JPH04309442A - Production of amorphous alloy thin strip having excellent high-frequency magnetic characteristic - Google Patents

Production of amorphous alloy thin strip having excellent high-frequency magnetic characteristic

Info

Publication number
JPH04309442A
JPH04309442A JP3099740A JP9974091A JPH04309442A JP H04309442 A JPH04309442 A JP H04309442A JP 3099740 A JP3099740 A JP 3099740A JP 9974091 A JP9974091 A JP 9974091A JP H04309442 A JPH04309442 A JP H04309442A
Authority
JP
Japan
Prior art keywords
alloy
nozzle
ribbon
roll
molten alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3099740A
Other languages
Japanese (ja)
Other versions
JP2534166B2 (en
Inventor
Masanari Yoshida
正就 吉田
Tetsuo Koshihama
越濱 哲夫
Taku Matsunaga
卓 松永
Shigenao Okano
岡野 重尚
Tamotsu Ueda
上田 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP3099740A priority Critical patent/JP2534166B2/en
Publication of JPH04309442A publication Critical patent/JPH04309442A/en
Application granted granted Critical
Publication of JP2534166B2 publication Critical patent/JP2534166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To continuously produce the amorphous alloy thin film by pressuring the molten alloy in an alloy melting crucible and injecting a molten alloy onto a cooling roll rotating at a high speed from a nozzle provided in the bottom of the alloy melting crucible. CONSTITUTION:The nozzle having 0.2 to 0.4mm slit thickness is so disposed as to be positioned approximately perpendicular to the moving direction of the surface of the cooling roll 3 which rotates at 2000 to 3500m/min circumferential speed. The spacing between the tip of the nozzle and the surface of the cooling roll is set at 0.05 to 0.5mm and further, the spacing thereof is held in the reduced pressure atm. or reduced pressure inert gaseous atmosphere kept under 0.01 to 20Torr. A gaseous pressure higher by 0.2 to 0.5kgf/cm<2> than the atm. pressure is applied to the surface of the molten alloy in the alloy melting crucible 1 to extrude the molten alloy. After the molten alloy 2 comes into contact with the surface of the cooling roll, the molten alloy does not come into contact with the front end face of the nozzle and the solidification is completed at the contact length with the roll of 1.2 to 3 times the slit thickness in the rotating direction of the roll. The magnetic core formed by using the thin strip can reduce the heat generation by higher frequencies and contributes to the miniaturization of electronic appliances.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、200KHz以上の
高い周波数において使用される各種ノイズフィルター、
ノイズアブソーバー、可飽和リアクトル、高周波トラン
スその他のコイルやインダクタンス素子用の巻磁心用素
材として好適な非晶質合金薄帯の製造法に関わるもので
ある。
[Industrial Application Field] This invention relates to various noise filters used at high frequencies of 200 KHz or higher,
The present invention relates to a method for manufacturing an amorphous alloy ribbon suitable as a material for wound magnetic cores for noise absorbers, saturable reactors, high-frequency transformers, and other coils and inductance elements.

【0002】0002

【従来の技術】近年、電子機器の小型化が急速に進み、
それにともない電子機器に搭載する直流安定化電源装置
の小型化、薄型化、軽量化に対する市場の要求が強まっ
ている。電源装置の小型化には電源回路中に大きなスペ
ースを占めるコイルやインダクタンス部品の小型化が急
務である。その手段として動作周波数を数百KHz 以
上に高周波化したスイッチング電源装置の開発が進めら
れている。これらスイッチング電源用磁性部品に用いら
れる磁心材料として、最近非晶質合金薄帯を巻回した磁
心が使用され始めている。非晶質合金磁性材料は、電気
抵抗が通常金属の約3倍高く、また製造プロセス的に薄
い材料が容易に得られることから、渦電流損失が少ない
という性質をもっている。このため高周波領域において
高透磁率、低鉄損なる特性を有し、磁性部品の小型化、
高効率化ニーズに対して、極めて良い適合性をもってい
る。 しかしこのような非晶質磁心材料にとっても、電源回路
の動作周波数が従来の数十KHz から数百KHz さ
らには数MHz と高周波化が進むにつれて、磁心から
の発熱を極力低減することが要求されるようになってき
ている。
[Background Art] In recent years, the miniaturization of electronic devices has progressed rapidly.
As a result, market demands for smaller, thinner, and lighter DC stabilized power supplies installed in electronic devices are increasing. In order to miniaturize power supply devices, there is an urgent need to miniaturize coils and inductance components that occupy a large space in power supply circuits. As a means for achieving this goal, development of switching power supply devices whose operating frequency is increased to several hundred KHz or higher is underway. Recently, magnetic cores wound with amorphous alloy ribbons have begun to be used as magnetic core materials for these magnetic components for switching power supplies. Amorphous alloy magnetic materials have electrical resistance about three times higher than normal metals, and because thin materials can be easily obtained through manufacturing processes, they have the property of having low eddy current loss. For this reason, it has characteristics of high magnetic permeability and low core loss in the high frequency region, allowing for miniaturization of magnetic components.
It is highly suitable for meeting the needs for high efficiency. However, even with such amorphous magnetic core materials, as the operating frequency of power supply circuits increases from the conventional tens of KHz to several hundred KHz and even several MHz, it is required to reduce heat generation from the magnetic core as much as possible. It is becoming more and more common.

【0003】ところで高周波領域において巻磁心の発熱
を低減するには非晶質合金素材の厚みを薄くし渦電流に
対する電気抵抗を大きくする事が有効である。非晶質合
金薄帯を製造する方法としては、一般に単ロール式液体
急冷法、すなわち、合金溶解るつぼ底面にスリットを設
けたノズルから、溶融合金を加圧して高速回転する冷却
ロール上に射出し、連続的に非晶質合金薄帯を製造する
方法が用いられる。この方法は1971年8 月15日
付け毎日新聞に東北大学増本教授らのグループが発表し
て以来、連続的な非晶質合金薄帯を得る方法として広く
知られている。しかしこの方法で薄帯厚みを18μm 
以下に薄くすると薄帯に雰囲気ガスの巻き込みによると
考えられるピンホール状の穴が多数発生し良好な表面性
状が得られないため、100KHz以上の高周波磁心用
素材として使用するに十分な磁気特性が得られない。
By the way, in order to reduce the heat generation of the wound magnetic core in the high frequency range, it is effective to reduce the thickness of the amorphous alloy material and increase the electrical resistance to eddy currents. The method for producing amorphous alloy ribbon is generally a single-roll liquid quenching method, in which molten alloy is pressurized and injected onto a cooling roll rotating at high speed through a nozzle with a slit in the bottom of an alloy melting crucible. , a method of continuously producing an amorphous alloy ribbon is used. This method has been widely known as a method for obtaining continuous amorphous alloy ribbons since it was published by a group led by Professor Masumoto of Tohoku University in the Mainichi Shimbun on August 15, 1971. However, with this method, the thickness of the ribbon could be reduced to 18 μm.
If the thickness is reduced below, many pinhole-like holes will occur in the ribbon, which is thought to be due to the entrainment of atmospheric gas, and a good surface quality will not be obtained. I can't get it.

