JP2002086249A - Method for producing amorphous alloy strip - Google Patents

Method for producing amorphous alloy strip

Info

Publication number
JP2002086249A
JP2002086249A JP2000275265A JP2000275265A JP2002086249A JP 2002086249 A JP2002086249 A JP 2002086249A JP 2000275265 A JP2000275265 A JP 2000275265A JP 2000275265 A JP2000275265 A JP 2000275265A JP 2002086249 A JP2002086249 A JP 2002086249A
Authority
JP
Japan
Prior art keywords
gas
ribbon
cooling roll
roll
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000275265A
Other languages
Japanese (ja)
Other versions
JP4529106B2 (en
Inventor
Atsushi Sunakawa
淳 砂川
Yoshio Bizen
嘉雄 備前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000275265A priority Critical patent/JP4529106B2/en
Publication of JP2002086249A publication Critical patent/JP2002086249A/en
Application granted granted Critical
Publication of JP4529106B2 publication Critical patent/JP4529106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an amorphous strip excellent in the surface property and the shape of the end parts. SOLUTION: This method for producing the amorphous alloy strip is cast under conditions of <35 m/sec to circumferential speed of a cooling roll, from melting point of the base alloy +50 deg.C to this melting point +25 deg.C to the temperature of the molten metal and <=200 μm to the distance between the tip end of a nozzle and the cooling roll, in the injecting state of gas consisting essentially of CO2 gas so that the main axis of the injecting direction substantially directs the cooling roll at the backward part of a paddle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面性状及び端部
の形状に優れたアモルファス薄帯の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an amorphous ribbon excellent in surface properties and end shape.

【0002】[0002]

【従来の技術】アモルファス薄帯を製造するための製造
方法としては液体急冷法が広く知られている。液体急冷
法としては単ロール法、双ロール法、遠心法等がある
が、生産性およびメンテナンスのし易さから考えると、
高速で回転する一つの冷却ロール上に溶融金属を供給し
て、急冷凝固させて薄帯を得る単ロール法が優れてい
る。従来、単ロール法にてアモルファス薄帯を作製した
場合、薄帯のロール接触面側にはエアポケットと呼ばれ
る窪みが形成される。これは、冷却ロールの回転に伴い
発生する連れ回りガスが、湯だまり部分(以下パドルと
呼ぶ。)と冷却ロールとの境界層に巻き込まれた際、凝
固するまでにパドル内部で膨張するためであると言われ
ている。
2. Description of the Related Art As a production method for producing an amorphous ribbon, a liquid quenching method is widely known. As the liquid quenching method, there are a single roll method, a twin roll method, a centrifugal method, and the like, but from the viewpoint of productivity and ease of maintenance,
The single roll method in which molten metal is supplied onto one cooling roll rotating at a high speed and rapidly solidified to obtain a ribbon is excellent. Conventionally, when an amorphous ribbon is produced by a single roll method, a depression called an air pocket is formed on the roll contact surface side of the ribbon. This is because when the entrained gas generated by the rotation of the cooling roll is caught in the boundary layer between the pool (hereinafter referred to as a paddle) and the cooling roll, it expands inside the paddle before solidifying. It is said that there is.

【0003】このエアポケットの発生を抑制するための
手法としては、真空あるいはHe雰囲気中で製造する方
法、あるいはパドルの後方(上流側)からHe、加熱し
たCO、あるいはCOガス等を流しながら製造する方
法が提案されている。中でも製造コスト及び安全性の点
から、COガスをパドル後方から流す方法が優れてい
ると考えられ、様々な提案がなされている。たとえば、
特開平6−292950には、カーボンブレードに沿っ
てCOガスを流す方法が提案されている。この方法
は、冷却ロールとパドル間へのガス層の混入が抑制され
るため、冷却ロールと溶融金属間の伝熱抵抗を低下する
ことができることから、冷却ロールの周速を15〜27
m/secとして、板厚が35〜100μmの比較的厚
いものを製造しても、脆化し難くなるという点で優れた
ものである。また、特開平9−268354には、ロー
ル周速が35m/sec以上、CO濃度が50%以上
の雰囲気中で、板厚15〜25μmの薄帯を製造する方
法も提案されている。この提案はエアポケットの発生を
抑制することで、リボンのロール接触面側の表面粗さが
小さくなるという点で優れている。
As a method for suppressing the generation of the air pocket, a method of manufacturing in a vacuum or He atmosphere, or a method of flowing He, heated CO, or CO 2 gas from the rear (upstream side) of the paddle is used. Manufacturing methods have been proposed. Above all, from the viewpoint of manufacturing cost and safety, a method of flowing CO 2 gas from the rear of the paddle is considered to be excellent, and various proposals have been made. For example,
Japanese Patent Laid-Open No. 6-292950 proposes a method of flowing a CO 2 gas along a carbon blade. In this method, since the gas layer is prevented from being mixed between the cooling roll and the paddle, the heat transfer resistance between the cooling roll and the molten metal can be reduced.
Even when a relatively thick plate having a plate thickness of 35 to 100 μm is manufactured at m / sec, it is excellent in that it is hardly embrittled. Japanese Patent Application Laid-Open No. Hei 9-268354 also proposes a method for producing a ribbon having a thickness of 15 to 25 μm in an atmosphere having a roll peripheral speed of 35 m / sec or more and a CO 2 concentration of 50% or more. This proposal is excellent in that the generation of air pockets is suppressed and the surface roughness of the ribbon on the roll contact surface side is reduced.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、CO
ガスを流しながらアモルファス薄帯を製造する際、ガス
の流し方や冷却ロールの周速等を変えて様々な条件で製
造した。その結果、CO ガスの導入により、薄帯のロ
ール接触面側の表面形態を改善することが出来るが、そ
の一方で薄帯の自由凝固面側ではCOガスを用いない
場合よりも凹凸が大きくなったり、また薄帯の端部では
形状が鋸状に乱れるという問題が生じることがわかっ
た。
SUMMARY OF THE INVENTION2
When producing an amorphous ribbon while flowing gas,
It can be manufactured under various conditions by changing the
Built. As a result, CO 2By introducing gas, thin ribbon
Surface morphology on the tool contact surface side can be improved.
On the other hand, on the free solidification side of the ribbon, CO2Does not use gas
The unevenness is larger than in the case, and at the end of the ribbon
It turns out that there is a problem that the shape is distorted like a saw
Was.

