JPH04314818A - Vacuum degassing apparatus and production of extremely low carbon steel using this apparatus - Google Patents

Vacuum degassing apparatus and production of extremely low carbon steel using this apparatus

Info

Publication number
JPH04314818A
JPH04314818A JP15613291A JP15613291A JPH04314818A JP H04314818 A JPH04314818 A JP H04314818A JP 15613291 A JP15613291 A JP 15613291A JP 15613291 A JP15613291 A JP 15613291A JP H04314818 A JPH04314818 A JP H04314818A
Authority
JP
Japan
Prior art keywords
vacuum degassing
pipe
molten steel
degassing tank
reflux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15613291A
Other languages
Japanese (ja)
Inventor
Seiichi Suetsugu
末次 精一
Shigeru Omiya
茂 大宮
Koichiro Hirata
耕一郎 平田
Kanji Aizawa
完二 相沢
Yoshihide Kato
嘉英 加藤
San Nakato
参 中戸
Katsuhiro Noguchi
野口 勝弘
Fumio Sudo
数土 文夫
Masato Mizufuji
水藤 政人
Tetsuya Fujii
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15613291A priority Critical patent/JPH04314818A/en
Publication of JPH04314818A publication Critical patent/JPH04314818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To improve vacuum degassing refining reaction by forming a bottom part horizontal cross sectional plane in a vacuum vessel containing an upper tube and a downtake tube for molten steel to the specific shape in a circulating type vacuum degassing apparatus. CONSTITUTION:In the bottom part horizontal cross sectional plane containing the uptake tube 4-1 and the downtake tube 4-2 for the molten steel 7 arranged at the bottom part of vacuum degassing vessel 2 in the vacuum degassing refining apparatus, by forming to elliptic shape so that value of a/b becomes 1.1-3.0 at the time of using a for distance in the direction of interval of the uptake tube 4-1 and the downtake tube 4-2 and b for distance in the right angle direction to the above and further, by forming the shape of circulating tubes for the molten steel so that ratio of a2/b2 becomes 1.1-3.0 at the time of using a2 for distance at the right angle to the direction of interval of the uptake tube and downtake tube and b2 for distance in the right angle direction to the above, the molten steel in the vacuum degassing vessel 2 is circulated between a ladle 1 and this vessel all around, and the vacuum degassing refining is efficiently executed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、取鍋溶鋼を還流させ
て真空脱ガスを行うにあたり、脱ガス反応効率を高める
ための真空脱ガス装置、ならびに、その装置を用いる極
低炭素鋼の溶製方法を提案しようとするものである。
[Industrial Application Field] The present invention relates to a vacuum degassing device for improving the efficiency of the degassing reaction when refluxing molten steel in a ladle, and a vacuum degassing device for molten ultra-low carbon steel using the device. This is an attempt to propose a manufacturing method.

【0002】近年、鋼の高級化などから真空脱ガス処理
により取鍋2次精錬を行う方法が広く普及してきており
、極低炭素鋼、高清浄鋼、低水素鋼などの、脱炭、脱酸
、脱水素処理などに用いられているが、より高品質の鋼
の溶製、効率化などのため、その脱ガス反応効率を高め
ることが望まれており、特に需要が増加してきている極
低炭素鋼の溶製においては、脱炭処理時間の短縮ととも
に到達炭素濃度の低減が望まれている。
[0002] In recent years, the method of performing secondary refining in a ladle using vacuum degassing treatment has become widespread due to the advancement of high-grade steel, and it is becoming increasingly popular for decarburization and decarbonization of ultra-low carbon steel, high purity steel, low hydrogen steel, etc. It is used in acid, dehydrogenation, etc., but it is desired to increase the degassing reaction efficiency in order to produce higher quality steel and improve efficiency. In the production of low carbon steel, it is desired to shorten the decarburization treatment time and reduce the achieved carbon concentration.

【0003】0003

【従来の技術】これまで、還流式真空脱ガス装置の真空
脱ガス槽において、その真空脱ガス槽底部の水平横断面
内面輪郭形状(以下、単に内面輪郭形状という)は円形
であり、このため、1対の還流管(上昇管と下降管)を
介して真空脱ガス槽と取鍋との間で溶鋼を還流する場合
、その還流経路を挟む真空脱ガス槽内で、溶鋼の流速分
布が不均一となりよどみを生じて真空脱ガス槽内での滞
留時間が長くなる部分が必然的にあらわれ、この部分で
は渦流を含んだ静かな流れとなること、およびこの部分
の溶鋼湯面上にはAl2O3 等を含むノロが浮遊停滞
しこれが脱ガス反応を阻害することなどから同一還流量
においても脱ガス反応速度が低下するばかりでなく、こ
の渦流を含むよどんだ溶鋼が抵抗となって還流速度を低
下させたり、ひいては、真空脱ガス槽内での滞留時間が
長くなることにより溶鋼温度が低下するなどの問題があ
って脱ガス反応効率を低下させていた。
[Prior Art] Until now, in the vacuum degassing tank of a reflux type vacuum degassing device, the horizontal cross-sectional inner contour shape of the bottom of the vacuum degassing tank (hereinafter simply referred to as the inner contour shape) has been circular; , when molten steel is refluxed between a vacuum degassing tank and a ladle via a pair of reflux pipes (rising pipe and downcomer pipe), the flow velocity distribution of molten steel is Inevitably, there will be areas where unevenness occurs, stagnation occurs, and the residence time in the vacuum degassing tank becomes longer. Slag containing Al2O3 etc. floats and stagnates, which inhibits the degassing reaction, so not only does the degassing reaction rate decrease even at the same reflux rate, but the stagnant molten steel containing this eddy current acts as a resistance and slows down the reflux rate. There is a problem that the temperature of molten steel decreases due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to a decrease in the temperature of the molten steel due to an increase in the residence time in the vacuum degassing tank.