【0004】また、特公昭61−5820 号公報には
、平坦流鋳造法 ”planar flow cast
ing”といって、ノズル底面と冷却表面との間隔が0
.03〜1mm となる位置にノズルを配置し、溶融合
金を加圧してノズル底部に設けたスリットより押出し、
溶融合金の均一な層をノズル底面と冷却表面の両者によ
って機械的に支持することにより、連続的に非晶質合金
薄帯を製造する方法が開示されている。しかし、この方
法では薄帯の厚みは冷却表面とノズル底面との間隔によ
って決まるため、厚さが10μm の薄帯を得るにはこ
の間隔を0.01mm近くにまで接近させる必要がある
が、この間隔を0.03mm以下にすると、溶融合金の
均一な層が冷却表面とノズル底面の間で完全に固化して
しまい固体接触状態となってノズルの破損が生じる。こ
のため、この方法によって 20 μm 以下の薄帯を
得ることはできない。一方、冷却表面とノズルとの間で
の溶融合金の固化によるノズル破損を防ぐには冷却基材
の移動速度を早めればよいが、冷却基材の移動速度を 
2000m/ 分以上に早めると固化に役立つ時間が減
少し溶融合金が冷却基材を十分にぬらさないため溶融合
金の均一な層が維持されなくなり、薄い多孔質な商品価
値のない薄帯しか得られない。さらには冷却基材とノズ
ルとの固体接触を防ぐため、ノズル底面の形状寸法に細
かい制約がありコスト高の要因となる上、底面積を広く
できないのでスリットの強度が不十分で欠けやすいとい
う欠点も有する。またこの方法は、薄帯が冷却表面上に
留まる時間が長いため、冷却基材としてロールを用いた
場合、条件によっては薄帯が冷却表面から離脱せず、ロ
ールの周囲に付いて運ばれ、ノズルに衝突してノズルを
破損する危険性が高い。したがってこの方法では高周波
磁心用素材として好適な厚さの薄い非晶質合金薄帯を得
ることはできない
[0004] Furthermore, Japanese Patent Publication No. 5820/1983 describes a planar flow casting method.
ing", and the distance between the nozzle bottom and the cooling surface is 0.
.. Place the nozzle at a position where the diameter is 0.3 to 1 mm, pressurize the molten alloy, and extrude it through the slit provided at the bottom of the nozzle.
A method is disclosed for continuously producing amorphous alloy ribbon by mechanically supporting a uniform layer of molten alloy by both the nozzle bottom and the cooling surface. However, in this method, the thickness of the ribbon is determined by the distance between the cooling surface and the bottom of the nozzle, so in order to obtain a ribbon with a thickness of 10 μm, it is necessary to reduce this distance to nearly 0.01 mm. If the spacing is less than 0.03 mm, a uniform layer of molten alloy will completely solidify between the cooling surface and the bottom of the nozzle, resulting in solid contact and damage to the nozzle. Therefore, it is not possible to obtain a ribbon with a diameter of 20 μm or less using this method. On the other hand, in order to prevent nozzle damage due to solidification of the molten alloy between the cooling surface and the nozzle, it is possible to increase the moving speed of the cooling base material.
If the speed is increased beyond 2000 m/min, the time available for solidification is reduced and the molten alloy does not sufficiently wet the cooling substrate, so a uniform layer of the molten alloy is not maintained, and only a thin porous ribbon with no commercial value is obtained. do not have. Furthermore, in order to prevent solid contact between the cooling base material and the nozzle, there are small restrictions on the shape and dimensions of the nozzle bottom, which causes high costs, and because the bottom area cannot be widened, the slit has insufficient strength and is prone to chipping. It also has In addition, in this method, the ribbon remains on the cooling surface for a long time, so if a roll is used as the cooling base material, depending on the conditions, the ribbon may not separate from the cooling surface and may be carried around the roll. There is a high risk of colliding with the nozzle and damaging it. Therefore, with this method, it is not possible to obtain a thin amorphous alloy ribbon suitable for use as a material for high-frequency magnetic cores.

【0005】また、特開昭63−31
7639 号公報には、特定組成の合金を真空雰囲気下
で射出することにより製造された厚さが 10 μm 
以下でかつ表面性状の良好な高透磁率、低損失の極薄非
晶質合金が開示されている。この方法では製造できる合
金組成範囲が狭く限定されており、製造にあたっても溶
融合金が回転冷却体に接触する間の雰囲気を0.01T
orr以下の減圧大気中または60Torr未満の不活
性ガス雰囲気とする必要があるためチャンバーが大きく
なればなるほど真空引きに時間を要する上、不活性ガス
の使用量も増大する。さらにはノズル先端のスリットの
厚みは0.2mm 以下と非常に狭い上、射出ガス圧も
0.02Kg/cm2程度と小さく、射出中の溶湯の温
度変動などによってノズルつまりを起こしやすいなど、
実験室的には製造できても、量産には不向きである。
[0005] Also, Japanese Unexamined Patent Publication No. 63-31
Publication No. 7639 describes a material with a thickness of 10 μm manufactured by injecting an alloy of a specific composition in a vacuum atmosphere.
An ultrathin amorphous alloy with high magnetic permeability and low loss, which also has good surface properties, is disclosed. With this method, the alloy composition range that can be manufactured is narrowly limited, and during manufacturing, the atmosphere while the molten alloy is in contact with the rotary cooling body is limited to 0.01T.
Since it is necessary to create a reduced pressure atmosphere of less than orr or an inert gas atmosphere of less than 60 Torr, the larger the chamber, the longer it takes to vacuum the chamber, and the amount of inert gas used also increases. Furthermore, the thickness of the slit at the tip of the nozzle is very narrow, less than 0.2 mm, and the injection gas pressure is also small, about 0.02 Kg/cm2, making the nozzle easily clogged due to temperature fluctuations of the molten metal during injection.
Although it can be manufactured in a laboratory, it is not suitable for mass production.

【0006】さらには、ここに紹介したような従来のど
のような単ロール式液体急冷法においても、溶融合金は
凝固するまでの一定時間、ロール表面に接触したまま所
定の回転角を移動し、その間凝固がロール面側より自由
凝固面側へ徐々に進行し、凝固完了後にロールから離れ
る。このため薄帯の飛行方向は水平方向より下方となる
。しかし、このように従来の方法で作られた薄帯に生じ
る磁区は薄帯の長手方向に細長い 180゜磁壁ができ
やすく、磁化過程において磁壁移動が主流となる。この
ため磁化回転が主流となる200KHz以上の高周波領
域で急激に保磁力が増大する。すなわち薄帯の飛行方向
が水平方向より下方の時に得られる薄帯の磁気特性は、
薄帯厚みを薄くすることにより渦電流損失は低減できる
が、保磁力の周波数依存性が大きく商用周波数から10
0KHz程度までは良好な磁気特性を示すものの、それ
以上の高周波領域では急激に保磁力が増大し磁心の発熱
が大きくなるのである。なお、この傾向は可飽和リアク
トルのような非線形磁心を磁気飽和させて使用する場合
において特に顕著である。
Furthermore, in any conventional single-roll liquid quenching method as introduced here, the molten alloy is moved through a predetermined rotation angle while remaining in contact with the roll surface for a certain period of time until it solidifies. During this time, solidification gradually progresses from the roll surface side to the free solidification surface side, and leaves the roll after solidification is completed. Therefore, the flight direction of the ribbon is below the horizontal direction. However, the magnetic domains generated in the thin ribbon produced by the conventional method as described above tend to form elongated 180° domain walls in the longitudinal direction of the thin strip, and domain wall movement becomes the mainstream in the magnetization process. For this reason, the coercive force increases rapidly in a high frequency region of 200 KHz or higher where magnetization rotation is the mainstream. In other words, the magnetic properties of the ribbon obtained when the flight direction of the ribbon is below the horizontal direction are:
Eddy current loss can be reduced by reducing the thickness of the ribbon, but the frequency dependence of coercive force is large and
Although it exhibits good magnetic properties up to about 0 KHz, at higher frequencies, the coercive force increases rapidly and the heat generation of the magnetic core increases. Note that this tendency is particularly noticeable when a nonlinear magnetic core such as a saturable reactor is used with magnetic saturation.