【0005】薄帯の表面や端部の形状が悪いと、薄帯を
トロイダル状に巻き回したり、打抜いて積層することに
よって磁心として使用する際に、磁心の占積率(見かけ
の断面積に対してリボンが占める割合。)が低下する。
占積率が低下すると、同じ内外径の磁心を作製した場
合、総磁束やインダクタンスも低下するため、その分磁
心を大きくしたり、巻線の数を増加しなければならなく
なる。これは機器の小型化や、コストの点で問題とな
る。また、例えば薄帯は連続的に軸に巻き取ることで磁
心となるが、巻き取りは製品高さを一定にするため薄帯
の端部に板等を当てながら行われることが多い。このと
き薄帯の端部が鋸状に乱れていると、前述した板等に薄
帯がひっかかり磁心の作製がし難くなる。
[0005] If the shape and shape of the surface of the ribbon are not good, when the ribbon is used as a magnetic core by winding it in a toroidal shape or by punching and laminating, the space factor (apparent sectional area) of the magnetic core is reduced. Of the ribbon.)
When the space factor decreases, when a magnetic core having the same inner and outer diameters is manufactured, the total magnetic flux and the inductance also decrease. Therefore, it is necessary to increase the magnetic core and increase the number of windings. This poses problems in terms of downsizing of equipment and cost. Further, for example, a ribbon is continuously wound around a shaft to form a magnetic core. In many cases, the winding is performed while applying a plate or the like to an end of the ribbon to keep the product height constant. At this time, if the end of the ribbon is distorted in a saw-tooth shape, the ribbon sticks to the above-mentioned plate or the like, making it difficult to manufacture a magnetic core.

【0006】本発明は、COガスが薄帯のロール接触
面側の表面形態を改善する効果を損なうことなく、自由
凝固面の形態、及び端部の形状にも優れた薄帯を製造す
る方法を提供することである。
According to the present invention, a ribbon having an excellent free solidified surface shape and an excellent end shape can be produced without impairing the effect of improving the surface morphology of the ribbon on the roll contact surface side by the CO 2 gas. Is to provide a way.

【0007】[0007]

【課題を解決するための手段】本発明者らは、主として
薄帯の自由凝固面側の表面形態および、端部の形状の問
題を検討し、COガスの流し方および冷却ロールの周
速、溶湯温度、溶湯ノズルと冷却ロール間の距離を適正
化することで、改善できることを見出し本発明に到達し
た。
Means for Solving the Problems The present inventors mainly studied the surface morphology on the free solidification surface side of the ribbon and the problem of the shape of the end portion, and examined the flow of CO 2 gas and the peripheral speed of the cooling roll. The present invention was found to be able to be improved by optimizing the molten metal temperature and the distance between the molten metal nozzle and the cooling roll, and reached the present invention.

【0008】すなわち本発明は、COガスを主体とす
るガスを噴出方向の主軸が実質的にパドルより後方の冷
却ロールに向くように噴出した状態で、冷却ロールの周
速を35m/sec未満、溶湯の温度を母合金の融点+
50〜融点+250℃、ノズル先端と冷却ロール間の距
離を200μm以下の条件で鋳造することを特徴とする
アモルファス合金薄帯の製造方法である。また、上記製
造方法に関して冷却ロールの周速の好ましい範囲は20
〜30m/secである。加えて、薄帯を磁心に加工し
た際の渦電流損失による磁気特性劣化を考慮すると薄帯
の板厚は薄いことが好ましいが、本発明は板厚を19μ
m以下とした場合でも、薄帯の表面形態や端部の形状に
改善に効果がある。なお、8μm未満ではロールの振動
等による外因によって薄帯に欠陥が生じ易くなるため、
板厚は8〜19μmが好ましい。
That is, according to the present invention, the peripheral speed of the cooling roll is less than 35 m / sec in a state where the gas mainly composed of CO 2 gas is ejected such that the main axis in the ejection direction is substantially directed to the cooling roll behind the paddle. , The temperature of the molten metal to the melting point of the mother alloy +
This is a method for producing an amorphous alloy ribbon, wherein casting is performed under the conditions of 50 to melting point + 250 ° C. and the distance between the nozzle tip and the cooling roll is 200 μm or less. Further, the preferable range of the peripheral speed of the cooling roll in the above-mentioned manufacturing method is 20
3030 m / sec. In addition, in consideration of magnetic characteristic deterioration due to eddy current loss when the ribbon is formed into a magnetic core, the thickness of the ribbon is preferably small.
Even if it is less than m, it is effective in improving the surface morphology and end shape of the ribbon. If the thickness is less than 8 μm, defects are likely to occur in the ribbon due to external factors such as vibration of the roll.
The plate thickness is preferably 8 to 19 μm.

【0009】[0009]

【発明の実施の形態】上述したように、本発明の重要な
特徴はCOガスを主体とするガスを噴出方向の主軸が
実質的にパドルより後方の冷却ロールに向くように噴出
させ、且つ冷却ロールの周速を35m/sec未満、溶
湯の温度を母合金の融点+50〜融点+250℃、溶湯
を噴出するノズル先端と冷却ロール間の距離を200μ
m以下の範囲で保持したことにある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention is that a gas mainly composed of CO 2 gas is jetted such that the main axis in the jetting direction is substantially directed to a cooling roll behind the paddle, and The peripheral speed of the cooling roll is less than 35 m / sec, the temperature of the molten metal is +50 to + 250 ° C. of the melting point of the mother alloy, and the distance between the tip of the nozzle for ejecting the molten metal and the cooling roll is 200 μm.
m or less.