【0004】この脱ガス反応効率を向上させる方法とし
て、例えば、特開平2−247315号公報及び特開平
2−247317号公報に、円形の内面輪郭形状を有す
る真空脱ガス槽で、その底部の径を大きくし、真空脱ガ
ス槽における溶鋼の反応面積を広くする真空脱ガス槽及
び真空脱ガス装置が開示されている。しかしながら、こ
れらの開示例は、いずれも真空脱ガス槽底部の内面輪郭
形状が円形であることから、上記問題を解決するもので
はなく、逆にその径を大きくすることにより、溶鋼の流
速分布はより不均一化しよどみ部分の面積も大きくなり
、上記問題をさらに助長するものとなっていた。
As a method for improving the degassing reaction efficiency, for example, Japanese Patent Laid-Open No. 2-247315 and No. 2-247317 disclose that a vacuum degassing tank having a circular inner contour shape is used, and the diameter of the bottom of the vacuum degassing tank is A vacuum degassing tank and a vacuum degassing device have been disclosed which increase the reaction area of molten steel in the vacuum degassing tank. However, these disclosed examples do not solve the above problem because the inner contour shape of the bottom of the vacuum degassing tank is circular, and on the contrary, by increasing the diameter, the flow velocity distribution of molten steel is The area of the stagnation portion became more uneven and the area of the stagnation portion became larger, further aggravating the above problem.

【0005】さらに、市村、古垣、平岡、延本、赤松、
三村、橋本、鉄と鋼、’84 −S977P. 255
 (1984) には、還流用ガスの大流量化と浸漬管
(還流管)の断面積の拡大により脱炭反応速度を促進さ
せる高速脱炭処理技術が開示されている。そしてこの場
合、楕円タイプの浸漬管を用いることにより、その断面
積の拡大をはかっている。しかしながら、この開示例に
おいても、前記した真空槽内の溶鋼のよどみに関して何
ら示唆するものがなく、したがって、この溶鋼のよどみ
による脱炭反応の阻害要因を解消するものにはなってい
ない。
Furthermore, Ichimura, Furugaki, Hiraoka, Nobemoto, Akamatsu,
Mimura, Hashimoto, Tetsu to Hagane, '84-S977P. 255
(1984) discloses a high-speed decarburization treatment technology that accelerates the decarburization reaction rate by increasing the flow rate of reflux gas and expanding the cross-sectional area of the immersion tube (reflux tube). In this case, an elliptical type immersion tube is used to increase its cross-sectional area. However, even in this disclosed example, there is nothing to suggest about the stagnation of the molten steel in the vacuum chamber, and therefore it does not eliminate the factor that inhibits the decarburization reaction due to the stagnation of the molten steel.

【0006】[0006]

【発明が解決しようとする課題】この発明は、前記問題
を有利に解決し、脱ガス反応効率を高めるために好適な
形状を有する真空脱ガス装置を提案するとともに、その
装置を用いる極低炭素鋼の溶製方法を提案することを目
的とする。
[Problems to be Solved by the Invention] This invention proposes a vacuum degassing device having a suitable shape in order to advantageously solve the above-mentioned problems and increase the degassing reaction efficiency, and also aims to provide ultra-low carbon gas using the device. The purpose is to propose a method for melting steel.

【0007】[0007]

【課題を解決するための手段】この発明は、還流する溶
鋼が、真空脱ガス槽内において流速分布が不均一となっ
てその位置により溶鋼のよどみが生じ、この溶鋼のよど
みの発生が脱ガス反応効率を低下させていることに着目
し、溶鋼の流速分布の均一化をはかってよどみ部分を排
除し脱ガス反応効率の向上をはかろうとするものである
[Means for Solving the Problems] This invention provides that the flow velocity distribution of refluxing molten steel becomes non-uniform in a vacuum degassing tank, and stagnation of the molten steel occurs depending on the position. Focusing on the fact that the reaction efficiency is being reduced, the aim is to improve the degassing reaction efficiency by making the flow velocity distribution of molten steel uniform and eliminating stagnation areas.

【0008】すなわち、その要旨は、還流管として上昇
管と下降管とを備えた真空脱ガス槽を有する溶鋼の還流
式真空脱ガス装置であって、真空脱ガス槽の少なくとも
底部における該真空脱ガス槽の水平横断面の内面輪郭形
状が、上昇管と下降管の間隔の向きに細長い閉じた曲線
より成る真空脱ガス装置(第1発明)であり、
That is, the gist is a reflux-type vacuum degassing apparatus for molten steel having a vacuum degassing tank equipped with a riser pipe and a downcomer pipe as reflux pipes, the vacuum degassing equipment being provided at least at the bottom of the vacuum degassing tank. A vacuum degassing device (first invention) in which the inner contour shape of the horizontal cross section of the gas tank is an elongated closed curve in the direction of the interval between the ascending pipe and the descending pipe,

【000
9】第1発明における真空脱ガス槽底部の細長い閉じた
曲線より成る水平横断面の内面輪郭形状が、縦横比1.
1 から3.0 の範囲である真空脱ガス装置(第2発
明)であり、
000
9] In the first invention, the inner contour shape of the horizontal cross section consisting of a long and narrow closed curve at the bottom of the vacuum degassing tank has an aspect ratio of 1.
1 to 3.0 (second invention),