【0007】[0007]

【発明が解決しようとする課題】このように従来技術に
よって厚さ20μm 以下の極薄の非晶質合金薄帯を工
業的に量産することは不可能である上、従来の技術では
200KHz以上での保磁力の周波数依存性が大きく高
周波になるほど保磁力が増大し磁心の発熱を伴う。この
ため電源装置の動作周波数の高周波化に対応して磁心の
発熱を低減することは容易ではなく、高周波においても
発熱しないような非晶質合金薄帯を工業的に生産する方
法が切望されている。
[Problems to be Solved by the Invention] As described above, it is impossible to industrially mass-produce ultra-thin amorphous alloy ribbons with a thickness of 20 μm or less using the conventional technology, and in addition, with the conventional technology, The frequency dependence of the coercive force of the magnet increases and the higher the frequency, the greater the coercive force becomes, which causes heat generation in the magnetic core. For this reason, it is not easy to reduce the heat generation of the magnetic core in response to the increasing operating frequency of power supplies, and there is a strong need for a method to industrially produce amorphous alloy ribbons that do not generate heat even at high frequencies. There is.

【0008】[0008]

【課題を解決するための手段】本発明に係る非晶質合金
薄帯の製造方法は、かかる従来技術の問題点を解決し、
動作周波数が200KHz以上のスイッチング電源等に
搭載される各種コイルやインダクタンス部品用磁心のい
っそうの発熱低減要求に応えるべく、板厚が13μm 
以下で500KHz〜1MHz程度の高周波領域まで保
磁力の小さい非晶質合金極薄帯の製造方法を提供するこ
とを目的としたものであって、薄帯の厚みが薄く、かつ
交流磁化過程において回転磁化が生じやすい薄帯を作る
方法について鋭意検討した結果、冷却表面とノズルの間
隔を極端に近づけなくとも極薄の薄帯を製造できる条件
を見いだしたのに加えて、射出後の薄帯の飛行角度が薄
帯の高周波磁気特性、特に保磁力に大きく影響すること
を見いだした。すなわち溶融合金を減圧雰囲気下で超高
速回転する冷却ロール上へ射出し薄帯をロール接線方向
に対して0 〜15度上方へ飛び出す様な製造条件を選
定することにより高周波磁気特性に優れた薄帯が得られ
ることを見いだしたのである。
[Means for Solving the Problems] The method for manufacturing an amorphous alloy ribbon according to the present invention solves the problems of the prior art, and
In order to meet the demand for further heat reduction in magnetic cores for various coils and inductance components installed in switching power supplies with operating frequencies of 200 KHz or higher, the plate thickness is 13 μm.
The purpose of the following is to provide a method for manufacturing an ultrathin amorphous alloy strip with a low coercive force in the high frequency range of about 500 KHz to 1 MHz, and the thin strip is thin and rotates in the alternating current magnetization process. As a result of intensive research into methods for producing thin strips that are prone to magnetization, we found conditions that would allow us to produce ultra-thin strips without extremely close distances between the cooling surface and the nozzle. We found that the flight angle greatly affects the high-frequency magnetic properties of the ribbon, especially the coercive force. In other words, by injecting the molten alloy onto a cooling roll rotating at ultra-high speed under a reduced pressure atmosphere and selecting manufacturing conditions such that the ribbon flies out at an angle of 0 to 15 degrees with respect to the tangential direction of the roll, a thin film with excellent high-frequency magnetic properties can be produced. He discovered that it was possible to obtain a belt.

【0009】すなわち本発明は、合金溶解るつぼ内の溶
融合金を加圧して、該合金溶解るつぼの底部に設けたノ
ズルから高速回転する冷却ロール上に溶融合金を射出し
、連続的に非晶質合金薄帯を製造する方法であって、ス
リット厚みが0.2 〜0.4mm のノズルを周速度
2000〜3500m/分で回転する冷却ロール表面の
運動方向に対して直角またはほぼ直角となるように配置
し、かつノズル先端と冷却ロール表面との間隔を0.0
5〜0.5mm とすると共に、前期間隔を0.01〜
20Torrの減圧大気または減圧不活性ガス雰囲気中
に保持した後、合金溶解るつぼ内の溶融合金表面に前記
の雰囲気圧より0.2 〜0.5Kgf/cm2高いガ
ス圧をかけて加圧し、冷却ロール表面上に溶融合金を連
続的に押出すことにより、溶融合金が冷却ロール表面に
接触後、ノズル先端面に接触することなしに、ロール回
転方向に対してスリット厚みの1.2 〜3 倍のロー
ル接触長さで凝固を完了させ、薄帯状となって冷却ロー
ル表面の運動方向に対して0 〜15度上方へ飛び出さ
せて厚さ5 〜13μm の非晶質合金薄帯を形成する
ことを特徴とする高周波磁気特性に優れた非晶質合金薄
帯の製造方法である。
That is, the present invention pressurizes the molten alloy in the alloy melting crucible, injects the molten alloy from a nozzle provided at the bottom of the alloy melting crucible onto a cooling roll rotating at high speed, and continuously forms an amorphous alloy. A method for producing an alloy ribbon, in which a nozzle with a slit thickness of 0.2 to 0.4 mm is rotated at a circumferential speed of 2000 to 3500 m/min so that the slit is perpendicular or almost perpendicular to the direction of movement of the surface of a cooling roll. and the distance between the nozzle tip and the cooling roll surface is 0.0.
5 to 0.5 mm, and the first interval to 0.01 to 0.5 mm.
After maintaining the molten alloy in a reduced pressure atmosphere or a reduced pressure inert gas atmosphere of 20 Torr, a gas pressure 0.2 to 0.5 Kgf/cm2 higher than the above atmospheric pressure is applied to the surface of the molten alloy in the alloy melting crucible, and a cooling roll is applied. By continuously extruding the molten alloy onto the surface, after the molten alloy contacts the cooling roll surface, the molten alloy is 1.2 to 3 times the slit thickness in the roll rotation direction without contacting the nozzle tip surface. Solidification is completed at the roll contact length, and the thin ribbon is made to fly upward at an angle of 0 to 15 degrees with respect to the direction of movement of the cooling roll surface to form an amorphous alloy ribbon with a thickness of 5 to 13 μm. This is a method for manufacturing an amorphous alloy ribbon with excellent high-frequency magnetic properties.

