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04317339A true JPH04317339A (en) | 1992-11-09 |
Family
ID=19311519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4013009A Pending JPH04317339A (en) | 1991-02-26 | 1992-01-28 | Ldd type mos field effect transistor having inverted t-shaped gate and manufacture thereof |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPH04317339A (en) |
DE (1) | DE4143115A1 (en) |
FR (1) | FR2673326A1 (en) |
GB (1) | GB9127093D0 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012068928A1 (en) * | 2010-11-25 | 2012-05-31 | 北京大学 | Composite-source structure low-power consumption mos transistor and preparation method thereof |
US9543427B2 (en) | 2014-09-04 | 2017-01-10 | Panasonic Intellectual Property Management Co., Ltd. | Semiconductor device and method for fabricating the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0591598B1 (en) * | 1992-09-30 | 1998-12-02 | STMicroelectronics S.r.l. | Method of fabricating non-volatile memories, and non-volatile memory produced thereby |
US5568418A (en) * | 1992-09-30 | 1996-10-22 | Sgs-Thomson Microelectronics S.R.L. | Non-volatile memory in an integrated circuit |
EP0591599B1 (en) * | 1992-09-30 | 2001-12-19 | STMicroelectronics S.r.l. | Method of fabricating integrated devices, and integrated device produced thereby |
US7064027B2 (en) | 2003-11-13 | 2006-06-20 | International Business Machines Corporation | Method and structure to use an etch resistant liner on transistor gate structure to achieve high device performance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59205759A (en) * | 1983-04-01 | 1984-11-21 | Hitachi Ltd | Mis type field-effect transistor |
JPS63237566A (en) * | 1987-03-26 | 1988-10-04 | Oki Electric Ind Co Ltd | Manufacture of semiconductor device |
JPH01149449A (en) * | 1987-12-04 | 1989-06-12 | Fujitsu Ltd | Cmos semiconductor device and manufacture thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6032354A (en) * | 1983-08-02 | 1985-02-19 | Matsushita Electronics Corp | Semiconductor integrated circuit |
EP0355691A3 (en) * | 1988-08-23 | 1990-05-30 | Seiko Epson Corporation | Semiconductor device and process for producing the same |
US4951100A (en) * | 1989-07-03 | 1990-08-21 | Motorola, Inc. | Hot electron collector for a LDD transistor |
-
1991
- 1991-12-20 GB GB919127093A patent/GB9127093D0/en active Pending
- 1991-12-23 DE DE4143115A patent/DE4143115A1/en not_active Ceased
- 1991-12-27 FR FR9116243A patent/FR2673326A1/en active Pending
-
1992
- 1992-01-28 JP JP4013009A patent/JPH04317339A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59205759A (en) * | 1983-04-01 | 1984-11-21 | Hitachi Ltd | Mis type field-effect transistor |
JPS63237566A (en) * | 1987-03-26 | 1988-10-04 | Oki Electric Ind Co Ltd | Manufacture of semiconductor device |
JPH01149449A (en) * | 1987-12-04 | 1989-06-12 | Fujitsu Ltd | Cmos semiconductor device and manufacture thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012068928A1 (en) * | 2010-11-25 | 2012-05-31 | 北京大学 | Composite-source structure low-power consumption mos transistor and preparation method thereof |
US8710557B2 (en) | 2010-11-25 | 2014-04-29 | Peking University | MOS transistor having combined-source structure with low power consumption and method for fabricating the same |
US9543427B2 (en) | 2014-09-04 | 2017-01-10 | Panasonic Intellectual Property Management Co., Ltd. | Semiconductor device and method for fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
GB9127093D0 (en) | 1992-02-19 |
FR2673326A1 (en) | 1992-08-28 |
DE4143115A1 (en) | 1992-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4430669B2 (en) | Method of manufacturing a transistor having an asymmetric conductive spacer | |
US7585735B2 (en) | Asymmetric spacers and asymmetric source/drain extension layers | |
US6995437B1 (en) | Semiconductor device with core and periphery regions | |
US6159782A (en) | Fabrication of field effect transistors having dual gates with gate dielectrics of high dielectric constant | |
US7329913B2 (en) | Nonplanar transistors with metal gate electrodes | |
US6621114B1 (en) | MOS transistors with high-k dielectric gate insulator for reducing remote scattering | |
US7045401B2 (en) | Strained silicon finFET device | |
US7144780B2 (en) | Semiconductor device and its manufacturing method | |
US5460993A (en) | Method of making NMOS and PMOS LDD transistors utilizing thinned sidewall spacers | |
US5705439A (en) | Method to make an asymmetrical LDD structure for deep sub-micron MOSFETS | |
US20120045892A1 (en) | Method for fabricating semiconductor device | |
JPH04317339A (en) | Ldd type mos field effect transistor having inverted t-shaped gate and manufacture thereof | |
US5731240A (en) | Manufacturing method for semiconductor depositing device | |
US20050130432A1 (en) | Method for improving transistor leakage current uniformity | |
US20230014586A1 (en) | Horizontal gaa nano-wire and nano-slab transistors | |
US7820539B2 (en) | Method for separately optimizing spacer width for two transistor groups using a recess spacer etch (RSE) integration | |
US20080122016A1 (en) | Semiconductor device and fabricating method thereof | |
US7902021B2 (en) | Method for separately optimizing spacer width for two or more transistor classes using a recess spacer integration | |
JPH0147016B2 (en) | ||
JP4232396B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2855973B2 (en) | MOS type thin film transistor | |
JPH06163890A (en) | Manufacture of semiconductor device | |
JP2003258251A (en) | Semiconductor device and its manufacturing method | |
US7229885B2 (en) | Formation of a disposable spacer to post dope a gate conductor | |
JPH11284152A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19950314 |