【0010】COガスを主体とするガスの噴出方向の
主軸を実質的にパドルより後方の冷却ロールに向くよう
に噴出させるのは、ノズル先端部あるいはパドルに直接
吹き付けた場合、自由凝固面が梨肌となり、さらにロー
ル接触面側ではガスを流さない場合よりも巨大なエアポ
ケットが生成し、COガスを流さない場合よりもかえ
って薄帯の表面形態が劣化するからである。ガスの主軸
をパドルの前方(下流側)から冷却ロールあるいはパド
ルに向けた場合は、ロール接触面側の表面形態は、ガス
を流さない場合とほぼ同等であるが、自由凝固面側の表
面形態はCOガスを流さない場合よりも劣化するた
め、パドルの前方からガスを吹き出すことも好ましくな
い。
[0010] The jetting of the main axis of the gas mainly composed of CO 2 gas so as to be directed substantially toward the cooling roll behind the paddle is performed when the free solidified surface is directly blown to the nozzle tip or the paddle. This is because the skin becomes pear-skin, and a larger air pocket is generated on the roll contact surface side than when no gas is flown, and the surface morphology of the ribbon is deteriorated rather than when no CO 2 gas is flown. When the main axis of the gas is directed from the front (downstream side) of the paddle to the cooling roll or paddle, the surface configuration on the roll contact surface side is almost the same as when no gas is flown, but the surface configuration on the free solidification surface side Is more degraded than when no CO 2 gas is flown, so it is not preferable to blow out the gas from the front of the paddle.

【0011】また、冷却ロールの周速を35m/sec
未満としたのは、これ以上の周速では薄帯の表面形態あ
るいは端部の形状が悪くなるからである。特に端部の形
状の劣化は、冷却ロールの周速を35m/sec以上と
した場合、COガスを流さない場合よりも顕著に認め
られた。
Further, the peripheral speed of the cooling roll is set to 35 m / sec.
The reason for the lower limit is that at a peripheral speed higher than this, the surface morphology or end shape of the ribbon becomes poor. Particularly, the deterioration of the shape of the end portion was more remarkably observed when the peripheral speed of the cooling roll was 35 m / sec or more than when the CO 2 gas was not supplied.

【0012】一般にロールの回転に伴い、ロール表面上
を連れまわるガスがパドルに衝突する際の圧力は、1/
2×ガスの密度×ロール周速で表される。ガスの衝突
の圧力はガスの密度に比例するため、空気に比べて密度
が大きいCOガスは衝突の際にパドルの形状を乱しや
すいと思われる。従ってCOガスをパドル周辺に用い
るロール鋳造では、空気中で行う通常のロール鋳造と比
べてロール周速を低くすることが重要となる。
Generally, as the roll rotates, the pressure at which the gas entrained on the roll surface collides with the paddle is 1 /
It is expressed by 2 × gas density × roll peripheral speed 2 . Since the pressure of gas collision is proportional to the density of the gas, it is considered that CO 2 gas having a higher density than air tends to disturb the shape of the paddle at the time of collision. Therefore, in roll casting using CO 2 gas around the paddle, it is important to lower the roll peripheral speed as compared with normal roll casting performed in air.

【0013】溶湯の温度の下限値を母合金の融点+50
℃としたのは、融点+50℃未満では薄帯の製造中に溶
湯噴出ノズル内にSiやAlの酸化物等が付着しやすく
なるためである。ノズル内に酸化物等が付着すると薄帯
にすじ傷が入ったり、ノズルが閉塞するという問題を生
じる。
[0013] The lower limit of the temperature of the molten metal is calculated as the melting point of the master alloy + 50
The reason why the temperature is set to 0 ° C. is that if the melting point is lower than + 50 ° C., oxides of Si and Al easily adhere to the inside of the molten metal jet nozzle during the production of the ribbon. If oxides or the like adhere to the nozzle, there arises a problem that the ribbon is scratched or the nozzle is blocked.

【0014】溶湯の温度の上限を母合金の融点+250
℃としたのは、あまり高い温度まで加熱すると、ロール
接触面側に発生するエアポケットの生成を十分に抑制で
きなくなり、表面粗さが大きくなるからである。CO
ガスによりエアポケットが低減する理由の一つは、CO
は空気に比べて比熱が大きいため、パドル内部に巻き
込まれても膨張率が空気より小さい点である。しかし、
溶湯温度が高すぎると冷却速度が遅くなり、逆にパドル
内部での膨張が十分に抑制できなくなり、表面粗さが大
きくなると考えられる。
The upper limit of the temperature of the molten metal is calculated as the melting point of the master alloy + 250
The reason why the temperature is set to ° C. is that if the temperature is too high, the generation of air pockets generated on the roll contact surface side cannot be sufficiently suppressed, and the surface roughness increases. CO 2
One of the reasons air reduces gas pockets is that CO
2 has a larger specific heat than air, and thus has a smaller expansion coefficient than air even when it is caught in the paddle. But,
If the temperature of the molten metal is too high, the cooling rate becomes slow, and conversely, the expansion inside the paddle cannot be sufficiently suppressed, and the surface roughness is considered to be large.

【0015】溶湯を噴出するノズルと冷却ロール間の距
離を200μm以下としたのは、200μmを越えると
薄帯の端部の形状が乱れたり、自由凝固面側の表面形態
が悪くなるからである。この現象はCOガスを流さな
い場合と比べて、流した方が顕著であった。
The reason why the distance between the nozzle for ejecting the molten metal and the cooling roll is set to 200 μm or less is that if it exceeds 200 μm, the shape of the end of the ribbon is disturbed or the surface morphology on the free solidified surface side deteriorates. . This phenomenon was more remarkable when flowing CO 2 gas than when not flowing.