【0010】第1発明又は第2発明における上昇管及び
下降管のそれぞれの水平横断面内面輪郭形状が、上昇管
と下降管の間隔の向きに直交して細長い閉じた曲線より
成る真空脱ガス装置(第3発明)であり、
[0010] The vacuum degassing device according to the first invention or the second invention, wherein the horizontal cross-sectional inner surface contour shape of each of the rising pipe and the downcomer pipe is an elongated closed curve orthogonal to the direction of the interval between the rising pipe and the downcomer pipe. (Third invention),

【0011】
還流管として上昇管と下降管とを備えた真空脱ガス槽を
有し、この真空脱ガス槽の少なくとも底部における該真
空脱ガス槽の水平横断面内面輪郭形状が、上昇管と下降
管の間隔の向きに細長い閉じた曲線より成る真空脱ガス
装置を用い、上昇管に還流ガスを吹き込んで溶鋼を真空
脱ガス槽内に還流させることによって、上昇管から下降
管に向う真空脱ガス槽内の溶鋼の流速分布を均一化する
極低炭素鋼の溶製方法(第4発明)である。
[0011]
It has a vacuum degassing tank equipped with a rising pipe and a downcomer pipe as a reflux pipe, and the shape of the horizontal cross-sectional inner surface of the vacuum degassing tank at least at the bottom of the vacuum degassing tank is such that the interval between the rising pipe and the downcomer pipe is Using a vacuum degassing device consisting of a long and narrow closed curve in the direction of This is a method for producing ultra-low carbon steel (fourth invention) that makes the flow velocity distribution of molten steel uniform.

【0012】ここに、内面輪郭形状の細長い閉じた曲線
というのは、楕円を含む長円及びこれに類する曲線図形
をいうものとし、この細長い閉じた曲線より成る内面輪
郭形状の縦横比とは、真空脱ガス槽底部の場合には、上
昇管と下降管の間隔の向きの差し渡し長さをa、これに
直角の向きの差し渡し長さをbとしたときのa/bをい
い、上昇管及び下降管の場合には、上昇管と下降管の間
隔の向きに直交する差し渡し長さをa2 、これに直角
の向きの差し渡し長さをb2 としたときのa2 /b
2 をいうものとする。そして、真空脱ガス槽の細長い
閉じた曲線より成る内面輪郭形状の縦横比は、1.1 
未満では実質的に円形の場合とほとんど変らなく、溶鋼
のよどみ部分を減少する効果がなく、逆に3.0 を超
えると還流管や取鍋寸法との取り合いなど設備上の問題
があって実用的でない。したがって、その縦横比は1.
1 から3.0 の範囲とするが、好ましくは1.2 
から2.0の範囲が望ましい。
[0012] Here, the elongated closed curve of the inner surface contour shape refers to an ellipse including an ellipse and similar curved shapes, and the aspect ratio of the inner surface contour shape consisting of this elongated closed curve is: In the case of the bottom of the vacuum degassing tank, a/b is defined as a/b, where a is the length across the gap between the riser pipe and the downfall pipe, and b is the span length in the direction perpendicular to this. In the case of a downcomer pipe, a2 /b where the length perpendicular to the direction of the spacing between the riser pipe and the downcomer pipe is a2, and the length perpendicular to this is b2.
2. The aspect ratio of the inner contour shape of the vacuum degassing tank consisting of a long and narrow closed curve is 1.1.
If it is less than 3.0, it is virtually the same as a circular shape, and there is no effect in reducing the stagnation area of molten steel.On the other hand, if it exceeds 3.0, there will be equipment problems such as conflicts with the reflux pipe and ladle dimensions, making it impractical. Not on point. Therefore, its aspect ratio is 1.
1 to 3.0, preferably 1.2
A range of 2.0 to 2.0 is desirable.

【0013】また、還流管(上昇管及び下降管)の細長
い閉じた曲線より成る内面輪郭形状の縦横比は、特に限
定するものではないが、実用機としての最高は4.5 
程度である。なお、上昇管と下降管の間隔の向きに直交
する長さa2 は、設備制約上許される限り大きくして
もよい。
[0013]Although the aspect ratio of the inner contour shape of the return pipe (rising pipe and descending pipe) consisting of a long and narrow closed curve is not particularly limited, the maximum for a practical machine is 4.5.
That's about it. Note that the length a2 perpendicular to the direction of the interval between the rising pipe and the downcomer pipe may be made as large as permitted by equipment constraints.

【0014】[0014]

【作用】この発明の最大の特徴は、真空脱ガス槽底部の
内面輪郭形状を、上昇管と下降管の間隔の向きに細長い
閉じた曲線とすることにあり、さらには、上昇管と下降
管の内面輪郭形状を上昇管と下降管の間隔の向きに直角
方向に細長い閉じた曲線とすることにある。
[Operation] The greatest feature of this invention is that the inner contour shape of the bottom of the vacuum degassing tank is an elongated closed curve in the direction of the gap between the rising pipe and the downcomer pipe. The inner surface contour shape is a closed curve elongated in a direction perpendicular to the direction of the interval between the ascending pipe and the descending pipe.