【0010】以下に本発明に係る非晶質合金薄帯の製造
方法における製造条件の限定理由について図2に基づい
て説明する。ノズル7は、冷却ロール3表面の運動方向
Mに対して直角またはほぼ直角となるように配置するの
は、この位置関係がずれるとノズル7が振動を起こしや
すく非晶質合金薄帯6が切れる原因となるためである。 また、ノズル7の先端面と冷却ロール3との間隔wを0
.05〜0.5mm 、好ましくは0.1 〜0.3m
m とするのは、この間隔を0.5mm 以上にすると
板厚が厚くなり13μm 以下の薄帯が得られないから
である。非晶質合金薄帯6の厚みを薄くするにはこの間
隔wをできるだけ狭くする方がよい。これは、間隔wが
大きくなるほど、冷却ロール3に接触するまでの間に溶
湯流がスリット幅方向に絞られ、スリット厚み方向にふ
くらむため、薄帯幅が狭くなり、薄帯厚みが厚くなるた
めである。一方ノズル7の先端と冷却ロール3との間隔
wが0.05mm以下になると、この間隔wの制御に高
度な技術が要求され実際的でない上、ノズル7の熱膨張
などによりノズルとロールが接触しノズル破損にいたり
やすい。
The reasons for limiting the manufacturing conditions in the method for manufacturing an amorphous alloy ribbon according to the present invention will be explained below with reference to FIG. The nozzle 7 is arranged so as to be perpendicular or almost perpendicular to the direction of motion M of the surface of the cooling roll 3 because if this positional relationship deviates, the nozzle 7 is likely to vibrate and the amorphous alloy ribbon 6 will be cut. This is because it becomes a cause. Also, the distance w between the tip surface of the nozzle 7 and the cooling roll 3 is set to 0.
.. 05-0.5mm, preferably 0.1-0.3m
The reason for setting this interval to 0.5 mm or more is that if the distance is 0.5 mm or more, the plate thickness becomes too thick and a ribbon of 13 μm or less cannot be obtained. In order to reduce the thickness of the amorphous alloy ribbon 6, it is better to make this interval w as narrow as possible. This is because, as the interval w increases, the molten metal flow is constricted in the slit width direction and swells in the slit thickness direction before it contacts the cooling roll 3, so the ribbon width becomes narrower and the ribbon thickness becomes thicker. It is. On the other hand, if the distance w between the tip of the nozzle 7 and the cooling roll 3 is less than 0.05 mm, advanced technology is required to control this distance w, which is impractical, and the nozzle and the roll come into contact due to thermal expansion of the nozzle 7, etc. This can easily lead to nozzle damage.

【0012】そこで、溶融合金2がノズル7の先端面と
接触することのないように冷却ロール3の回転速度を十
分に高速回転させる必要がある。実際には回転数は非晶
質合金薄帯6が水平方向より上方へ飛び出すように条件
を設定するが、この条件はノズル先端と冷却ロールとの
間隔w、溶融合金の射出温度、冷却ロール材質、射出ガ
ス圧、雰囲気圧、雰囲気ガスなどにより変動する。通常
は回転数を2000〜3500m/分とすると良好な非
晶質合金薄帯が得られやすい。また2000m/分以下
だと薄帯の飛行方向が水平より下方に向くため本発明の
効果が得られない。回転速度が早いほど溶融合金が薄く
引き延ばされ、薄帯厚みを薄くでき、かつ凝固速度を高
めることができるが、3500m/分以上でも薄帯の製
造になんら問題はない。しかし、冷却ロールをこれ以上
高速回転させると遠心力によるロールやスピンドル部の
強度が問題となり実用的でない。
Therefore, it is necessary to rotate the cooling roll 3 at a sufficiently high speed so that the molten alloy 2 does not come into contact with the tip surface of the nozzle 7. In reality, the rotation speed is set so that the amorphous alloy ribbon 6 jumps upward from the horizontal direction, but these conditions include the distance w between the nozzle tip and the cooling roll, the injection temperature of the molten alloy, and the material of the cooling roll. , varies depending on injection gas pressure, atmospheric pressure, atmospheric gas, etc. Usually, when the rotation speed is 2000 to 3500 m/min, it is easy to obtain a good amorphous alloy ribbon. Further, if the speed is less than 2000 m/min, the flying direction of the thin ribbon is directed downward from the horizontal, so that the effects of the present invention cannot be obtained. The faster the rotation speed is, the thinner the molten alloy is stretched, the thinner the ribbon can be, and the faster the solidification rate can be, but there is no problem in manufacturing the ribbon even at a rotation speed of 3500 m/min or more. However, if the cooling roll is rotated at a higher speed than this, the strength of the roll and spindle part due to centrifugal force becomes a problem, which is impractical.

【0013】冷却ロール3表面とノズル7先端面の隙間
を0.01〜2Torr の減圧大気または減圧不活性
ガス雰囲気中に保持するのは、20Torr以上では雰
囲気ガスが溶融合金2と冷却ロール3との間に入り込み
、薄帯の表面粗さが悪くなり、良好な磁気特性が得られ
ない。一方、0.01Torr以下では薄帯の雰囲気ガ
スによる冷却が不十分なため、完全な非晶質が得られな
い。なお、射出ガス圧( Pe)は冷却ロールの回転速
度に応じて雰囲気ガス圧より0.2 〜0.5Kgf/
cm2高くすると良好な薄帯が得られやすい。 冷却ロール3の回転速度が早くなるほど冷却ロール上に
形成される湯溜まりを安定に保持するため射出ガス圧を
高く設定する必要がある。射出ガス圧が低いと湯溜まり
が不安定で所望の薄帯幅が得られなかったり、薄帯の縁
が中心部より薄く不規則形状になったりする。一方、射
出ガス圧が高すぎると薄帯厚みを13μm 以下にする
ことができなくなる。
The reason why the gap between the surface of the cooling roll 3 and the tip of the nozzle 7 is maintained in a reduced pressure atmosphere or a reduced pressure inert gas atmosphere of 0.01 to 2 Torr is that if the atmospheric gas exceeds 20 Torr, the molten alloy 2 and the cooling roll 3 are separated. As a result, the surface roughness of the ribbon deteriorates, making it impossible to obtain good magnetic properties. On the other hand, if the temperature is 0.01 Torr or less, the cooling of the ribbon by the atmospheric gas is insufficient, and a completely amorphous state cannot be obtained. In addition, the injection gas pressure (Pe) is 0.2 to 0.5 Kgf/ from the atmospheric gas pressure depending on the rotation speed of the cooling roll.
If the height is increased by cm2, a good thin ribbon can be easily obtained. As the rotational speed of the cooling roll 3 increases, it is necessary to set the injection gas pressure higher in order to stably maintain the puddle formed on the cooling roll. If the injection gas pressure is low, the pool will be unstable and the desired width of the ribbon will not be obtained, or the edge of the ribbon will be thinner than the center and have an irregular shape. On the other hand, if the injection gas pressure is too high, the ribbon thickness cannot be reduced to 13 μm or less.

【0014】ノズル先端に設けたスリット8の厚み(a
) を0.2 〜0.4mm とするのは、0.4mm
以上では薄帯の厚みを13μm 以下にはできない。こ
のスリット8の厚みは小さいほど極薄薄帯が得られやす
く、他の条件が一定であればスリット厚みaが0.1m
m大きくなると薄帯の厚みは約3 μm 厚くなるので
スリット厚みの寸法精度は重要である。一方、スリット
厚みaが0.2mm 以下では操業中の製造条件のばら
つきなどによりノズルつまりが生じやすくなり薄帯の量
産には適さない。
The thickness of the slit 8 provided at the tip of the nozzle (a
) is 0.2 to 0.4mm, 0.4mm
In this case, the thickness of the ribbon cannot be reduced to 13 μm or less. The smaller the thickness of this slit 8, the easier it is to obtain an ultra-thin ribbon, and if other conditions are constant, the slit thickness a is 0.1 m.
As m increases, the thickness of the ribbon increases by about 3 μm, so dimensional accuracy of the slit thickness is important. On the other hand, if the slit thickness a is less than 0.2 mm, nozzle clogging tends to occur due to variations in manufacturing conditions during operation, making it unsuitable for mass production of ribbons.