【0016】板厚の薄い薄帯を鋳造する場合は、厚い薄
帯の場合と比べて高いロール周速で鋳造を行うのが通常
であるが、上記の理由から製造する板厚が薄くても、可
能な限り冷却ロール周速を遅くした方が良い。本発明者
らの検討によれば、請求項1に記載の範囲に溶湯温度等
を制御すれば、周速35m/sec未満で19μm以下
の薄い板厚でも、表面形態や端部の形状の良好な薄帯が
得られることが確認された。周速を遅くして薄板材を作
製する場合、主として溶湯ノズルスリットサイズあるい
は、溶湯ノズルと冷却ロール間の距離を小さくするが、
制御のし易さの点から、好ましい範囲は20〜30m/
secである。より好ましくは27〜30m/secで
ある。
In the case of casting a thin ribbon, it is usual to carry out casting at a higher roll peripheral speed than in the case of a thick ribbon. It is better to reduce the peripheral speed of the cooling roll as much as possible. According to the study of the present inventors, if the molten metal temperature or the like is controlled within the range described in claim 1, even if the peripheral speed is less than 35 m / sec and the thickness is 19 μm or less, the surface morphology and the shape of the end portion are good. It was confirmed that a thin ribbon could be obtained. When producing a thin plate material by slowing the peripheral speed, mainly reduce the melt nozzle slit size or the distance between the melt nozzle and the cooling roll,
From the viewpoint of easy control, a preferable range is 20 to 30 m /.
sec. More preferably, it is 27 to 30 m / sec.

【0017】[0017]

【実施例】(実施例1)図1に示した坩堝内に予め溶製
された原子%で4Si−10B−4C、残部実質的にF
eからなる組成のインゴットを装入、高周波誘導加熱で
溶解した。これをCu−Be合金からなる冷却ロール上
に噴出、急冷凝固して、幅27mm、厚さ19μmのアモ
ルファス薄帯を製造した。
(Example 1) 4Si-10B-4C in atom% previously melted in the crucible shown in FIG. 1 and the remainder substantially F
An ingot having a composition of e was charged and melted by high-frequency induction heating. This was jetted onto a cooling roll made of a Cu-Be alloy and rapidly solidified to produce an amorphous ribbon having a width of 27 mm and a thickness of 19 µm.

【0018】鋳造は下記の条件で行った。 ガス導入位置:ガスノズルをガス噴出方向の主軸を冷却
ロールに向け、溶湯噴出ノズルの後方に設置(図2参
照)。 冷却ロール周速:27m/sec 溶湯温度:1270℃ (母合金の融点1100℃) 溶湯噴出ノズル先端と冷却ロールとの距離:120μm ガス流量:30L/min なお、図2中のLは15mmとし、ガスノズルの吹き出
し口の形状は、ロールの幅方向に30mm、回転方向に
1mmとした。薄帯の回収は、図1中に示すように、冷
却ロールの回転方向とは逆向きに高圧ガスを吹き付ける
ことによって、強制的に剥離させたものをリール等に巻
き取ることによって行った。
The casting was performed under the following conditions. Gas introduction position: The gas nozzle is installed behind the molten metal jet nozzle with the main axis in the gas jetting direction facing the cooling roll (see FIG. 2). Cooling roll peripheral speed: 27 m / sec Melt temperature: 1270 ° C. (melting point of mother alloy: 1100 ° C.) Distance between tip of molten metal jetting nozzle and cooling roll: 120 μm Gas flow rate: 30 L / min L in FIG. The shape of the outlet of the gas nozzle was 30 mm in the width direction of the roll and 1 mm in the rotation direction. As shown in FIG. 1, the recovery of the ribbon was performed by blowing a high-pressure gas in a direction opposite to the rotation direction of the cooling roll, and forcibly peeling the strip onto a reel or the like.

【0019】比較として、ガスの噴出方向の主軸をノズ
ル先端部(図3参照)およびパドル(図4参照)に向け
て同様に薄帯を製造した。加えて、ガスを流さずに薄帯
の製造を行った。
As a comparison, a ribbon was produced in the same manner with the main axis in the gas ejection direction directed toward the nozzle tip (see FIG. 3) and the paddle (see FIG. 4). In addition, a ribbon was manufactured without flowing gas.

【0020】上記4種類の製造条件で作製した薄帯に関
し、JIS B0601に基づいて薄帯の自由接触面側
および、ロール接触面側の平均粗さRaを測定した。結
果を表1に示す。表から明らかなように、ガスの噴出方
向の主軸を冷却ロール面に向けた本発明は、自由凝固
面、ロール接触面ともにRaが非常に小さく、良好であ
る。一方、ガスの噴出方向をノズル先端部およびパドル
に向けた場合、その粗さはガスを流さなかった場合より
もかえって悪くなっていることが分かる。さらに、トロ
イダル状に積層した後の占積率を、ASTM A900
−91に基づいてを測定した結果を表1に併せて示す。
この結果でも、ガスの噴出方向を冷却ロールに向けたも
のはガスを流さない場合と比べてと大きく改善している
が、一方噴出方向をパドルおよびノズル先端部に向けた
場合は逆に悪くなっている。
The average roughness Ra of the free contact surface side and the roll contact surface side of the ribbon was measured based on JIS B0601 for the ribbon produced under the above four types of manufacturing conditions. Table 1 shows the results. As is clear from the table, in the present invention in which the main axis in the gas ejection direction is directed to the cooling roll surface, Ra is very small on both the free solidified surface and the roll contact surface, and is excellent. On the other hand, when the gas ejection direction is directed to the nozzle tip and the paddle, it can be seen that the roughness is worse than when the gas is not flown. Further, the space factor after lamination in a toroidal shape was determined according to ASTM A900.
Table 1 also shows the results of measurement based on -91.
Also in this result, when the gas ejection direction is directed to the chill roll, it is greatly improved compared to the case where no gas is flowed, but on the other hand, when the ejection direction is directed to the paddle and the nozzle tip, it becomes worse. ing.

【0021】[0021]

【表1】 [Table 1]

【0022】(実施例2)図1に示した坩堝内に予め溶
製された原子%で1.3Fe−3.7Mn−2.5Mo
−15Si−9B、残部実質的にCoからなる組成のイ
ンゴットを装入、高周波誘導加熱で溶解した。これをC
u−Be合金からなる冷却ロール上に噴出、急冷凝固し
て、幅40mm、厚さ16μmのアモルファス薄帯を製造
した。
(Example 2) In a crucible shown in FIG. 1, 1.3Fe-3.7Mn-2.5Mo in atomic% was previously melted.
An ingot having a composition of -15Si-9B and the balance substantially consisting of Co was charged and melted by high-frequency induction heating. This is C
An amorphous ribbon having a width of 40 mm and a thickness of 16 μm was produced by squirting onto a cooling roll made of a u-Be alloy and rapidly solidifying it.