【0015】かくすることにより、真空脱ガス槽内の溶
鋼の流速分布は均一化してよどみ部は減少する。したが
って、脱ガス反応を阻害する溶鋼湯面上に浮上するノロ
も減少し、さらには、還流速度の向上、溶鋼温度の低下
が防止できるなるなど、脱ガス反応効率を向上させるこ
とができる。
[0015] By doing so, the flow velocity distribution of the molten steel in the vacuum degassing tank is made uniform and the stagnation portion is reduced. Therefore, the amount of slag floating on the molten steel surface that inhibits the degassing reaction is reduced, and furthermore, the degassing reaction efficiency can be improved, such as by increasing the reflux rate and preventing a drop in the molten steel temperature.

【0016】さらに、これらに加えて脱ガス反応効率を
より向上するために、上昇管と下降管の間隔を広げて脱
ガス反応界面積を拡大することもできる。すなわち、真
空脱ガス槽底部の内面輪郭形状が、従来から用いられて
いる円形の場合、脱ガス反応効率を向上させるために、
単にその円形断面積を拡大したり、上昇管と下降管の間
隔を広げて、脱ガス反応界面積を拡大しようとすること
は、溶鋼のよどみ部分の増大、これにともなう還流速度
の低下、溶鋼温度の低下などにより、逆に脱ガス反応効
率を低下させることから制約を受けていたが、この発明
のように真空脱ガス槽底部の内面輪郭形状を上昇管と下
降管の向きに細長い閉じた曲線とすることにより、溶鋼
のよどみ部分が減少し、これにともなう上記の問題が生
じないため、何ら弊害をともなうことなく、上昇管と下
降管の間隔を広げて、脱ガス反応界面積を拡大すること
ができる。
Furthermore, in addition to these, in order to further improve the degassing reaction efficiency, the degassing reaction interfacial area can be expanded by widening the interval between the rising pipe and the downcomer pipe. In other words, when the inner contour shape of the bottom of the vacuum degassing tank is circular, which has been conventionally used, in order to improve the degassing reaction efficiency,
Attempting to expand the degassing reaction interface area by simply enlarging the circular cross-sectional area or by widening the interval between the rising pipe and the descending pipe will increase the stagnation area of the molten steel, reduce the reflux rate, and increase the molten steel. However, in this invention, the inner contour shape of the bottom of the vacuum degassing tank is elongated and closed in the direction of the ascending pipe and the descending pipe. By forming a curve, the stagnation area of molten steel is reduced and the above-mentioned problems associated with this do not occur, so the gap between the rising pipe and the descending pipe can be widened and the degassing reaction interfacial area can be expanded without any adverse effects. can do.

【0017】さらに、上昇管と下降管の内面輪郭形状を
上昇管と下降管の間隔の向きに直交する細長い閉じた曲
線とすることにより、上記の効果はさらに助長される。
Furthermore, the above effect is further enhanced by forming the inner contours of the rising pipe and the downcomer pipe into elongated closed curves perpendicular to the direction of the spacing between the rising pipe and the downcomer pipe.

【0018】[0018]

【実施例】まず装置について説明する。一例として、真
空脱ガス槽及び取鍋の縦断面図を図1に示す。図1にお
いて、1は取鍋、2は真空脱ガス槽である。この真空脱
ガス槽2において、3は真空脱ガス槽底部であり、その
底には還流管4−1(上昇管)及び4−2(下降管)が
取付けられている。また、上部には監視窓5があり、6
は真空ポンプ(図示省略)に接続する排気口である。取
鍋1内の溶鋼7は、上昇管4−1に設けたガス吹込口(
図示省略)から還流ガスを吹き込むことにより、排気口
6に接続する真空ポンプで減圧している真空脱ガス槽2
に、上昇管4−1を介して矢印8の方向に吸上げられる
。これはエアリフトポンプの原理によるものである。 真空脱ガス槽底部3に入った溶鋼7は脱ガスされながら
真空脱ガス槽の中を移動し、下降管4−2を介して矢印
9の方向に下降して取鍋1に戻る。このように溶鋼7は
、還流管4−1及び4−2を介して取鍋1と真空脱ガス
槽底部3の間を連続的に循環する。
[Embodiment] First, the apparatus will be explained. As an example, a vertical cross-sectional view of a vacuum degassing tank and a ladle is shown in FIG. In FIG. 1, 1 is a ladle and 2 is a vacuum degassing tank. In this vacuum degassing tank 2, 3 is the bottom of the vacuum degassing tank, and reflux pipes 4-1 (ascending pipe) and 4-2 (descending pipe) are attached to the bottom. In addition, there is a monitoring window 5 at the top, 6
is an exhaust port connected to a vacuum pump (not shown). The molten steel 7 in the ladle 1 flows through the gas inlet (
Vacuum degassing tank 2 whose pressure is reduced by a vacuum pump connected to the exhaust port 6 by blowing reflux gas from
Then, it is sucked up in the direction of arrow 8 via the rising pipe 4-1. This is based on the principle of an air lift pump. The molten steel 7 that has entered the vacuum degassing tank bottom 3 moves through the vacuum degassing tank while being degassed, descends in the direction of the arrow 9 via the downcomer pipe 4-2, and returns to the ladle 1. In this way, the molten steel 7 continuously circulates between the ladle 1 and the vacuum degassing tank bottom 3 via the reflux pipes 4-1 and 4-2.