【0015】またロール接触長さ(b) をロール回転
方向に対してスリット厚み8の1.2 〜3倍というき
わめて短い長さで溶融合金2の凝固を完了する必要があ
る。その理由はロール接触長さbがスリット8の厚みの
3倍以上では非晶質合金薄板の飛行方向が水平より下方
に向くため本発明の効果が得られないからである。一方
、溶融合金2は冷却ロール3上でロール面のみとの濡れ
とノズル先端の圧力( Po)によって安定な湯溜まり
が形成されるが、この湯溜まりの大きさがスリット8の
厚みの1.2 倍より狭いと安定な湯溜まりができず非
晶質合金薄帯は作れない。さらに非晶質合金薄帯6の厚
みは、高周波用磁心の素材として渦電流損失を極力小さ
くし100KHz〜1MHz程度の高周波領域にて幅広
く使用できる磁心を得るために、少なくとも13μm 
以下にする必要がある。しかし5μm 以下になると薄
帯の折れ曲がりが生じやすくなり、かえって磁気特性に
悪影響が現れる。
Furthermore, it is necessary to complete the solidification of the molten alloy 2 with the roll contact length (b) being extremely short, 1.2 to 3 times the slit thickness 8 in the roll rotation direction. The reason for this is that if the roll contact length b is three times or more the thickness of the slit 8, the flying direction of the amorphous alloy thin plate will be directed downward from the horizontal, so that the effects of the present invention cannot be obtained. On the other hand, the molten alloy 2 forms a stable puddle on the cooling roll 3 due to wetting only with the roll surface and the pressure (Po) at the nozzle tip, but the size of this puddle is 1.5 times the thickness of the slit 8. If it is narrower than 2 times, a stable pool cannot be formed and an amorphous alloy ribbon cannot be produced. Furthermore, the thickness of the amorphous alloy ribbon 6 is set to at least 13 μm in order to minimize eddy current loss as a material for a high-frequency magnetic core and obtain a magnetic core that can be widely used in a high-frequency region of about 100 KHz to 1 MHz.
It is necessary to do the following. However, if the thickness is less than 5 μm, the ribbon tends to bend easily, and the magnetic properties are adversely affected.

【0016】非晶質合金薄帯6の飛行方向を水平方向に
対して0 〜15度上方とするのは、この条件が満足さ
れたとき最も高周波磁気特性の良好な薄帯が得られるか
らである。すなわち、この条件を満足させるとき極めて
短時間に溶融合金2を薄帯6の幅方向に均一に凝固させ
ることができるからである。この際、溶融合金2は冷却
ロール3に接触するやいなやノズル先端に接触すること
なく凝固し、ロール接線方向すなわち水平方向に飛び出
して行く。このときの飛行角度が実際には水平方向に対
して0 〜15度上方となる。これは溶融合金の凝固の
際、凝固がロール回転方向に対してきわめて短い接触長
さbで進行する上、自由凝固面側の方がロール面側より
凝固が一瞬遅れて進行するためであり、薄帯には長手方
向に凝固歪が導入される。したがって、本発明による薄
帯は自由凝固面側に湾曲する傾向がある。この際に薄帯
に導入される凝固歪が高周波磁気特性の向上に寄与する
。すなわち本発明の方法では、薄帯の厚みが薄くかつ薄
帯表面はガス巻き込みによる穴がないため非常に滑らか
であり磁区形成において表面性状の影響を受け難い。こ
れに加えて凝固の際に導入される本発明特有の歪によっ
て、微細な垂直磁区が発達する。かかる垂直磁区は薄帯
厚みが薄いこともあって、熱処理しても180 ゜磁壁
が生じにくい。このような磁区構造は磁壁が多いため磁
化過程において磁壁移動より磁化回転の方が容易に起き
やすく、低周波領域での保磁力は若干大きくなるものの
、逆に高周波領域では保磁力が小さくなり、保磁力の周
波数依存性が小さいものとなる。このため1MHz程度
の高周波領域まで磁心の発熱を低く抑えることが可能と
なる。
The reason why the flight direction of the amorphous alloy ribbon 6 is set at 0 to 15 degrees above the horizontal direction is that when this condition is satisfied, a ribbon with the best high-frequency magnetic properties can be obtained. be. That is, when this condition is satisfied, the molten alloy 2 can be uniformly solidified in the width direction of the ribbon 6 in an extremely short time. At this time, as soon as the molten alloy 2 contacts the cooling roll 3, it solidifies without contacting the nozzle tip and flies out in the tangential direction of the roll, that is, in the horizontal direction. The flight angle at this time is actually 0 to 15 degrees above the horizontal direction. This is because when solidifying the molten alloy, solidification progresses with an extremely short contact length b in the direction of roll rotation, and solidification progresses a moment later on the free solidifying surface side than on the roll surface side. Solidification strain is introduced into the ribbon in the longitudinal direction. Therefore, the ribbon according to the present invention tends to curve toward the free solidification surface. The solidification strain introduced into the ribbon at this time contributes to improving the high frequency magnetic properties. That is, in the method of the present invention, the thickness of the ribbon is small and the surface of the ribbon is very smooth since there are no holes caused by gas entrainment, and magnetic domain formation is hardly affected by surface properties. In addition to this, fine perpendicular magnetic domains develop due to the strain unique to the present invention introduced during solidification. In such a perpendicular magnetic domain, since the ribbon thickness is small, a 180° domain wall is difficult to form even when heat treated. Since such a magnetic domain structure has many domain walls, magnetization rotation occurs more easily than domain wall movement during the magnetization process, and although the coercive force in the low frequency region becomes slightly large, conversely, the coercive force decreases in the high frequency region. The frequency dependence of coercive force becomes small. Therefore, it is possible to suppress the heat generation of the magnetic core to a low level up to a high frequency range of about 1 MHz.

【0017】[0017]

【実施例】本発明の高周波磁気特性に優れた非晶質合金
極薄帯の製造方法は以下のようにして達成される。本発
明を実施するためには図1に示すような装置を用いた。 すなわち、該装置全体は0.01〜20Torrの減圧
大気または不活性ガス雰囲気に内部を調整した真空容器
10に収容されており、合金溶解るつぼ1はその下端に
近接して冷却ロール3を回転自在に位置させている。ノ
ズル7は冷却ロール3の表面の運動方向Mに対して直角
またはほぼ直角となるように配置されている。図2に示
すように、合金溶解るつぼ1の底面に設けたノズル7の
スリット8厚みaは0.3mm が最も適しているが、
これを0.2〜0.4mm の範囲に選定できる。また
スリットの幅は所望の薄帯幅に合わせて選定する。  
また、上記ノズル7の先端と冷却ロール3との間隔wを
0.05〜0.5mm 、好ましくは0.1 〜0.3
mmに設定する。ここで合金溶解るつぼ1の代わりにタ
ンディッシュを用いても差し支えないが、その場合には
溶湯温度を一定に保持するための手段が必要である。さ
らに、合金溶解るつぼ1は、その周囲を囲む高周波コイ
ル4から構成された高周波誘導加熱装置によって内部の
合金を溶融するようになっている。
EXAMPLE The method of manufacturing an ultrathin amorphous alloy strip having excellent high-frequency magnetic properties according to the present invention is accomplished as follows. In order to carry out the present invention, an apparatus as shown in FIG. 1 was used. That is, the entire apparatus is housed in a vacuum container 10 whose interior is adjusted to a reduced pressure atmosphere or an inert gas atmosphere of 0.01 to 20 Torr, and the alloy melting crucible 1 has a cooling roll 3 close to its lower end and is rotatable. It is located in The nozzle 7 is arranged so as to be perpendicular or substantially perpendicular to the direction of movement M of the surface of the cooling roll 3. As shown in FIG. 2, the most suitable thickness a of the slit 8 of the nozzle 7 provided on the bottom of the alloy melting crucible 1 is 0.3 mm.
This can be selected within the range of 0.2 to 0.4 mm. Further, the width of the slit is selected according to the desired ribbon width.
Further, the distance w between the tip of the nozzle 7 and the cooling roll 3 is 0.05 to 0.5 mm, preferably 0.1 to 0.3 mm.
Set to mm. Here, a tundish may be used instead of the alloy melting crucible 1, but in that case, a means for keeping the temperature of the molten metal constant is required. Further, the alloy melting crucible 1 is configured to melt the alloy therein by a high frequency induction heating device constituted by a high frequency coil 4 surrounding the crucible.