【0023】鋳造は下記の条件で行った。 ガス導入位置:ガスノズルをガス噴出方向の主軸を冷却
ロールに向け、溶湯噴出ノズルの後方に設置(図2参
照)。 冷却ロール周速:30m/sec 溶湯温度:1250℃ (母合金の融点1050℃) 溶湯噴出ノズル先端と冷却ロールとの距離:160μm ガス流量:40L/min なお、図2中のLは20mmとし、ガスノズルの吹き出
し口の形状は、ロールの幅方向に50mm、回転方向に
1.5mmとした。薄帯の回収方法は実施例1で述べた
方法と同様とした。
The casting was performed under the following conditions. Gas introduction position: The gas nozzle is installed behind the molten metal jet nozzle with the main axis in the gas jetting direction facing the cooling roll (see FIG. 2). Cooling roll peripheral speed: 30 m / sec Melt temperature: 1250 ° C. (melting point of the master alloy: 1050 ° C.) Distance between the tip of the molten metal jet nozzle and the cooling roll: 160 μm Gas flow rate: 40 L / min Note that L in FIG. The shape of the outlet of the gas nozzle was 50 mm in the width direction of the roll and 1.5 mm in the rotation direction. The method of recovering the ribbon was the same as the method described in Example 1.

【0024】比較として、冷却ロールの周速を40m/
secとし薄帯の製造を行った。ただし、溶湯噴出ノズ
ルのスリットサイズを大きくし、板厚が前述したものと
ほぼ同様になるようにした。加えて、上記2種類の製造
過程で、ガスを流さない状態でも薄帯の製造を行った。
For comparison, the peripheral speed of the cooling roll was set to 40 m /
The production of a ribbon was performed in sec. However, the slit size of the molten metal jet nozzle was increased so that the plate thickness was almost the same as that described above. In addition, in the above two types of manufacturing processes, a ribbon was manufactured without flowing gas.

【0025】上記4種類の製造条件で作製した薄帯に関
し、JIS B0601に基づき、薄帯の自由凝固面お
よびロール接触面側の平均粗さRaを測定した。表2に
結果を示す。ガスを流した場合、流さなかった場合とも
に周速40m/secで鋳造したもの面粗さが大きい
が、ロール接触面側の面粗さは、COガスを流した場
合に特に周速の影響を受けやすいことが分かる。また、
ガスを流して製造した2種類の薄帯について、走査型電
子顕微鏡にて端部の形状を観察した結果を図5および図
6に示す。図から周速30m/secで作製した薄帯の
端部形状に比べ、周速を40m/secとしたものは、
端部の形状の乱れが大きいことが分かる。なお、ガスを
流さない場合では、このような端部形状の乱れは認られ
ない。
The average roughness Ra of the free solidified surface and the roll contact surface side of the ribbon was measured based on JIS B0601 for the ribbon produced under the above four types of manufacturing conditions. Table 2 shows the results. Casting at a peripheral speed of 40 m / sec both when the gas was flowed and when the gas was not flowed, the surface roughness was large, but the surface roughness on the roll contact surface side was particularly affected by the peripheral speed when the CO 2 gas was flowed. It turns out that it is easy to receive. Also,
FIGS. 5 and 6 show the results of observing the shapes of the ends of the two types of ribbons manufactured by flowing a gas with a scanning electron microscope. As shown in the figure, when the peripheral speed is set to 40 m / sec, compared to the end shape of the ribbon manufactured at the peripheral speed of 30 m / sec,
It can be seen that the shape of the end is largely disturbed. In addition, when the gas is not supplied, such disturbance of the end shape is not recognized.

【0026】[0026]

【表2】 [Table 2]

【0027】(実施例3)図1に示した坩堝内に予め溶
製された原子%で1Cu−2.5Nb−13.5Si−
7B、残部実質的Feからなる、鋳造後の熱処理により
ナノ結晶が発現可能な組成のインゴットを装入、高周波
誘導加熱で溶解した。これをCu−Be合金からなる冷
却ロール上に噴出、急冷凝固して、幅35mm、厚さ1
8.5μmのアモルファス薄帯を製造した。
Example 3 1 Cu-2.5Nb-13.5Si- at atomic% previously melted in the crucible shown in FIG.
7B, an ingot consisting of substantially Fe and having a composition capable of expressing nanocrystals by heat treatment after casting was charged and melted by high-frequency induction heating. This is jetted onto a cooling roll made of a Cu-Be alloy, rapidly solidified, and has a width of 35 mm and a thickness of 1 mm.
An 8.5 μm amorphous ribbon was produced.

【0028】鋳造は下記の条件で行った。 ガス導入位置:ガスノズルをガス噴出方向の主軸を冷却
ロールに向け、溶湯噴出ノズルの後方に設置(図2参
照)。 冷却ロール周速:30m/sec 溶湯温度:1230℃、1300℃、1390℃ (母
合金の融点1150℃) 溶湯噴出ノズル先端と冷却ロールとの距離:150μm ガス流量:32L/min なお、図2中のLは15mmとし、ガスノズルの吹き出
し口の形状は、ロールの幅方向に45mm、回転方向に
2mmとした。製造した薄帯の回収は、実施例1に記載
した方法と同様とした。
The casting was performed under the following conditions. Gas introduction position: The gas nozzle is installed behind the molten metal jet nozzle with the main axis in the gas jetting direction facing the cooling roll (see FIG. 2). Cooling roll peripheral speed: 30 m / sec Molten metal temperature: 1230 ° C., 1300 ° C., 1390 ° C. (melting point of mother alloy: 1150 ° C.) Distance between tip of molten metal jet nozzle and cooling roll: 150 μm Gas flow rate: 32 L / min In FIG. L was 15 mm, and the shape of the outlet of the gas nozzle was 45 mm in the roll width direction and 2 mm in the rotation direction. Recovery of the manufactured ribbon was the same as in the method described in Example 1.