【0019】そして、この発明においては、上記真空脱
ガス槽底部3の内面輪郭形状を、上昇管4−1と下降管
4−2の間隔の向きに細長い閉じた曲線とするものであ
り、さらには上昇管4−1及び下降管4−2の内面輪郭
形状を、上昇管4−1と下降管4−2の間隔の向きに直
交して細長い閉じた曲線とするものである。
In the present invention, the inner contour shape of the vacuum degassing tank bottom 3 is an elongated closed curve in the direction of the interval between the ascending pipe 4-1 and the descending pipe 4-2; The inner contour shape of the ascending pipe 4-1 and the descending pipe 4-2 is an elongated closed curve orthogonal to the direction of the interval between the rising pipe 4-1 and the descending pipe 4-2.

【0020】つぎに、これらについてさらに説明を加え
る。図2,3及び4に、従来例とこの発明の適合例の真
空脱ガス槽底部の横断面図を示す。
[0020] Next, these will be further explained. 2, 3, and 4 show cross-sectional views of the bottom of the vacuum degassing tank of a conventional example and an example adapted to the present invention.

【0021】図2は、真空脱ガス槽底部3の内面輪郭形
状が円形で、還流管4の内面輪郭形状も円形の従来例を
示す横断面図で、この場合A及びBの斜線部分に溶鋼の
よどみ部分が生じる。
FIG. 2 is a cross-sectional view showing a conventional example in which the inner contour of the vacuum degassing tank bottom 3 is circular and the inner contour of the reflux pipe 4 is also circular. A stagnation part occurs.

【0022】これに対し、図3は、真空脱ガス槽底部3
の内面輪郭形状を長円形とし、還流管4の内面輪郭形状
を円形としたこの発明の適合例を示す横断面図で、この
ように、真空脱ガス槽3の内面輪郭形状を長円形とする
ことにより、溶鋼のよどみの発生が防止できる。
On the other hand, FIG. 3 shows the bottom part 3 of the vacuum degassing tank.
This is a cross-sectional view showing an example of adapting the present invention in which the inner contour shape of the vacuum degassing tank 3 is oval and the inner contour shape of the reflux pipe 4 is circular. This can prevent stagnation of molten steel.

【0023】また、図4は、真空脱ガス槽底部3の内面
輪郭形状を長円形とし、還流管4の内面輪郭形状も長円
形としたこの発明の適合例を示す横断面図で、上記図3
の場合と同様に溶鋼のよどみの発生が防止できる。
FIG. 4 is a cross-sectional view showing an example of adapting the present invention in which the inner contour shape of the vacuum degassing tank bottom 3 is oval and the inner contour shape of the reflux pipe 4 is also oval. 3
As in the case of , stagnation of molten steel can be prevented.

【0024】このように、この発明によれば、脱ガス反
応の阻害要因となる還流溶鋼の真空脱ガス槽底部におけ
る流速分布が均一化されてよどみの発生が防止でき、脱
ガス反応効率を向上させることができる。
As described above, according to the present invention, the flow velocity distribution of the refluxed molten steel at the bottom of the vacuum degassing tank, which is a factor inhibiting the degassing reaction, is made uniform, and the occurrence of stagnation can be prevented, thereby improving the degassing reaction efficiency. can be done.

【0025】なお、上昇管4−1及び下降管4−2の取
付け位置は、真空脱ガス槽底部3のそれぞれ上昇管と下
降管の間隔の向きの両端部内面に近づける(図3におい
てCを小さくする)ことが好ましく、図3に示すCは実
用的に支障のない範囲として200 mmから500 
mmが適当であり、かくすることにより、上昇管4−1
と下降管4−2との間隔も大きくとれ、弊害をともなう
ことなく脱ガス反応界面積を拡大できるばかりでなく、
真空脱ガス槽底部3の上記両端部において必然的に生じ
る溶鋼のよどみに対しても有利となる。
The mounting positions of the ascending pipe 4-1 and the descending pipe 4-2 are close to the inner surfaces of both ends of the vacuum degassing tank bottom 3 in the direction of the distance between the ascending pipe and the descending pipe (C in FIG. 3). C shown in Fig. 3 is within a range of 200 mm to 500 mm without any practical problems.
mm is appropriate, and by doing so, the riser pipe 4-1
The space between the degassing tube 4-2 and the downcomer pipe 4-2 can be made large, which not only allows the degassing reaction interface area to be expanded without causing any adverse effects.
This is also advantageous against the stagnation of molten steel that inevitably occurs at both ends of the bottom 3 of the vacuum degassing tank.

【0026】つぎに、従来の真空脱ガス装置及びこの発
明に適合する真空脱ガス装置を用いた場合の溶鋼の還流
量、脱炭量の調査結果について以下に述べる。
[0026] Next, the results of investigation on the amount of reflux and amount of decarburization of molten steel when using a conventional vacuum degassing device and a vacuum degassing device adapted to the present invention will be described below.

【0027】ここに、この調査に用いた装置の諸元、溶
鋼の成分組成などを以下に列記する。 ○  真空脱ガス装置 RH真空脱ガス装置 ○  真空脱ガス槽底部内面輪郭形状 ・従来例  形状:円形、直径:3.2 m・適合例 
 形状:長円形、横(図3のa): 3.4 m、縦(
図3のb): 3.0m、縦横比a/b= 1.13○
  還流管内面輪郭形状 ・形状1:円形、直径:0.6 m、断面積:0.28
2 m2・形状2:円形、直径:1.0 m、断面積:
0.785 m2・形状3:長円形、横(図4のa2 
): 1.2 m、縦(図4のb2 ): 0.8 m
(縦横比a2 /b2 = 1.5)、断面積:0.8
2  m2  ○  真空脱ガス槽と還流管との組合せ、及び、還流管
(上昇管と下降管)同志の中心間距離 ・ケース1:従来例の真空脱ガス槽に形状1の還流管を
用いた場合、還流管中心間距離:1.35m・ケース2
:適合例の真空脱ガス槽に形状1の還流管を用いた場合
、還流管中心間距離:1.70m・ケース3:適合例の
真空脱ガス槽に形状2の還流管を用いた場合、還流管中
心間距離:1.70m・ケース4:適合例の真空脱ガス
槽に形状3の還流管を用いた場合、還流管中心間距離:
1.95m○  溶鋼量 300 t(転炉で溶製) ○  溶鋼温度 1590〜1610℃ ○  溶鋼の初期成分組成 C:0.03〜0.05 wt %、Mn : 0.1
 〜0.2 wt%、P:0.025 〜0.030 
wt%、 S:0.003 〜0.005 wt%、O:0.06
〜0.07 wt %○  真空脱ガスにおける到達真
空度 0.3 〜 0.5 Torr
The specifications of the equipment used in this investigation, the composition of the molten steel, etc. are listed below. ○ Vacuum degassing device RH vacuum degassing device ○ Vacuum degassing tank bottom inner contour shape/conventional example Shape: circular, diameter: 3.2 m/compatible example
Shape: Oval, width (a in Figure 3): 3.4 m, length (
Figure 3 b): 3.0m, aspect ratio a/b = 1.13○
Reflux pipe inner contour shape/shape 1: circular, diameter: 0.6 m, cross-sectional area: 0.28
2 m2, shape 2: circular, diameter: 1.0 m, cross-sectional area:
0.785 m2・Shape 3: Oval, horizontal (a2 in Figure 4
): 1.2 m, vertical (b2 in Figure 4): 0.8 m
(Aspect ratio a2/b2 = 1.5), cross-sectional area: 0.8
2 m2 ○ Combination of vacuum degassing tank and reflux pipe, and distance between centers of reflux pipes (rising pipe and descending pipe) Case 1: Using a reflux pipe of shape 1 in a conventional vacuum degassing tank Case 2: Distance between reflux tube centers: 1.35m/Case 2
: When a reflux tube of shape 1 is used in the vacuum degassing tank of the compatible example, the distance between the centers of the reflux tubes: 1.70 m・Case 3: When the reflux tube of shape 2 is used in the vacuum degassing tank of the compatible example, Distance between reflux tube centers: 1.70 m Case 4: When a reflux tube of shape 3 is used in the vacuum degassing tank of the compatible example, the distance between reflux tube centers:
1.95m○ Amount of molten steel 300t (melted in a converter) ○ Molten steel temperature 1590-1610℃ ○ Initial composition of molten steel C: 0.03-0.05 wt%, Mn: 0.1
~0.2 wt%, P:0.025 ~0.030
wt%, S: 0.003 ~ 0.005 wt%, O: 0.06
~0.07 wt %○ Ultimate vacuum degree in vacuum degassing 0.3 ~ 0.5 Torr

【0028】■  還流量の調査結果従来例の真空脱ガ
ス槽と形状1の還流管を用いたケース1と、適合例の真
空脱ガス槽と形状1の還流管を用いたケース2の装置を
用いて、還流ガス量と溶鋼の還流量の関係を調査した。 これらの調査結果を図5にまとめて示す。
■Results of reflux amount investigation Case 1 using a conventional vacuum degassing tank and a reflux pipe of shape 1, and case 2 using a compatible vacuum degassing tank and a reflux pipe of shape 1. The relationship between the amount of refluxed gas and the amount of molten steel refluxed was investigated. These survey results are summarized in Figure 5.

【0029】この図から明らかなように、ケース2のこ
の発明に適合する真空脱ガス槽を用いた場合には還流管
径が同じであるにもかかわらずその効果は顕著で、ケー
ス1の従来の真空脱ガス槽を用いた場合にくらべ、溶鋼
の還流量は40〜50%増加している。
As is clear from this figure, when the vacuum degassing tank conforming to the present invention in case 2 is used, the effect is remarkable even though the diameter of the reflux tube is the same; Compared to the case of using a vacuum degassing tank, the amount of molten steel returned is increased by 40 to 50%.

【0030】■  脱炭量の調査結果 従来の真空脱ガス槽を用いたケース1と、この発明に適
合する真空脱ガス槽を用いたケース2,3及び4の装置
で、20分間の脱ガスによる脱炭処理を行い溶鋼Cを測
定した。これらの測定結果を図6にまとめて示す。
■Results of investigation on amount of decarburization Degassing was performed for 20 minutes using case 1 using a conventional vacuum degassing tank and cases 2, 3, and 4 using a vacuum degassing tank compatible with the present invention. The molten steel C was measured after decarburization treatment. These measurement results are summarized in FIG. 6.

【0031】図6は、脱炭時間と溶鋼Cの関係を示すも
ので、この図から明らかなように、従来の真空脱ガス槽
を用いたケース1の場合には、溶鋼Cが300 〜 5
00 wt ppmから20分間の脱炭処理により15
〜20 wt ppm に低下しているが、この発明に
適合する真空脱ガス槽を用いた場合は、その低下量は大
きく、ケース1と同径の還流管径を用いたケース2の場
合8〜12 wt ppm 、ケース3の場合5〜9w
t ppm 、さらに長円形の還流管を用いたケース4
の場合4〜8 wt ppm と大きく低下している。
FIG. 6 shows the relationship between decarburization time and molten steel C. As is clear from this figure, in case 1 using a conventional vacuum degassing tank, molten steel C is 300 to 5.
00 wt ppm to 15 by decarburization for 20 minutes.
However, when a vacuum degassing tank conforming to the present invention is used, the decrease is large, and in Case 2, which uses the same reflux pipe diameter as Case 1, it is 8 to 20 wt ppm. 12 wt ppm, 5-9w for case 3
t ppm, and case 4 using an oval reflux tube.
In the case of 4 to 8 wt ppm, it is greatly reduced.

【0032】これらの結果は、この発明に適合する真空
脱ガス装置を用いることにより、脱ガス反応効率が大幅
に向上することを示すとともに到達炭素濃度の低減がは
かれるものであり、この真空脱ガス装置は、特に極低炭
素鋼の溶製に用いて非常に有効であることを示している
These results show that by using the vacuum degassing device compatible with the present invention, the degassing reaction efficiency is greatly improved and the carbon concentration achieved can be reduced. The device has shown to be very effective, especially in the production of ultra-low carbon steel.

【0033】[0033]

【発明の効果】この発明は、還流式真空脱ガス装置の真
空脱ガス槽底部の内面輪郭形状を還流管の間隔の向きに
細長い閉じた曲線とすることを最大の特徴とするもので
あり、この発明装置を用いることにより、溶鋼の還流速
度が向上し、脱ガス反応効率、すなわち、脱炭、脱酸、
脱水素などの効率が向上する。そして、この発明装置を
用いて脱炭処理を行うことにより、極低炭素鋼が短時間
でかつ容易に溶製することができる。また、この発明装
置は、極低炭素鋼のみならず、高清浄鋼、低水素鋼など
の溶製に有利に用いることができる。
[Effects of the Invention] The main feature of the present invention is that the inner contour shape of the bottom of the vacuum degassing tank of the reflux type vacuum degassing device is an elongated closed curve in the direction of the spacing between the reflux tubes. By using this inventive device, the reflux rate of molten steel is improved, and the degassing reaction efficiency is improved, i.e., decarburization, deoxidation,
Efficiency of dehydrogenation etc. is improved. By performing decarburization using the device of the present invention, ultra-low carbon steel can be easily produced in a short time. Further, the apparatus of the present invention can be advantageously used for melting not only ultra-low carbon steel but also high-purity steel, low-hydrogen steel, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】真空脱ガス槽及び取鍋の縦断面図である。FIG. 1 is a longitudinal sectional view of a vacuum degassing tank and a ladle.

【図2】還流管の内面輪郭形状が円形の従来の真空脱ガ
ス槽底部の横断面図である。
FIG. 2 is a cross-sectional view of the bottom of a conventional vacuum degassing tank in which the internal contour of the reflux pipe is circular.

【図3】還流管の内面輪郭形状が円形のこの発明の真空
脱ガス槽底部の横断面図である。
FIG. 3 is a cross-sectional view of the bottom of the vacuum degassing tank of the present invention, in which the inner contour of the reflux pipe is circular.

【図4】還流管の内面輪郭形状が長円形のこの発明の真
空脱ガス槽底部の横断面図である。
FIG. 4 is a cross-sectional view of the bottom of the vacuum degassing tank of the present invention, in which the internal contour of the reflux pipe is oval.

【図5】RH真空脱ガスにおける還流ガス量と溶鋼の還
流量の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the amount of refluxed gas and the amount of molten steel refluxed in RH vacuum degassing.

【図6】RH真空脱ガスにおける脱炭時間と溶鋼Cとの
関係を示すグラフである。
FIG. 6 is a graph showing the relationship between decarburization time and molten steel C in RH vacuum degassing.

【符号の説明】[Explanation of symbols]

1  取鍋 2  真空脱ガス槽 3  真空脱ガス槽底部 4  還流管 4−1  還流管(上昇管) 4−2  還流管(下降管) 5  監視窓 6  排気口 7  溶鋼 1 Ladle 2 Vacuum degassing tank 3 Bottom of vacuum degassing tank 4 Reflux tube 4-1 Reflux pipe (rising pipe) 4-2 Reflux pipe (downcomer pipe) 5. Monitoring window 6 Exhaust port 7 Molten steel

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  還流管として上昇管と下降管とを備え
た真空脱ガス槽を有する溶鋼の還流式真空脱ガス装置で
あって、真空脱ガス槽の少なくとも底部における該真空
脱ガス槽の水平横断面の内面輪郭形状が、上昇管と下降
管の間隔の向きに細長い閉じた曲線より成ることを特徴
とする真空脱ガス装置。
1. A reflux type vacuum degassing apparatus for molten steel having a vacuum degassing tank having a riser pipe and a downcomer pipe as reflux pipes, the vacuum degassing tank being horizontal at least at the bottom of the vacuum degassing tank. A vacuum degassing device characterized in that the inner contour shape of the cross section consists of an elongated closed curve in the direction of the interval between the ascending pipe and the descending pipe.
【請求項2】  真空脱ガス槽底部の細長い閉じた曲線
より成る水平横断面内面輪郭形状が、縦横比1.1 か
ら3.0 の範囲である請求項1記載の真空脱ガス装置
2. The vacuum degassing apparatus according to claim 1, wherein the horizontal cross-sectional inner surface contour of the bottom of the vacuum degassing tank, which is an elongated closed curve, has an aspect ratio in the range of 1.1 to 3.0.
【請求項3】  上昇管及び下降管のそれぞれの水平横
断面内面輪郭形状が、上昇管と下降管の間隔の向きに直
交して細長い閉じた曲線より成る請求項1又は2記載の
真空脱ガス装置。
3. The vacuum degassing according to claim 1 or 2, wherein the horizontal cross-sectional inner surface contour shape of each of the rising pipe and the downcomer pipe is an elongated closed curve orthogonal to the direction of the spacing between the rising pipe and the downcomer pipe. Device.
【請求項4】  還流管として上昇管と下降管とを備え
た真空脱ガス槽を有し、この真空脱ガス槽の少なくとも
底部における該真空脱ガス槽の水平横断面内面輪郭形状
が、上昇管と下降管の間隔の向きに細長い閉じた曲線よ
り成る真空脱ガス装置を用い、上昇管に還流ガスを吹き
込んで溶鋼を真空脱ガス槽内に還流させることによって
、上昇管から下降管に向う真空脱ガス槽内の溶鋼の流速
分布を均一化することを特徴とする極低炭素鋼の溶製方
法。
4. A vacuum degassing tank equipped with a riser pipe and a downcomer pipe as a reflux pipe, wherein the shape of the horizontal cross-sectional inner surface of the vacuum degassing tank at least at the bottom of the vacuum degassing tank is the same as that of the riser pipe. Using a vacuum degassing device consisting of an elongated closed curve in the direction of the gap between the riser and the downcomer, reflux gas is blown into the riser to cause the molten steel to flow back into the vacuum degassing tank, thereby creating a vacuum from the riser to the downcomer. A method for producing ultra-low carbon steel characterized by uniformizing the flow velocity distribution of molten steel in a degassing tank.
JP15613291A 1991-02-20 1991-05-31 Vacuum degassing apparatus and production of extremely low carbon steel using this apparatus Pending JPH04314818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15613291A JPH04314818A (en) 1991-02-20 1991-05-31 Vacuum degassing apparatus and production of extremely low carbon steel using this apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-45548 1991-02-20
JP4554891 1991-02-20
JP15613291A JPH04314818A (en) 1991-02-20 1991-05-31 Vacuum degassing apparatus and production of extremely low carbon steel using this apparatus

Publications (1)

Publication Number Publication Date
JPH04314818A true JPH04314818A (en) 1992-11-06

Family

ID=26385559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15613291A Pending JPH04314818A (en) 1991-02-20 1991-05-31 Vacuum degassing apparatus and production of extremely low carbon steel using this apparatus

Country Status (1)

Country Link
JP (1) JPH04314818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430749A (en) * 2011-12-31 2012-05-02 大冶特殊钢股份有限公司 Elliptical steel ladle and manufacturing method thereof
CN106521098A (en) * 2016-10-21 2017-03-22 北京科技大学 Vacuum tank device in RH refining device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735565U (en) * 1980-08-07 1982-02-24
JPS626611A (en) * 1985-07-02 1987-01-13 富永 保人 Culture of mushroom parasitic on organism
JPH03226516A (en) * 1990-01-31 1991-10-07 Kawasaki Steel Corp Vacuum degassing device for production extra-low carbon steel and operating method thereof
JPH04272120A (en) * 1991-02-25 1992-09-28 Kawasaki Steel Corp Rh degasifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735565U (en) * 1980-08-07 1982-02-24
JPS626611A (en) * 1985-07-02 1987-01-13 富永 保人 Culture of mushroom parasitic on organism
JPH03226516A (en) * 1990-01-31 1991-10-07 Kawasaki Steel Corp Vacuum degassing device for production extra-low carbon steel and operating method thereof
JPH04272120A (en) * 1991-02-25 1992-09-28 Kawasaki Steel Corp Rh degasifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430749A (en) * 2011-12-31 2012-05-02 大冶特殊钢股份有限公司 Elliptical steel ladle and manufacturing method thereof
CN106521098A (en) * 2016-10-21 2017-03-22 北京科技大学 Vacuum tank device in RH refining device

Similar Documents

Publication Publication Date Title
JPH04314818A (en) Vacuum degassing apparatus and production of extremely low carbon steel using this apparatus
US5011531A (en) Method and apparatus for degassing molten metal utilizing RH method
JP2007031820A (en) Vacuum-degassing treating method for molten steel
JP2880810B2 (en) RH degasser
JP2573876B2 (en) RH vacuum degassing method and apparatus
JP2868174B2 (en) Continuous casting method for stainless steel
JPH06116626A (en) Method for smelting low carbon steel by using vacuum refining furnace
JPS5919717Y2 (en) Vacuum degassing equipment
JPH03170612A (en) Vacuum degassing apparatus
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
JPH02173205A (en) Submerged tube for rh-degassing apparatus
JP4054865B2 (en) Molten steel recirculation degassing equipment structure
JPH06299227A (en) Production of extra low carbon steel by rh type degassing apparatus
JPH07268444A (en) Recirculation type vacuum degassing apparatus
JPH0696738B2 (en) Vacuum degassing apparatus for ultra-low carbon steel production and operating method
JPS6149758A (en) Molten steel sealing method in tandish
SU1105275A1 (en) Device for cooling continuously cast ingot
JP6268963B2 (en) Method for refining molten steel
JPH04141512A (en) Method for refining ultra low carbon steel by rh process
JPH09143546A (en) Oxygen top blowing method in rh degassing equipment
JPH0616913Y2 (en) Oval-type suction tube for reflux type degassing equipment
JPH051319A (en) Vacuum treatment apparatus for steel
JPH04168214A (en) Method and apparatus for melting extremely low carbon steel
SU1576578A1 (en) Method of heat treatment of large-size articles