【0018】本発明は、合金溶解るつぼ1内に収容され
ている溶融合金2を高速回転する冷却ロール3上にノズ
ル7を経て射出し超急冷するのであるが、合金溶解るつ
ぼ1内にはあらかじめ所望の組成に調整された母合金を
装入しておき、高周波コイル4から構成される高周波誘
導加熱装置などの適宜の加熱手段により溶融合金を得る
。冷却ロール3の回転速度は周速で2000〜3500
m/分とするが薄帯の飛行角度に応じてこの範囲内で最
適な回転速度に調整する。ロール材質としては溶融合金
2との濡れ性や熱伝導度を考慮して銅合金あるいは鉄合
金を選定する。
In the present invention, the molten alloy 2 contained in the alloy melting crucible 1 is injected onto the cooling roll 3 which rotates at high speed through the nozzle 7, and is ultra-quenched. A master alloy adjusted to a desired composition is charged, and a molten alloy is obtained by suitable heating means such as a high-frequency induction heating device constituted by a high-frequency coil 4. The rotation speed of the cooling roll 3 is 2000 to 3500 in circumferential speed.
m/min, but the rotational speed is adjusted to the optimum speed within this range depending on the flight angle of the ribbon. As the roll material, a copper alloy or an iron alloy is selected in consideration of wettability with the molten alloy 2 and thermal conductivity.

【0019】ノズル7の先端面と冷却ロール3の表面と
の隙間は0.5 〜1Torr の減圧大気または減圧
不活性ガス雰囲気とする。ここで不活性ガスを使用する
場合にはヘリウム、アルゴンまたは窒素が適している。 溶融合金2をノズル7からスリット8を通して冷却ロー
ル3上へ射出するため、冷却ロールの周速度に応じてノ
ズル内に射出ガス5を雰囲気圧との差圧で+0.2 〜
0.5Kgf/cm2、好ましくは、たとえば冷却ロー
ル周速度が2500m/分の場合には0.25〜0.3
Kgf/cm2となるよう導入する。溶融合金の射出中
は溶融合金の温度管理が重要であり、最適射出温度±5
°Cの範囲内にコントロールする必要があり、大気中へ
射出する場合よりかなり狭い。最適射出温度は合金組成
によって異なるが一般に合金の融点より60〜110 
℃高い領域にある。射出温度が高すぎる場合には薄帯は
冷却が不十分となり延性に欠けた脆い薄帯となり、薄帯
の保磁力が異常に増大する。一方射出温度が低すぎる場
合には薄帯の表面粗さが粗くなり磁気特性には反磁場の
影響が顕著に現れるようになる。以上のようにして得ら
れた薄帯は図示しない5 〜30m の充分な長さの飛
行管に補集する。飛行管の長さが短いと薄帯に折れ曲が
りが生じやすく歩留が悪化する。
The gap between the tip end surface of the nozzle 7 and the surface of the cooling roll 3 is set to a reduced pressure atmosphere or a reduced pressure inert gas atmosphere of 0.5 to 1 Torr. If an inert gas is used here, helium, argon or nitrogen are suitable. In order to inject the molten alloy 2 from the nozzle 7 through the slit 8 onto the cooling roll 3, the injection gas 5 is injected into the nozzle according to the circumferential speed of the cooling roll at a pressure difference of +0.2 to atmospheric pressure.
0.5 Kgf/cm2, preferably 0.25 to 0.3 when the peripheral speed of the chill roll is 2500 m/min.
It is introduced so that it becomes Kgf/cm2. During injection of molten alloy, temperature control of molten alloy is important, and optimum injection temperature ±5
It is necessary to control the temperature within a range of °C, which is much narrower than when injecting into the atmosphere. The optimum injection temperature varies depending on the alloy composition, but is generally 60 to 110 degrees higher than the melting point of the alloy.
It is in the high temperature range. If the injection temperature is too high, the ribbon will not be sufficiently cooled, resulting in a brittle ribbon lacking in ductility, and the coercive force of the ribbon will increase abnormally. On the other hand, if the injection temperature is too low, the surface roughness of the ribbon becomes rough and the magnetic properties are significantly affected by the demagnetizing field. The ribbon thus obtained is collected in a flight tube (not shown) having a sufficient length of 5 to 30 m. If the length of the flight tube is short, the ribbon is likely to bend, resulting in poor yield.

【0020】Co68.6Fe3.7 Si16B11
.7なる基本組成の合金に、ロールとの濡れ性の改善を
目的としてNbを0.28at% 添加した合金を調合
、溶解し非晶質合金作製用母合金とした。ここで非晶質
合金薄帯の製造にあたっては10m の飛行管を有しチ
ャンバー全体を減圧できる単ロール式液体急冷装置を使
用した。非晶質合金薄帯の製造条件は次のとおりであっ
た。 ノズルスリット形状:5.08mm×0.30mmノズ
ル材質:石英 ロール材質:銅(ロール表面はダイヤモンドバイトにて
旋削し鏡面仕上げ) ロール径:φ300 (水冷無し) ロール回転数:2500rpm (周速 2350m/
 分)ノズル底面とロール面との間隔:0.15mm射
出雰囲気ガス圧:0.5Torr の減圧大気射出ガス
圧:0.025Kg/ 射出前ロール温度:25℃
[0020]Co68.6Fe3.7Si16B11
.. An alloy having a basic composition of No. 7 to which 0.28 at% of Nb was added for the purpose of improving wettability with a roll was prepared and melted to obtain a master alloy for producing an amorphous alloy. In producing the amorphous alloy ribbon, a single-roll liquid quenching device with a 10 m2 flight tube and capable of reducing the pressure of the entire chamber was used. The manufacturing conditions for the amorphous alloy ribbon were as follows. Nozzle slit shape: 5.08mm x 0.30mm Nozzle material: Quartz Roll material: Copper (roll surface is turned with a diamond tool to a mirror finish) Roll diameter: φ300 (no water cooling) Roll rotation speed: 2500 rpm (peripheral speed 2350 m/
(min) Distance between nozzle bottom and roll surface: 0.15 mm Injection atmosphere gas pressure: 0.5 Torr reduced pressure Atmosphere Injection gas pressure: 0.025 Kg/Roll temperature before injection: 25°C

【0021】このような条件にて合金溶湯を冷却ロール
上へ射出し、この様子を高速度ビデオカメラにて観察し
たところ、溶融合金はロールに接触後直ちに凝固し、薄
帯となって水平方向に対して約10度上方へ飛び出した
。 飛行管内に補集された非晶質薄帯の寸法は、厚み 11
.4 μm 、幅 4.8mm、表面粗さ  Ra 0
.1 μm であった。この薄帯を、自由凝固面が巻心
の外側になるようにして直径10mmの巻心に巻回し、
巻磁心を作製した。引続き巻磁心の磁路方向に5A/m
の磁界を印加しながら400℃にて1 時間歪取り焼鈍
を行った後、磁心表面をエポキシ粉体塗装し磁気特性評
価用磁心とした。なお比較材として同装置、同組成の合
金を用い本発明外の次の条件で薄帯を製造した。
[0021] Under these conditions, the molten alloy was injected onto the cooling roll, and this process was observed using a high-speed video camera. The molten alloy solidified immediately after contacting the roll, and formed a thin ribbon that spread horizontally. It jumped out about 10 degrees upwards. The dimensions of the amorphous ribbon collected in the flight tube are: thickness 11
.. 4 μm, width 4.8 mm, surface roughness Ra 0
.. It was 1 μm. This ribbon is wound around a core with a diameter of 10 mm with the free solidified surface facing outside the core.
A wound magnetic core was produced. Continue to 5A/m in the magnetic path direction of the wound core.
After strain relief annealing was performed at 400° C. for 1 hour while applying a magnetic field of 100° C., the surface of the magnetic core was coated with epoxy powder to obtain a magnetic core for evaluating magnetic properties. As a comparison material, a ribbon was manufactured using the same apparatus and an alloy of the same composition under the following conditions other than those of the present invention.

【0022】ノズルスリット形状:5.10mm×0.
31mmノズル材質:石英 ロール材質:銅(ロール表面はダイヤモンドバイトにて
旋削し鏡面仕上げ) ロール径:φ300 (水冷無し) ロール回転数:1500rpm (周速 1410m/
 分)ノズル底面とロール面との間隔:0.2mm射出
雰囲気ガス圧:大気 射出ガス圧:0.025Kg/ 射出前ロール温度:25℃
[0022] Nozzle slit shape: 5.10mm x 0.
31mm nozzle material: Quartz Roll material: Copper (roll surface is turned with a diamond tool to a mirror finish) Roll diameter: φ300 (no water cooling) Roll rotation speed: 1500 rpm (peripheral speed 1410 m/
) Distance between nozzle bottom and roll surface: 0.2mm Injection atmosphere gas pressure: Atmosphere Injection gas pressure: 0.025Kg/Roll temperature before injection: 25℃

【0023】このような条件にて合金溶湯を超急冷した
ところ、溶融合金はロールに接触後ロール回転角で約3
0度ロール表面に接触したまま凝固し、その後薄帯とな
って水平方向に対して約7度下方へ飛び出した。飛行管
内に補集された非晶質薄帯の寸法は、厚み 16.8 
μm 、幅 4.95mm、表面粗さ  Ra 0.5
 μm であった。本発明と同一の条件で巻回、熱処理
、粉体塗装を行い磁気特性評価用試料とした。両者の方
法で製造した磁気特性評価試料の特性値を比較すると、
図3に示すように、本発明方法によれば本発明外の方法
に比べ保磁力が低くこの傾向は高周波になるほど顕著に
なる。すなわち本発明の方法によれば保磁力が低くかつ
保磁力の周波数依存性の小さい磁心が得られる。
[0023] When the molten alloy was ultra-quenched under these conditions, the molten alloy cooled at a rotational angle of about 3 after contacting the roll.
It solidified while in contact with the roll surface at 0 degrees, and then became a thin ribbon that flew downward at about 7 degrees with respect to the horizontal direction. The dimensions of the amorphous ribbon collected in the flight tube are: thickness 16.8
μm, width 4.95mm, surface roughness Ra 0.5
It was μm. The sample was wound, heat treated, and powder coated under the same conditions as in the present invention to prepare a sample for evaluating magnetic properties. Comparing the characteristic values of magnetic property evaluation samples produced by both methods,
As shown in FIG. 3, the method of the present invention has a lower coercive force than methods other than the present invention, and this tendency becomes more pronounced as the frequency increases. That is, according to the method of the present invention, a magnetic core having a low coercive force and a small frequency dependence of the coercive force can be obtained.

【0024】さらに本発明の磁心を動作周波数150K
Hzの市販のマグアンプ方式のスイッチング電源に実装
し、マグアンプコアとしての磁心の昇温量を測定したと
ころ、表1に示すように本発明方法による磁心の方が、
本発明外の方法に比べ2 〜4 ℃温度上昇が少なく、
さらには本実験に供した電源に実装されていた市販の磁
心より7〜15℃温度上昇が少なく、本発明方法によっ
て製作した非晶質合金薄帯が高周波磁性材料として優れ
た特性を示すことがわかる。
Furthermore, the magnetic core of the present invention has an operating frequency of 150K.
When installed in a commercially available Hz mag-amp type switching power supply and measured the amount of temperature rise of the magnetic core as a mag-amp core, as shown in Table 1, the magnetic core according to the method of the present invention has a higher
Compared to methods outside the present invention, the temperature rise is 2 to 4 degrees Celsius,
Furthermore, the temperature rise was 7 to 15 degrees Celsius lower than that of the commercially available magnetic core installed in the power supply used in this experiment, indicating that the amorphous alloy ribbon produced by the method of the present invention exhibits excellent characteristics as a high-frequency magnetic material. Recognize.

【0025】[0025]

【表1】[Table 1]

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、高
周波での保磁力が小さくかつ保磁力の周波数特性が小さ
いという優れた特徴を有する非晶質合金薄帯を得ること
が可能である。また、本発明の方法により得られた薄帯
を使用した磁心は、可飽和リアクトル、ノイズアブソー
バー( 可飽和型インダクタンス素子) 、ノイズフィ
ルター( コモンモード用、ノーマルモード用、高電圧
パルス用) など、高周波で使用するコイル、インダク
タンス部品として用いることにより高周波化による磁心
の発熱を低減でき、スイッチング電源などの電子機器の
小型化に大きく寄与することが可能である。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain an amorphous alloy ribbon having excellent characteristics such as a small coercive force at high frequencies and a small frequency characteristic of the coercive force. . In addition, the magnetic core using the ribbon obtained by the method of the present invention can be used for saturable reactors, noise absorbers (saturable inductance elements), noise filters (for common mode, normal mode, high voltage pulse), etc. By using it as a coil or inductance component used at high frequencies, it is possible to reduce the heat generated by the magnetic core due to high frequencies, and it can greatly contribute to the miniaturization of electronic devices such as switching power supplies.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る製造方法において用いられた装置
の概略図である。
FIG. 1 is a schematic diagram of an apparatus used in a manufacturing method according to the present invention.

【図2】本発明における溶融合金と冷却ロールの関係を
説明するための側断面図である。
FIG. 2 is a side sectional view for explaining the relationship between the molten alloy and the cooling roll in the present invention.

【図3】本発明方法により製造した非晶質合金薄帯と本
発明以外の方法により製造した非晶質合金薄帯との保磁
力の周波数依存性を示す説明図である。
FIG. 3 is an explanatory diagram showing the frequency dependence of the coercive force of an amorphous alloy ribbon manufactured by the method of the present invention and an amorphous alloy ribbon manufactured by a method other than the present invention.