【0029】比較として、母合金の加熱温度を1130
℃と1430℃として、同様の手法で薄帯を製造した。
ただし、母合金の加熱温度を1130℃とした場合、製
造開始して数秒でノズルが閉塞したため、薄帯の回収は
できなかった。
For comparison, the heating temperature of the master alloy was set to 1130
C. and 1430.degree. C., and a ribbon was produced in the same manner.
However, when the heating temperature of the mother alloy was set to 1130 ° C., the nozzle was blocked in a few seconds after the start of the production, so that the ribbon could not be collected.

【0030】回収できた上記4種類の薄帯を用い、JI
S B0601に基づき、薄帯のロール接触面側の平均
粗さRaを測定した。結果を表3に示す。表から本発明
例の3種類の薄帯のRaはいずれも0.3μm以下であ
るが、母合金を1430℃まで加熱出湯して作製した比
較例の薄帯のRaは0.48μmと約1.5倍の粗さと
なった。
Using the four types of thin ribbons collected above, JI
Based on SB0601, the average roughness Ra on the roll contact surface side of the ribbon was measured. Table 3 shows the results. From the table, all three types of ribbons of the present invention have Ra of 0.3 μm or less, but the Ra of the ribbon of the comparative example prepared by heating the mother alloy to 1430 ° C. to be 0.48 μm is about 1 μm. .5 times the roughness.

【0031】[0031]

【表3】 [Table 3]

【0032】(実施例4)図1に示した坩堝内に予め溶
製された原子%で1Cu−3Nb−15.5Si−6.
5B、残部実質的Feからなる、鋳造後の熱処理により
ナノ結晶が発現可能な組成のインゴットを装入、高周波
誘導加熱で溶解した。これをCu−Be合金からなる冷
却ロール上に噴出、急冷凝固して、幅20mm、厚さ1
5μmのナノ結晶軟磁性材用アモルファス薄帯を製造し
た。
Example 4 In the crucible shown in FIG. 1, 1Cu-3Nb-15.5Si-6.
5B, an ingot composed of substantially the remainder of Fe and capable of expressing nanocrystals by heat treatment after casting was charged and melted by high-frequency induction heating. This is jetted onto a cooling roll made of a Cu-Be alloy, rapidly solidified, and has a width of 20 mm and a thickness of 1 mm.
A 5 μm amorphous ribbon for a nanocrystalline soft magnetic material was produced.

【0033】鋳造は下記の条件で行った。 ガス導入位置:ガスノズルをガス噴出方向の主軸を冷却
ロールに向け、溶湯噴出ノズルの後方に設置(図2参
照)。 冷却ロール周速:25m/sec 溶湯温度:1350℃ (母合金の融点1135℃) 溶湯噴出ノズル先端と冷却ロールとの距離:120μm ガス流量:40L/min なお、図2中のLは25mmとし、ガスノズルの吹き出
し口の形状は、ロールの幅方向に30mm、回転方向に
1mmとした。製造した薄帯の回収は、実施例1に記載
した方法と同様とした。
The casting was performed under the following conditions. Gas introduction position: The gas nozzle is installed behind the molten metal jet nozzle with the main axis in the gas jetting direction facing the cooling roll (see FIG. 2). Cooling roll peripheral speed: 25 m / sec Melt temperature: 1350 ° C. (melting point of mother alloy: 1135 ° C.) Distance between tip of molten metal jet nozzle and cooling roll: 120 μm Gas flow rate: 40 L / min Note that L in FIG. The shape of the outlet of the gas nozzle was 30 mm in the width direction of the roll and 1 mm in the rotation direction. Recovery of the manufactured ribbon was the same as in the method described in Example 1.

【0034】また、比較例として冷却ロールと溶湯噴出
ノズル先端の距離を250μmとした。このとき板厚が
前述した値とほぼ同じになるように、溶湯噴出ノズルの
スリットサイズを小さくした。加えて、上記2種類の製
造条件において、ガスの流量を0とした場合についても
薄帯の製造を行った。
As a comparative example, the distance between the cooling roll and the tip of the molten metal jet nozzle was 250 μm. At this time, the slit size of the molten metal ejection nozzle was reduced so that the plate thickness became substantially the same as the above-mentioned value. In addition, under the above two types of manufacturing conditions, a ribbon was manufactured even when the gas flow rate was set to 0.

【0035】上記4種類の薄帯について、JIS B0
601に基づき、薄帯の自由凝固面および、ロール接触
面側の平均粗さRaを測定した結果を表4に示す。表か
ら溶湯ノズルと冷却ロールとの距離を200μmより小
さくした方が、表面粗さが小さいことは明らかである。
また、自由凝固面側の表面粗さに着目すると、ノズルと
ロールとの距離が120μmの場合、COガスにより
面粗さが改善している。これに対しノズルとロールとの
距離が250μmの場合、COガスを流さない場合よ
りもかえって大きくなっており、COガスを用いた場
合にはノズルとロールとの距離が面粗により顕著に影響
することがわかる。
Regarding the above four types of ribbons, JIS B0
Table 4 shows the results obtained by measuring the average roughness Ra of the free solidified surface of the ribbon and the roll contact surface based on 601. It is clear from the table that the surface roughness is smaller when the distance between the melt nozzle and the cooling roll is smaller than 200 μm.
Focusing on the surface roughness on the free solidified surface side, when the distance between the nozzle and the roll is 120 μm, the surface roughness is improved by the CO 2 gas. On the other hand, when the distance between the nozzle and the roll is 250 μm, the distance is larger than when the CO 2 gas is not flown. When the CO 2 gas is used, the distance between the nozzle and the roll is more remarkable due to the surface roughness. You can see the effect.

【0036】図7に比較例No.2の自由凝固面側の外
観写真を示す。長手方向に約3mm間隔で幅方向にスジ
が認められる。このスジの部分は周囲に比べ、板厚が5
〜7μmも薄くなっている。この模様はNo.4のリボ
ンにも認められるが、スジの部分と周囲との板厚の差が
4μm以下であった。このため、ガスを流した方が、表
面粗さが大きくなったと思われる。さらに、薄帯の端部
の形状を走査型電子顕微鏡にて観察したところ、比較例
No.2の薄帯には図8に示すような鋸状の乱れが認め
られた。なお、これら自由凝固面側に見られる薄帯端部
の鋸状の乱れは、本発明例及び比較例No.3、4では
見られない。
FIG. 2 shows a photograph of the appearance of the free solidified surface side. Streaks are observed in the width direction at intervals of about 3 mm in the longitudinal direction. The thickness of this streak part is 5
77 μm thinner. This pattern is no. As can be seen from the ribbon No. 4, the difference in the thickness between the streak portion and the periphery was 4 μm or less. For this reason, it is considered that the surface roughness was increased by flowing the gas. Furthermore, the shape of the end of the ribbon was observed with a scanning electron microscope. Saw-like disturbance as shown in FIG. The saw-like turbulence at the end of the ribbon, which is seen on the free solidified surface side, is caused by the present invention example and comparative example No. Not seen in 3 and 4.

【0037】次に、上記4種類の条件で製造した薄帯を
トロイダル状に巻き回し、外径19mm、内径15mm
の磁心を作製した。これらを非反応性雰囲気中、520
℃で熱処理し、薄帯を構成する結晶粒の平均粒径が10
0nm以下のナノ結晶組織とした。このように作製した
磁心に1次線10回、2次線10回の巻線を施し、50
Hzにおける最大透磁率μmを測定した。結果を表4に
併せて示す。自由凝固面、ロール接触面共にRaが最も
小さい本発明の製造方法で作製した薄帯を用いた磁心
で、最も高い透磁率が得られている。
Next, the ribbons manufactured under the above four conditions are wound in a toroidal shape, and the outer diameter is 19 mm and the inner diameter is 15 mm.
Was manufactured. These are placed in a non-reactive atmosphere at 520
℃, the average grain size of the crystal grains constituting the ribbon is 10
A nanocrystalline structure of 0 nm or less was obtained. The magnetic core manufactured in this manner is wound with a primary wire 10 times and a secondary wire 10 times.
The maximum magnetic permeability μm at Hz was measured. The results are shown in Table 4. The highest magnetic permeability is obtained in the magnetic core using the ribbon manufactured by the manufacturing method of the present invention having the smallest Ra on both the free solidified surface and the roll contact surface.

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【発明の効果】本発明によれば、COガスの噴出条件
だけでなく、他の製造条件である冷却ロールの周速等を
適正化することにより、表面形態及び端部の形状の良い
アモルファス薄帯が製造可能となり、その工業的価値は
大きい。
According to the present invention, not only the conditions for jetting CO 2 gas but also other manufacturing conditions, such as the peripheral speed of the cooling roll, are optimized, so that the amorphous material having a good surface morphology and good end shape can be obtained. The ribbon can be manufactured, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法を実施する装置の一例を示す
模式図である。
FIG. 1 is a schematic view showing an example of an apparatus for performing a manufacturing method of the present invention.

【図2】本発明の製造方法を実施するガスノズルの一例
を示す模式図である。
FIG. 2 is a schematic view showing an example of a gas nozzle for performing the manufacturing method of the present invention.

【図3】比較例におけるガスノズルの一例を示す模式図
である。
FIG. 3 is a schematic diagram illustrating an example of a gas nozzle in a comparative example.

【図4】比較例におけるガスノズルの一例を示す模式図
である。
FIG. 4 is a schematic diagram illustrating an example of a gas nozzle in a comparative example.

【図5】本発明の製造方法で製造した薄帯の鋳造ままに
おける、ロール接触面側端部の走査型電子顕微鏡写真で
ある。
FIG. 5 is a scanning electron micrograph of an end portion on a roll contact surface side of an as-cast ribbon manufactured by the manufacturing method of the present invention.

【図6】比較例の薄帯の鋳造ままにおける、ロール接触
面側端部の走査型電子顕微鏡写真である。
FIG. 6 is a scanning electron micrograph of an end portion on a roll contact surface side of a comparative example in a state where a thin ribbon is cast.

【図7】比較例の薄帯の鋳造ままにおける、自由凝固面
の外観の顕微鏡写真である。
FIG. 7 is a photomicrograph of the appearance of a free-solidified surface of a comparative example as-cast ribbon.

【図8】比較例の薄帯の鋳造ままにおける、ロール接触
面側端部の走査型電子顕微鏡写真である。
FIG. 8 is a scanning electron micrograph of a roll contact surface side end portion of a comparative example in a state where a thin ribbon is cast.

【符号の説明】[Explanation of symbols]

1.坩堝、2.高周波コイル、3.母合金、4.溶湯噴
出ノズル 5.冷却ロール、6.アモルファス薄帯、7.剥離ガス
ノズル 8.ガスノズル(本発明例)、9.パドル、10.ガス
ノズル(比較例) 11.ガスノズル(比較例)
1. Crucible, 2. High frequency coil, 3. Mother alloy; 4. 4. Molten jet nozzle 5. chill roll, Amorphous ribbon, 7. 7. Stripping gas nozzle 8. gas nozzle (example of the present invention); Paddle; 10. Gas nozzle (comparative example) Gas nozzle (comparative example)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 COガスを主体とするガスを噴出方向
の主軸が実質的にパドルより後方の冷却ロールに向くよ
うに噴出した状態で、冷却ロールの周速を35m/se
c未満、溶湯の温度を母合金の融点+50〜融点+25
0℃、ノズル先端と冷却ロール間の距離を200μm以
下の条件で鋳造することを特徴とするアモルファス合金
薄帯の製造方法。
1. A cooling roll having a peripheral speed of 35 m / sec in a state in which a gas mainly composed of a CO 2 gas is jetted such that a main axis in a jetting direction is substantially directed to a cooling roll behind a paddle.
c, the temperature of the molten metal is set to the melting point of the mother alloy + 50 to the melting point + 25.
A method for producing an amorphous alloy ribbon, comprising casting at 0 ° C. and a distance between a nozzle tip and a cooling roll of 200 μm or less.
【請求項2】 冷却ロールの周速を20〜30m/se
cとすることを特徴とする請求項1に記載のアモルファ
ス合金薄帯の製造方法。
2. A cooling roll having a peripheral speed of 20 to 30 m / sec.
The method for producing an amorphous alloy ribbon according to claim 1, wherein c is used.
【請求項3】 板厚が8〜19μmのアモルファス合金
薄帯を製造することを特徴とする請求項1または請求項
2に記載のアモルファス合金薄帯の製造方法。
3. The method for producing an amorphous alloy ribbon according to claim 1, wherein an amorphous alloy ribbon having a thickness of 8 to 19 μm is produced.
JP2000275265A 2000-09-11 2000-09-11 Method for producing amorphous alloy ribbon Expired - Fee Related JP4529106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000275265A JP4529106B2 (en) 2000-09-11 2000-09-11 Method for producing amorphous alloy ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000275265A JP4529106B2 (en) 2000-09-11 2000-09-11 Method for producing amorphous alloy ribbon