【符号の説明】[Explanation of symbols]

1                      合金
溶解るつぼ2                   
   溶融合金3                 
     冷却ロール4              
        高周波誘導加熱装置5       
               射出ガス6     
                 非晶質合金薄帯7
                      ノズル
8                      スリ
ット10                    真
空容器M                     
 冷却表面ロールの運動方向a           
           スリット厚みb       
               スリット接触長さ
1 Alloy melting crucible 2
Molten alloy 3
cooling roll 4
High frequency induction heating device 5
Injection gas 6
Amorphous alloy ribbon 7
Nozzle 8 Slit 10 Vacuum container M
Cooling surface roll motion direction a
Slit thickness b
Slit contact length

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  合金溶解るつぼ内の溶融合金を加圧し
て、該合金溶解るつぼの底部に設けたノズルから高速回
転する冷却ロール上に溶融合金を射出し、連続的に非晶
質合金薄帯を製造する方法において、スリット厚みが0
.2 〜0.4mm のノズルを周速度2000〜35
00m/分で回転する冷却ロール表面の運動方向に対し
て直角またはほぼ直角となるように配置し、かつノズル
先端と冷却ロール表面との間隔を0.05〜0.5mm
 とすると共に、前記間隔を0.01〜20Torrの
減圧大気または減圧不活性ガス雰囲気中に保持した後、
合金溶解るつぼ内の溶融合金表面に前記の雰囲気圧より
0.2 〜0.5Kgf/cm2高いガス圧をかけて加
圧し、冷却ロール表面上に溶融合金を連続的に押出すこ
とにより、溶融合金が冷却ロール表面に接触後、ノズル
先端面に接触することなしに、ロール回転方向に対して
スリット厚みの1.2 〜3倍のロール接触長さで凝固
を完了させ、薄帯状となって冷却ロール表面の運動方向
に対して0 〜15度上方へ飛び出させて厚さ5 〜1
3μm の非晶質合金薄帯を形成することを特徴とする
高周波磁気特性に優れた非晶質合金薄帯の製造方法
Claim 1: Pressure is applied to the molten alloy in the alloy melting crucible, and the molten alloy is injected from a nozzle provided at the bottom of the alloy melting crucible onto a cooling roll rotating at high speed to continuously form an amorphous alloy ribbon. In the method of manufacturing, the slit thickness is 0.
.. 2 ~ 0.4 mm nozzle at circumferential speed of 2000 ~ 35
The nozzle is arranged so as to be perpendicular or almost perpendicular to the direction of movement of the cooling roll surface that rotates at 00 m/min, and the distance between the nozzle tip and the cooling roll surface is 0.05 to 0.5 mm.
and after maintaining the interval in a reduced pressure atmosphere or reduced pressure inert gas atmosphere of 0.01 to 20 Torr,
The molten alloy is melted by applying a gas pressure 0.2 to 0.5 Kgf/cm2 higher than the above atmospheric pressure to the surface of the molten alloy in the alloy melting crucible and continuously extruding the molten alloy onto the surface of the cooling roll. After contacting the cooling roll surface, solidification is completed at a roll contact length of 1.2 to 3 times the slit thickness in the roll rotation direction without contacting the nozzle tip surface, and the material is cooled into a thin strip. The thickness is 5 to 1 by projecting upward at an angle of 0 to 15 degrees with respect to the direction of movement of the roll surface.
A method for producing an amorphous alloy ribbon with excellent high-frequency magnetic properties, characterized by forming an amorphous alloy ribbon of 3 μm.
JP3099740A 1991-04-05 1991-04-05 Method for producing amorphous alloy ribbon with excellent high-frequency magnetic properties Expired - Lifetime JP2534166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3099740A JP2534166B2 (en) 1991-04-05 1991-04-05 Method for producing amorphous alloy ribbon with excellent high-frequency magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3099740A JP2534166B2 (en) 1991-04-05 1991-04-05 Method for producing amorphous alloy ribbon with excellent high-frequency magnetic properties

Publications (2)

Publication Number Publication Date
JPH04309442A true JPH04309442A (en) 1992-11-02
JP2534166B2 JP2534166B2 (en) 1996-09-11

Family

ID=14255417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3099740A Expired - Lifetime JP2534166B2 (en) 1991-04-05 1991-04-05 Method for producing amorphous alloy ribbon with excellent high-frequency magnetic properties

Country Status (1)

Country Link
JP (1) JP2534166B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254249A (en) * 2004-03-09 2005-09-22 Yaskawa Electric Corp Apparatus for rapidly cooling liquid metal
JP2005342734A (en) * 2004-05-31 2005-12-15 Shinko Electric Co Ltd Method for producing rapid-cooled strip and its apparatus
CN114433803A (en) * 2022-02-10 2022-05-06 郑州机械研究所有限公司 Method for screening cooling speed of amorphous alloy strip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137451A (en) * 1981-02-17 1982-08-25 Allegheny Ludlum Ind Inc Amorphous metal alloy strip and manufacture
JPS5911164A (en) * 1982-07-10 1984-01-20 Yasuno Keiko Artificial crust and its manufacture
JPS62124241A (en) * 1985-11-22 1987-06-05 Nippon Steel Corp Manufacture of rapidly-cooled foil of high-melting point aluminum alloy
JPS63309360A (en) * 1987-06-08 1988-12-16 Ishikawajima Harima Heavy Ind Co Ltd Production of super alloy strip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137451A (en) * 1981-02-17 1982-08-25 Allegheny Ludlum Ind Inc Amorphous metal alloy strip and manufacture
JPS5911164A (en) * 1982-07-10 1984-01-20 Yasuno Keiko Artificial crust and its manufacture
JPS62124241A (en) * 1985-11-22 1987-06-05 Nippon Steel Corp Manufacture of rapidly-cooled foil of high-melting point aluminum alloy
JPS63309360A (en) * 1987-06-08 1988-12-16 Ishikawajima Harima Heavy Ind Co Ltd Production of super alloy strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254249A (en) * 2004-03-09 2005-09-22 Yaskawa Electric Corp Apparatus for rapidly cooling liquid metal
JP2005342734A (en) * 2004-05-31 2005-12-15 Shinko Electric Co Ltd Method for producing rapid-cooled strip and its apparatus
CN114433803A (en) * 2022-02-10 2022-05-06 郑州机械研究所有限公司 Method for screening cooling speed of amorphous alloy strip

Also Published As

Publication number Publication date
JP2534166B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JP3602120B2 (en) Manufacturing method of quenched alloy for nanocomposite magnet
JP3913167B2 (en) Bulk Fe-based sintered alloy soft magnetic material made of metallic glass and manufacturing method thereof
WO2012102379A1 (en) Rapidly quenched fe-based soft magnetic alloy ribbon, method of manufacturing the alloy ribbon, and iron core
CN114411069A (en) Wide iron-based amorphous alloys of precursors to nanocrystalline alloys
JP2018167298A (en) METHOD FOR PRODUCING Fe-Si-B-BASED NANOCRYSTAL ALLOY
JPH0113944B2 (en)
JP3494371B2 (en) Method for producing amorphous alloy ribbon and method for producing nanocrystalline alloy ribbon using the same
WO1999029452A1 (en) Method and apparatus for casting molten metal, and cast piece
JP2708681B2 (en) Method for producing ultrathin amorphous alloy ribbon
JPH04309442A (en) Production of amorphous alloy thin strip having excellent high-frequency magnetic characteristic
JP4332982B2 (en) Manufacturing method of iron-based alloy magnet
GB2147608A (en) Magnetic head for video tape recorder
JP2880428B2 (en) Centrifugal casting equipment
JP3647420B2 (en) Method for producing quenched alloy
JP2002086249A (en) Method for producing amorphous alloy strip
JP4529198B2 (en) Iron-based permanent magnet containing a small amount of rare earth metal and method for producing the same
WO2023022002A1 (en) Method for producing fe-si-b-based thick rapidly solidified alloy thin strip
JP2014087812A (en) Method of manufacturing rare earth magnet alloy ribbon
JPH1154308A (en) Manufacture and apparatus of magnet powder by melt quenching
JP3499075B2 (en) Method and apparatus for controlling surface properties of quenched metal ribbon
JPH1190603A (en) Centrifugal casting method
JP3100798B2 (en) Quenched metal strip manufacturing equipment
JP2001300697A (en) Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon
JP2000345308A (en) Amorphous soft magnetic alloy sintered body, amorphous soft magnetic alloy magnetic core and production of amorphous soft magnetic alloy sintered body
JP2002283008A (en) Method for casting rapidly cooled and solidified strip

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960416