Publications (2)

Publication Number Publication Date
JP2002086249A true JP2002086249A (en) 2002-03-26
JP4529106B2 JP4529106B2 (en) 2010-08-25

Family

ID=18760914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000275265A Expired - Fee Related JP4529106B2 (en) 2000-09-11 2000-09-11 Method for producing amorphous alloy ribbon

Country Status (1)

Country Link
JP (1) JP4529106B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012102379A1 (en) * 2011-01-28 2014-07-03 日立金属株式会社 Quenched Fe-based soft magnetic alloy ribbon, method for producing the same, and iron core
EP2612334A4 (en) * 2010-08-31 2018-01-10 Metglas, Inc. Ferromagnetic amorphous alloy ribbon and fabrication thereof
EP2612335A4 (en) * 2010-08-31 2018-01-10 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface defects and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292550B (en) 2015-11-26 2020-12-04 日立金属株式会社 Fe-based amorphous alloy ribbon
CN113385648B (en) 2017-02-14 2022-08-02 日立金属株式会社 Wound body of Fe-based amorphous alloy ribbon
US11613799B2 (en) 2017-03-31 2023-03-28 Hitachi Metals, Ltd. Fe-based amorphous alloy ribbon for Fe-based nanocrystalline alloy, and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138309A (en) * 1991-11-15 1993-06-01 Kawasaki Steel Corp Improvement of surface characteristic of metal cast strip and apparatus for producing metal cast strip
JPH06269907A (en) * 1993-03-22 1994-09-27 Kawasaki Steel Corp Production of thin metal strip and device therefor
JPH08309493A (en) * 1995-05-18 1996-11-26 Kawasaki Steel Corp Strip manufacturing machine
JPH09143640A (en) * 1995-11-21 1997-06-03 Kawasaki Steel Corp Wide amorphous alloy foil for power transformer iron core

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138309A (en) * 1991-11-15 1993-06-01 Kawasaki Steel Corp Improvement of surface characteristic of metal cast strip and apparatus for producing metal cast strip
JPH06269907A (en) * 1993-03-22 1994-09-27 Kawasaki Steel Corp Production of thin metal strip and device therefor
JPH08309493A (en) * 1995-05-18 1996-11-26 Kawasaki Steel Corp Strip manufacturing machine
JPH09143640A (en) * 1995-11-21 1997-06-03 Kawasaki Steel Corp Wide amorphous alloy foil for power transformer iron core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2612334A4 (en) * 2010-08-31 2018-01-10 Metglas, Inc. Ferromagnetic amorphous alloy ribbon and fabrication thereof
EP2612335A4 (en) * 2010-08-31 2018-01-10 Metglas, Inc. Ferromagnetic amorphous alloy ribbon with reduced surface defects and application thereof
JPWO2012102379A1 (en) * 2011-01-28 2014-07-03 日立金属株式会社 Quenched Fe-based soft magnetic alloy ribbon, method for producing the same, and iron core
JP6107140B2 (en) * 2011-01-28 2017-04-05 日立金属株式会社 Method for producing Fe-based amorphous and method for producing iron core
US10468182B2 (en) 2011-01-28 2019-11-05 Hitachi Metals, Ltd. Rapidly quenched Fe-based soft-magnetic alloy ribbon and its production method and core

Also Published As

Publication number Publication date
JP4529106B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US6749700B2 (en) Method for producing amorphous alloy ribbon, and method for producing nano-crystalline alloy ribbon with same
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP6414171B2 (en) Amorphous alloy ribbon
JP3494371B2 (en) Method for producing amorphous alloy ribbon and method for producing nanocrystalline alloy ribbon using the same
TWI754034B (en) Fe-based amorphous alloy ribbon for use in an fe-based nanocrystalline alloy
JP6003899B2 (en) Fe-based early microcrystalline alloy ribbon and magnetic parts
CN107710352A (en) Iron-base nanometer crystal alloy ultrathin wideband and its manufacture method
JP2002086249A (en) Method for producing amorphous alloy strip
JPH06114508A (en) Production of ultra thin amorphous alloy strip
JPH0523800A (en) Method and apparatus for producing rapid solidified alloy foil
JP2002205148A (en) Method for producing amorphous alloy strip
JPH09271909A (en) Cooling base board for producing quenched metal thin strip
JP2005021950A (en) Method for manufacturing amorphous alloy thin strip
JP7155922B2 (en) Method for manufacturing cooling roll and method for manufacturing thin cast slab
WO2023022002A1 (en) Method for producing fe-si-b-based thick rapidly solidified alloy thin strip
JPH0218665B2 (en)
JP3100798B2 (en) Quenched metal strip manufacturing equipment
JP3651538B2 (en) Metal strip manufacturing apparatus and method
JP2002283012A (en) Iron-base amorphous alloy having good strip forming performance
JP3247240B2 (en) Manufacturing method of fine metal wire
JP2001300697A (en) Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon
CN114582581A (en) Amorphous nanocrystalline alloy strip and manufacturing method thereof
JPS5853705B2 (en) Manufacturing method of high permeability alloy ribbon
JPS60234949A (en) High silicon steel strip and its manufacture
JPH049453A (en) Amorphous alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Ref document number: 4529106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees