JPH049453A - Amorphous alloy - Google Patents

Amorphous alloy

Info

Publication number
JPH049453A
JPH049453A JP11268090A JP11268090A JPH049453A JP H049453 A JPH049453 A JP H049453A JP 11268090 A JP11268090 A JP 11268090A JP 11268090 A JP11268090 A JP 11268090A JP H049453 A JPH049453 A JP H049453A
Authority
JP
Japan
Prior art keywords
ribbon
alloy
amorphous
content
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11268090A
Other languages
Japanese (ja)
Other versions
JP3080234B2 (en
Inventor
Taku Meguro
卓 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14592787&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH049453(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP02112680A priority Critical patent/JP3080234B2/en
Publication of JPH049453A publication Critical patent/JPH049453A/en
Application granted granted Critical
Publication of JP3080234B2 publication Critical patent/JP3080234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a homogeneous amorphous Co alloy excellent in toughness and reduced in magnetostriction by specifying a composition consisting of Co, Ni, Fe, Mn, and one or more elements among C, B, P, Si, and Ge and also limiting the content of Mg as an inevitable impurity. CONSTITUTION:This alloy is an amorphous alloy which has a composition represented by a basic composition (Co1-a-b-cNiaFebMnc)xMz [where M means one or more elements among C, B, P, Si, and Ge, the symbols (x) and (z) satisfy x+z=100 and 13<=z<=28 by atomic%, and the symbols (a), (b), and (c) stand for 0<=a<=0.20, 0<=b<=0.20, and 0<=c<=0.20 by atomic ratio, respectively] and further containing, if necessary, <=8atomic% transition metal and in which saturation magnetostriction constant is regulated to a value within + or -5X10<-6> and also the content (by weight) of Mg as an inevitable impurity is limited to <=15ppm. In this alloy, superior high magnetic permeability characteristics or high rectangular hysteresis loop characteristics are produced in high frequency magnetic field and toughness necessary at the time of working is improved, and further, local brittleness is improved to uniformize quality.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高周波磁界において、優れた高透磁率特性な
いし高角形磁気特性を発揮するCO系アモルファス合金
の靭性の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improving the toughness of a CO-based amorphous alloy that exhibits excellent high permeability or high square magnetic properties in a high frequency magnetic field.

〔従来の技術〕[Conventional technology]

従来、スイッチング電源のコモンモードチョークコイル
、磁気ヘッド、磁気センサー等の高透磁率材料には、フ
ェライトが、また、スイッチング電源の可飽和リアクト
ルやノイズアブソーバ等高角形比材料には、50 N 
i−F e合金ストリップよりなる巻磁心が、それぞれ
使われてきた。
Conventionally, ferrite has been used for high magnetic permeability materials such as common mode choke coils, magnetic heads, and magnetic sensors of switching power supplies, and 50 N has been used for high square ratio materials such as saturable reactors and noise absorbers of switching power supplies.
Wound cores consisting of i-F e alloy strips have respectively been used.

フェライトは、渦電流損が少ない利点はあるが、飽和磁
束密度が低く、温度特性が悪いという欠点があった。ま
た、5ONi−Fe合金は、飽和磁束密度が高く、低周
波数域における角形比は高いものの、渦電流損、ヒステ
リシス損が大きく、高周波用途には対応できない。
Ferrite has the advantage of low eddy current loss, but has the disadvantages of low saturation magnetic flux density and poor temperature characteristics. Further, although the 5ONi-Fe alloy has a high saturation magnetic flux density and a high squareness ratio in a low frequency range, it has large eddy current loss and hysteresis loss, and cannot be used in high frequency applications.

このため、フェライトに比して磁束密度が高く、5ON
j−Fe合金など結晶金属に比して渦電流損を含むコア
損失が小さい高周波磁性材料として、アモルファス磁性
合金が有望視され、主に巻磁心として上記二様の用途に
実用されるようになった。
Therefore, the magnetic flux density is higher than that of ferrite, and 5ON
Amorphous magnetic alloys are seen as promising high-frequency magnetic materials that have lower core loss, including eddy current loss, than crystalline metals such as J-Fe alloys, and have come to be put to practical use mainly as wound cores for the two types of applications mentioned above. Ta.

特にGoを主元素とし、これにFe、Ni、Mn等原子
の最外殻電子数がCoに近い元素を少量添加することに
よって、飽和磁歪定数を零に近づけたCo系のアモルフ
ァス合金は、保磁力が小さく、軟磁性材料として最も優
れた素材ということができる。高周波帯域においても、
電気抵抗が高くかつ15〜50μmの薄肉リボンとして
使用されることから、渦電流損失が低くフェライトと同
等以上の低損失特性を有している。
In particular, Co-based amorphous alloys with a saturation magnetostriction constant close to zero by using Go as the main element and adding a small amount of elements such as Fe, Ni, and Mn whose outermost shell electron number is close to that of Co, are It has a low magnetic force and can be said to be the best soft magnetic material. Even in high frequency bands,
Since it has a high electrical resistance and is used as a thin ribbon of 15 to 50 μm, it has low eddy current loss and has low loss characteristics equal to or higher than that of ferrite.

上記磁歪が零ないし零に近いCo系アモルファス合金は
、キューリー温度以上、結晶化温度以下の温度で加熱保
持後、常温に】0℃/sec以上の冷却速度で急冷する
熱処理を施すことによって、透磁率を高めて、コモンモ
ードチョークコイル、磁気ヘッド、各種磁気センサーに
供したり、磁界中焼なまし一冷却処理によって磁路方向
に一軸異方性を付与して角形比を高め、可飽和リアクト
ルやノイズアブソーバ等に実用されている。なお、両用
途とも添加元素として、上記以外の広義の遷移金属元素
を一種以上含むことによって、熱的安定性を高めたり、
飽和磁歪定数を微細に調整することが行なわれている。
The above-mentioned Co-based amorphous alloy with magnetostriction of zero or close to zero can be heated and held at a temperature higher than the Curie temperature and lower than the crystallization temperature, and then rapidly cooled to room temperature at a cooling rate of 0°C/sec or higher. It can be used for common mode choke coils, magnetic heads, and various magnetic sensors by increasing the magnetic coefficient, or it can be used for saturable reactors and It is used in noise absorbers, etc. In addition, for both purposes, by including one or more transition metal elements in a broad sense other than those mentioned above as additive elements, thermal stability can be increased,
Fine adjustment of the saturation magnetostriction constant is being carried out.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来各種インダクター、センサー等磁性部品は、単ロー
ル法により、15〜30μ山の厚みのアモルファスリボ
ンを製造した後、主に以下2様の方法で製品形状に仕上
げられている。
Conventionally, various magnetic components such as inductors and sensors have been produced by manufacturing an amorphous ribbon with a thickness of 15 to 30 μm by a single roll method, and then finishing the product into a product shape mainly by the following two methods.

一つは、巻磁心とする方法で、所定幅のアモルファスリ
ボンを、コア占積率を高めるため、適当の張力(数社f
)■1〜数10kgfノm’)を負荷しつつトロイダル
形状に巻き回した後、最適熱処理が施される。一つは、
積層磁心とする方法で、リボンを打抜きプレス(金型)
で打抜くか、フォトエツチングにより強酸等で化学的に
成形した一枚ずつのコア単位に、最適熱処理を施した後
、接着剤等により複数枚積層し、コアとするものである
。両者とも、加工に供されるリボンは、溶湯急冷時に予
め所定の幅に製造されるか、ないしは広幅リボンを超硬
合金、高速度鋼等のスリッター刃によって切断して所定
幅に調整される。
One is a method of forming a wound core, in which an amorphous ribbon of a predetermined width is applied with an appropriate tension (some companies' f
) ■ After winding into a toroidal shape while applying a load of 1 to several tens of kgf/m', optimal heat treatment is performed. one,
The ribbon is punched and pressed (mold) to form a laminated magnetic core.
Each core is punched out or chemically formed using strong acid or the like by photo etching, subjected to optimum heat treatment, and then laminated with adhesive or the like to form a core. In both cases, the ribbon used for processing is either manufactured to a predetermined width in advance during quenching of the molten metal, or adjusted to a predetermined width by cutting a wide ribbon with a slitter blade made of cemented carbide, high-speed steel, or the like.

したがって、アモルファスリボンを加工して製品化する
には、コア巻き工程での張力に耐えつつコア巻きルーテ
ィング途中のベンディングに破断のないこと、打抜きプ
レスやスリット中にリボンの破断、割れ等が発生しない
ことが要求され、これには溶湯急冷ままのリボンに高い
靭性があり、かつそれが均一に確保されていることが要
求される。局部的にせよ脆い部分が存在することは、加
工中の割れ、破断に直結し、加工の停止、加工歩留の低
下等を来たし好ましくない。
Therefore, in order to process an amorphous ribbon into a product, it must be able to withstand the tension during the core winding process, have no breakage during bending during core winding routing, and ensure that the ribbon does not break or crack during punching presses or slitting. This requires that the ribbon as quenched from the molten metal has high toughness and that it is uniformly maintained. The presence of brittle parts, even locally, is undesirable because it directly leads to cracking and breakage during processing, resulting in stoppage of processing and reduction in processing yield.

上記アモルファスリボンの靭性の確保は、従来上として
化学組成とリボン製造条件の両面からアモルファス形成
能として指針が与えられてきた。
In order to ensure the toughness of the amorphous ribbon, guidelines have conventionally been given based on the ability to form an amorphous state from both the chemical composition and ribbon manufacturing conditions.

組成の面では、アモルファス形成元素としての半金属、
および熱的安定性、磁気特性の向上に寄与する遷移金属
の種類、組合せ、配合量の最適化がなされ、アモルファ
スを得るための臨界冷却速度やアモルファスとなるため
の臨界最大板厚との相関が求められた。例えば、 M、
Naka、 A、Inoue andT、?lasum
oto : Sci、 Rep、 RITUA29(1
981)184.では、最も形成能の高いとされる5i
−Bの半金属組合せで、Co−5i−83元合金の臨界
厚さが実験的に求められ、Cott、i 5Lt−s 
Brsで最大値を示すことが示されている。また、M、
Hagiwara、 A、Inoueand T、Ma
sumoto : Materials 5cienc
e andEngineering+ 54(1982
) 197−207.では、(CO1*I−1MK>1
1.* 5i11.@ Bl。でMとして、12元素を
最大X=20まで添加したときの臨界厚さが報告され、
臨界厚さを高めるためにはT a + N b + V
 + M o + W +Feの各元素の一定量までの
添加が有効で、効果はこの順に高いことが述べられてい
る。
In terms of composition, metalloids as amorphous forming elements,
The types, combinations, and amounts of transition metals that contribute to the improvement of thermal stability and magnetic properties have been optimized, and the correlation with the critical cooling rate to obtain amorphous and the critical maximum thickness to become amorphous has been investigated. I was asked. For example, M,
Naka, A, Inoue and T,? lasum
oto: Sci, Rep, RITUA29 (1
981) 184. Then, 5i, which is said to have the highest formation ability.
The critical thickness of the Co-5i-8 ternary alloy is experimentally determined for the metalloid combination of -B, Cott, i 5Lt-s
It is shown that the maximum value is shown at Brs. Also, M,
Hagiwara, A., Inoueand T., Ma.
sumoto: Materials 5cienc
e and Engineering + 54 (1982
) 197-207. Then, (CO1*I-1MK>1
1. *5i11. @Bl. As M, the critical thickness when 12 elements are added up to a maximum of X = 20 is reported,
To increase the critical thickness, T a + N b + V
It is stated that it is effective to add up to a certain amount of each element: +Mo + W +Fe, and the effects are higher in this order.

リボン製造条件の面では、具体的な単ロール法の製造パ
ラメータに触れるものはないが、たとえば増本健、鈴木
謙爾、藤森啓安、橋本功二:アモルファス金属の基礎、
オーム社刊(1982) P、34には、各組成固有の
臨界冷却速度を超える冷却速度が確保されることが必要
であること、また同文献P、15には、冷却速度は主と
して、冷却用回転体の材質(熱伝導度、熱容量など)と
融体の厚さは噴出量(ノズル孔寸法と噴出圧力に依存)
と回転体の周速との相互関係により決まることが述べら
れている。
In terms of ribbon manufacturing conditions, there is no mention of specific manufacturing parameters for the single roll method, but for example Ken Masumoto, Kenji Suzuki, Keiyasu Fujimori, Koji Hashimoto: Fundamentals of Amorphous Metals,
Published by Ohmsha (1982) P. 34 states that it is necessary to ensure a cooling rate that exceeds the critical cooling rate specific to each composition, and P. 15 of the same document states that the cooling rate mainly depends on the cooling rate. The material of the rotating body (thermal conductivity, heat capacity, etc.) and the thickness of the melt determine the amount of ejection (depending on the nozzle hole size and ejection pressure)
It is stated that it is determined by the interrelationship between and the circumferential speed of the rotating body.

しかしながら上記の知見は、アモルファス形成能に対す
る主元素および板厚の一般的影響を記述するに留まり、
アモルファスリボンの靭性確保、なかんずく局部的な脆
性の改良という品質の均一性の観点では不十分なもので
ある。すなわぢ、現実に適用し得る材料組成は、靭性よ
りも最適熱処理後の高周波磁性の観点から設定されるた
め、必ずしも最大板厚をなす組成とはならないこと、仮
に最大板厚ないしその近傍組成となっても高周波磁性上
有効な15〜30μIのリボンの局部的な脆性の改良と
は直接つながらないという問題があった。
However, the above findings only describe the general influence of main elements and plate thickness on amorphous formation ability;
This method is insufficient in terms of ensuring the toughness of the amorphous ribbon and, above all, improving the local brittleness, which is the uniform quality of the amorphous ribbon. In other words, material compositions that can be actually applied are determined from the viewpoint of high-frequency magnetism after optimal heat treatment rather than toughness, so it is not necessarily the composition that will give the maximum thickness, and even if the composition is at or near the maximum thickness. Even so, there was a problem in that it did not directly lead to improvement of the local brittleness of the ribbon of 15 to 30 μI, which is effective in terms of high frequency magnetism.

本発明の目的は、磁歪の低いCO系アモルファス合金リ
ボンのコア、センサー等最終製品に至るまでの各種加工
工程で必要な靭性を向上させること、特に局部的な脆性
を改良して、均一な品質を得ることである。
The purpose of the present invention is to improve the toughness required in various processing steps leading to final products such as cores and sensors of CO-based amorphous alloy ribbons with low magnetostriction, and in particular to improve local brittleness to achieve uniform quality. It is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的に鑑み、鋭意検討の結果、本発明者は、いわゆ
る磁歪を零ないし零近傍に調整し、磁場中熱処理を施し
て高角形比と低損失特性を得る。あるいは高透磁率を得
るためキュリー温度以上結晶化温度以下の温度において
加熱保持後常温に10℃/sec以上の冷却速度で急冷
する熱処理を施して実用に供されるCo系アモルファス
合金において、不純物元素としてMgを低減することに
よって、該Co系アモルファス合金の溶湯急冷状態の靭
性が向上することを見出し、本発明に想到した。
In view of the above object, as a result of intensive studies, the inventors of the present invention adjusted the so-called magnetostriction to zero or near zero, and performed heat treatment in a magnetic field to obtain a high squareness ratio and low loss characteristics. Alternatively, in a Co-based amorphous alloy that is put into practical use after being heated and held at a temperature higher than the Curie temperature and lower than the crystallization temperature and then rapidly cooled to room temperature at a cooling rate of 10°C/sec or higher to obtain high magnetic permeability, impurity elements The present inventors have discovered that the toughness of the Co-based amorphous alloy in a quenched molten state can be improved by reducing Mg, and have conceived the present invention.

すなわち、本発明は、 基本組成(Co、−a−b−c N i、 F ebM
nc)x Mzここに、 M : C,B、P、Si、Geからなる元素の一種以
上 で、x、zは原子%であって、 X 十Z =100゜ 13≦Z≦28 a、b、cは原子比であって、 0≦a≦0.20. O≦b≦0.200≦C≦0.2
0 で示される組成を有する飽和磁歪定数が±5×104以
内のアモルファス合金であって、不可避不純物であるM
g含有量(重量)が15P、P、M以下であることを特
徴とするアモルファス合金である・本発明において、M
gの低減によって、溶湯急冷ままのアモルファスリボン
の靭性が向上する。
That is, the present invention has the basic composition (Co, -a-b-c Ni, FebM
nc) , c is the atomic ratio, 0≦a≦0.20. O≦b≦0.200≦C≦0.2
It is an amorphous alloy with a saturation magnetostriction constant within ±5 × 104 having a composition shown as
It is an amorphous alloy characterized by having a g content (weight) of 15P, P, M or less. In the present invention, M
The reduction in g improves the toughness of the as-quenched amorphous ribbon.

この場合の靭性とは、従来なされてきたような180°
密着曲げ可能か否かとか、あるいは完全弾塑性体を仮定
しての曲げ歪等では検知できない程度のものである。
Toughness in this case refers to the 180°
It cannot be detected by determining whether or not it is possible to bend the material in close contact, or by measuring bending strain assuming that it is a perfectly elastic-plastic material.

本発明の靭性評価は、リボン長手方向の任意の位置で、
リボンを幅方向に10+na+/sec以下のスピード
で引き裂いた場合のクラック進展の様相によってなされ
る。すなわち、第1図に示すように十分な靭性を有して
いる場合は、クラックの進展が引き裂き速度に同じて、
破断線が微細なピッチてジグザグだが、マクロ的にはま
っすぐ進む。第2図に示す脆い場合は、クラックの進展
が引き裂き速度より速くなり、破断線が直線的だが、マ
クロ的には方向が反れたり、一部リボンの欠けが発生す
ることもある。同様の分類は、たとえば通常の引張試験
における破断面の観察によってもなすことができるが、
10m/sec以下もゆっくりした引張速度で多数の試
験を行なうことは工数が甚大であるという難点があり、
実際の検萱ては前述の引き裂きによる方法が簡便である
。なおこの引き裂き試験に選って脆性と判断される場合
でも、いわゆる180°密着曲げ可能な場合があること
、また脆性部分も第3図に示すようにリボン方向全長で
なく一部に限られる場合もある。
The toughness evaluation of the present invention is performed at any position in the longitudinal direction of the ribbon.
This is determined by the appearance of crack growth when the ribbon is torn in the width direction at a speed of 10+na+/sec or less. In other words, as shown in Figure 1, if the toughness is sufficient, the crack propagation will be the same as the tearing speed.
The fracture lines are zigzag at a minute pitch, but from a macroscopic perspective they move straight. In the brittle case shown in FIG. 2, the propagation of cracks is faster than the tearing speed, and the fracture line is straight, but macroscopically the direction may be warped or some ribbons may be chipped. A similar classification can be made, for example, by observing the fracture surface in a normal tensile test.
It is difficult to conduct many tests at slow tensile speeds of 10 m/sec or less, which requires a huge amount of man-hours.
For actual inspection, the tearing method described above is convenient. Even if the ribbon is selected for this tear test and determined to be brittle, it may be possible to bend it in close contact at 180 degrees, and the brittle portion may be limited to a part of the ribbon instead of the entire length in the ribbon direction, as shown in Figure 3. There is also.

本発明者はMg含有量の低減によって、上記脆性部分の
発生頻度が低減することを新たに見出したものである。
The present inventors have newly discovered that the frequency of occurrence of the brittle portions described above is reduced by reducing the Mg content.

引き裂く部分に非金属介在物が存在する場合は、リボン
は脆くなるため、ノズルを通過する溶湯中のガス成分、
AI、Sなどの含有量は十分低くシ(例えば0.<50
ppm、 N2<25ppm、 Al<40ppm、 
 S<30pp111)、また母合金中の介在物面積率
をJIS法によって点算しても0.012%以下であり
、長尺リボンの箇所箇所に非金属介在物が現れるほどに
汚れていない状態であることが好ましい。
If there are non-metallic inclusions in the tearing part, the ribbon will become brittle, so gas components in the molten metal passing through the nozzle,
The content of AI, S, etc. is sufficiently low (e.g. 0.<50
ppm, N2<25ppm, Al<40ppm,
S<30pp111), and the area ratio of inclusions in the master alloy calculated by the JIS method is 0.012% or less, and the long ribbon is not contaminated to the extent that nonmetallic inclusions appear at various locations. It is preferable that

Mg低減によるリボン靭性向上のメカニズムは解明され
ていないが、アモルファスリボンの不純物分析を行なう
ことによって、Mgの含有量を検知し、前記引き裂き試
験結果と対照することでその結果を検証し得る。
Although the mechanism of improvement in ribbon toughness due to Mg reduction has not been elucidated, the Mg content can be detected by analyzing impurities in the amorphous ribbon, and the results can be verified by comparing with the tear test results described above.

本発明のMgの含有量の少ない前記組成のアモルファス
合金は、通常溶湯から急冷する工程によって製造するこ
とができる。工業的には、高周波炉ないしは電気炉によ
り合金を溶解し、その溶融合金をガス圧によりるつぼの
先端孔(丸形、矩形)から噴出させ、回転する冷却用回
転体の表面上で接触凝固させリボンとする方法が適用さ
れる。特に、単ロール法と呼称されている方法、すなわ
ち冷却用回転体としてロールの外表面を用いる方法が一
般的である。
The amorphous alloy of the present invention having the above composition with a low Mg content can be manufactured by a process of rapidly cooling a molten metal. Industrially, an alloy is melted in a high-frequency furnace or an electric furnace, and the molten alloy is ejected from the tip hole (round or rectangular) of a crucible using gas pressure, and is solidified by contact on the surface of a rotating cooling body. The ribbon method is applied. In particular, a method called a single roll method, that is, a method in which the outer surface of a roll is used as a rotating body for cooling, is common.

通常は、予め母合金を溶製しておき、この母合金を上記
るつぼ内で再溶解することが多いので、母合金溶製時に
Mg量の低減を図ることが必要である。このための手法
は種々あるが、原料の純度、溶解−除滓−鋳造の温度管
理を含めた諸条件、鋳型、特に砂型の場合は防砂等の吟
味によって、不純物を低減し得る。
Normally, a master alloy is melted in advance and this master alloy is often remelted in the crucible, so it is necessary to reduce the amount of Mg when melting the master alloy. There are various methods for this purpose, but impurities can be reduced by carefully examining the purity of raw materials, various conditions including temperature control during melting, slag removal, and casting, and sand prevention in the case of molds, especially sand molds.

これらMg量の低減を図るべきベースとなる組成の限定
理由について、以下に述べる。
The reasons for limiting the base composition for reducing the Mg content will be described below.

前述のように、高周波における低損失を得るため磁歪は
、零ないし零に近いことが必要≠、具体的には、±5×
10′内の飽和磁歪定数とすることが必要である。その
ためには、Co + N l l F e + M n
の原子比を適当に調整してやればよく、 (Co、 −
ab−c N i、 l’ebMne)において、a、
b、cとも各々0からら0.20の範囲の組合せで実施
することができる。a、b、cのいずれが一つ以上が0
.20を越えると飽和磁歪定数は+5X10=を越えて
大きくなる。
As mentioned above, in order to obtain low loss at high frequencies, the magnetostriction must be zero or close to zero≠, specifically, ±5×
It is necessary that the saturation magnetostriction constant be within 10'. For that purpose, Co + N l l F e + M n
All you have to do is adjust the atomic ratio of (Co, −
ab-c N i, l'eb Mne), a,
Both b and c can be combined in a range of 0 to 0.20. One or more of a, b, and c is 0
.. When the value exceeds 20, the saturation magnetostriction constant exceeds +5×10=.

非金属元素Mは、C+  B +  P +  S 1
 ! G eからなる一種以上が13原子%以上28M
子%以下含有される必要がある。
Nonmetal element M is C+ B + P + S 1
! 13 atomic % or more of one or more of G e 28M
The content must be less than %.

13原子%未満では、アモルファス形成が困難になり5
28原子%を越えるとアモルファス形成の困難性ととも
に飽和磁化の減少が著しくなる。また、これらC,B、
P、Si、Geは、通常の単ロール法の冷却速度10’
〜10”C/secでは、単独でアモルファス形成が可
能なのはB、Pで、その他は2種以上の複合添加が必要
となる。総合的には、種本:「非晶質材料の特性と応用
」日本金属学会セミナ、 (1979) P、85に示
されているように5i−Bの組合せが最も望ましい。
If it is less than 13 at%, it becomes difficult to form an amorphous layer5.
If it exceeds 28 at %, it becomes difficult to form an amorphous layer and the saturation magnetization decreases significantly. Also, these C, B,
For P, Si, and Ge, the cooling rate is 10' in the normal single roll method.
~10"C/sec, only B and P can form an amorphous state by themselves, while others require the addition of two or more in combination. The 5i-B combination is the most desirable, as shown in ``Japan Institute of Metals Seminar, (1979) P. 85.

本発明において、(Co+−5−b−cNia Feb
Mnc)の一部を遷移元素Tとして、3A、4A、5A
In the present invention, (Co+-5-b-cNia Feb
Mnc) as a transition element T, 3A, 4A, 5A
.

6A、Mnを除< 7A、Fe、Co、Niを除く8族
の元素で置換することができる。これらは、1種以上で
合計8原子%以下まで含むことができるが、8原子%を
越えると飽和磁化の著しい減少ないしアモルファス形成
が困難になる。
6A, Mn may be excluded < 7A, Fe, Co, and Ni may be substituted with elements of Group 8 except for Ni. One or more of these can be contained up to a total of 8 atomic % or less, but if the content exceeds 8 atomic %, the saturation magnetization will be significantly reduced or it will be difficult to form an amorphous state.

〔実施例〕〔Example〕

以−ド、本発明の詳細を実施例により説明する。 Hereinafter, the details of the present invention will be explained with reference to Examples.

実施例1 原子%で、(COD、14 Fee、am)ya〜1o
、Si、、B、。
Example 1 In atomic %, (COD, 14 Fee, am) ya~1o
,Si,,B,.

のアモルファス合金薄帯を製造した。An amorphous alloy ribbon was manufactured.

薄帯製造に先立ち母合金を溶製した。溶解は、Co、B
の原料を2種ずつ選択した上でその配合を変え、計6種
の原料により不純物の含有量を変化させた。他のFe、
Moは一定とした。溶解は1450℃とし、1350℃
で生成した溶滓を除去して1300℃にて鋳鉄製鋳型へ
鋳造した。
Prior to manufacturing the ribbon, the master alloy was melted. Dissolution is Co, B
After selecting two types of raw materials each, the composition was changed, and the content of impurities was changed using a total of six types of raw materials. Other Fe,
Mo was kept constant. Melt at 1450℃, 1350℃
The molten slag produced in step 1 was removed and cast into a cast iron mold at 1300°C.

上記母合金2.5結を石英るつぼ内で再溶解し、130
0℃の溶湯とした後、5w幅X0.6mm厚さの矩形ス
リットから噴出させ、300閤φのベリリウム鋼単ロー
ル上で急冷凝固させ、bIIIII1幅X20〜24μ
m厚さで長さ約3000 mのアモルファス合金リボン
とした。
2.5 pieces of the above master alloy were remelted in a quartz crucible, and 130
After making the molten metal at 0°C, it is jetted out from a rectangular slit with a width of 5w and a thickness of 0.6mm, and is rapidly solidified on a single roll of beryllium steel with a diameter of 300mm.
An amorphous alloy ribbon with a thickness of m and a length of about 3000 m was prepared.

この合金リボンを、全長にわたって300m毎に引き裂
き、靭性の判定を行なった。各位置で20回の引き裂き
を行ない、引き裂き方向に対して2rm以上ずれたもの
を脆性部分が存在するとして、各位置ごとの脆性破断率
(%)を求め、各々を比較した。
This alloy ribbon was torn every 300 m over its entire length to evaluate its toughness. Tearing was performed 20 times at each position, and a brittle portion was determined to exist if the specimen deviated by 2 rm or more with respect to the tearing direction, and the brittle rupture rate (%) for each position was determined and compared.

第1表に、・6種の母合金によるアモルファス合金のM
g含有量と、このアモルファスリボンの脆性破断率を示
す。
Table 1 shows the M of amorphous alloys based on six types of master alloys.
The g content and the brittle rupture rate of this amorphous ribbon are shown.

Mgの含有量が低くなるほど、各位置での脆性破断率が
減少する。
The lower the Mg content, the lower the brittle fracture rate at each location.

これら6種のリボンを外径22IIIIllφ、内径1
4mmφ、厚み5 ttrm tのトロイダル形状に巻
き回した時の巻取中のリボン離断による停止回数を求め
た。この場合、リボンに負荷される張力は約12kgf
/w’で、リボンは装置内で10 IIIIIRのガイ
ドリールによって3回180°進行方向を転換する。こ
のような巻磁心製造装置は、特に一般的なものがあるわ
けではなく、装置、製品仕様毎にリボンにががる負荷は
種々異なっているが、一つの目安として例示するもので
ある。
These six types of ribbons have an outer diameter of 22IIIllφ and an inner diameter of 1.
The number of stops due to ribbon breakage during winding was determined when the ribbon was wound into a toroidal shape having a diameter of 4 mm and a thickness of 5 ttrm t. In this case, the tension applied to the ribbon is approximately 12 kgf.
/w', the ribbon changes its traveling direction three times by 180° within the apparatus by a 10 IIIR guide reel. Such a wound core manufacturing apparatus is not particularly common, and the load on the ribbon varies depending on the apparatus and product specifications, but this example is provided as a guide.

各々のリボンの長さ1000m当りの破断停止回数は、
No、]−No、6で、各々3,9,16,49,80
,117回であった。
The number of breaks per 1000m length of each ribbon is:
No, ]-No, 6, 3, 9, 16, 49, 80 respectively
, 117 times.

以上から、Mg含有量は、15P、P、M以下とすると
急冷ままのリボンの靭性向上、殊に局部的な脆性の低減
が図られ、その効果は大きい。
From the above, when the Mg content is set to 15P, P, M or less, the toughness of the as-quenched ribbon is improved, particularly local brittleness is reduced, and this effect is large.

実施例2 原子%で、(Co、、、4Fe。、5jys 5its
 B10のアモルファス合金リボンを用い、実施例1と
同様の方法により、6種類のリボンとし同様の評価を行
なった。
Example 2 At %, (Co, , 4Fe., 5jys 5its
Using the B10 amorphous alloy ribbon, six types of ribbons were prepared in the same manner as in Example 1 and evaluated in the same manner.

なお、母合金は同様にGo、Bの原料を2種ずつ選択し
た上でその配合を変え、計6種とした。
Note that two types of Go and B raw materials were similarly selected for the master alloy, and the blends were changed, resulting in a total of six types.

第2表に、6種の母合金によるアモルファス合金リボン
のMg含有量と、このアモルファスリボンの脆性破断率
を示す6 Mgの含有量が低くなるほど、各位置での脆性破断率が
減少し、はぼ15P、P、Mを境に、これ以下とすれば
、局部的な脆化が大きく改善されることがわかる。
Table 2 shows the Mg content of amorphous alloy ribbons made from six types of master alloys and the brittle rupture rates of these amorphous ribbons.6 As the Mg content decreases, the brittle rupture rate at each position decreases. It can be seen that local embrittlement can be greatly improved by reducing the thickness to approximately 15P, P, and M.

実施例3 原子%で、(Co。、 、 p e。、。、Mn6.s
+LsNb+Si、6B、のアモルファス合金リボンを
用い、実施例1と同様の方法により同様にリボンを製造
し評価を行なった。
Example 3 In atomic %, (Co., pe., ., Mn6.s
Using an amorphous alloy ribbon of +LsNb+Si, 6B, a ribbon was manufactured in the same manner as in Example 1 and evaluated.

母合金は、B原料を変えて2種とした。第3表に2種の
母合金によるアモルファス合金リボンのMg含有量と、
脆性破断率を示す。
Two types of master alloys were used by changing the B raw material. Table 3 shows the Mg content of amorphous alloy ribbons based on two types of master alloys,
Indicates brittle rupture rate.

Mgの含有量が低い本発明例では、脆性破断率が減少し
て、脆性が改善されることがわかる。
It can be seen that in the examples of the present invention where the Mg content is low, the brittle rupture rate decreases and brittleness is improved.

実施例4 原子%で、(Co*、ss Fe、、、、Mn、、、s
)、、 Crt5111 B Sのアモルファス合金リ
ボンを用い、実施例1と同様の方法により同様にリボン
を製造し評価を行なった。
Example 4 At %, (Co*, ss Fe, , Mn, , s
),, Using an amorphous alloy ribbon of Crt5111BS, a ribbon was manufactured in the same manner as in Example 1 and evaluated.

母合金はB原料を変えて2種とした。第4表に2種の母
合金によるアモルファス合金リボンのMg含有量と、脆
性破断率を示す。
There were two types of master alloys by changing the B raw material. Table 4 shows the Mg content and brittle fracture rate of amorphous alloy ribbons made of two types of master alloys.

Mgの含有量が低い本発明例では脆性破断率が減少して
、脆性が改善されることがわかる。
It can be seen that in the examples of the present invention with a low Mg content, the brittle rupture rate is reduced and the brittleness is improved.

実施例5 原子%で、(CO*、st Nla、az Fee、s
s)ysNE)g5116B11のアモルファス合金リ
ボンを用い、実施例1と同様の方法により同様にリボン
を製造し評価を行なった。
Example 5 In atomic %, (CO*, st Nla, az Fee, s
Using an amorphous alloy ribbon of s)ysNE)g5116B11, a ribbon was manufactured in the same manner as in Example 1 and evaluated.

母合金はB原料を変えて2種とした。第4表に2種の母
合金によるアモルファス合金リボンのMg含有量と、脆
性破断率を示す。
Two types of master alloys were created by changing the B raw material. Table 4 shows the Mg content and brittle fracture rate of amorphous alloy ribbons made of two types of master alloys.

Mgの含有量が低い本発明例では脆性破断率が減少して
、脆性が改善されることがわかる。
It can be seen that in the examples of the present invention with a low Mg content, the brittle rupture rate is reduced and the brittleness is improved.

〔発明の効果〕〔Effect of the invention〕

本発明のアモルファス合金によれば、高周波用の各種コ
ア、センサー等最終製品に至る各加工工程で必要なリボ
ンの靭性が向上し、生産歩留と効率向上が図られ、その
工業的価値が高い。
According to the amorphous alloy of the present invention, the toughness of the ribbon required in each processing process leading to the final product such as various cores for high frequency and sensors is improved, production yield and efficiency are improved, and its industrial value is high. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の目標とする局部的な脆性のないリボ
ンの引き裂き状態を示した模式図、第2図は脆性な引き
裂き状態を示した模式図、第3図は靭性、脆性が混在す
る状態を示す模式図である。 第 図 第 図 第 図 脚PI−都す 岬雁部伊
Fig. 1 is a schematic diagram showing a ribbon tearing state without local brittleness, which is the goal of the present invention, Fig. 2 is a schematic diagram showing a brittle tearing state, and Fig. 3 is a diagram showing a ribbon tearing state in which toughness and brittleness are mixed. FIG. Figure Figure Figure Leg PI-Miyakosu Misaki Ganbe I

Claims (1)

【特許請求の範囲】 1 基本組成(Co_1_−_a_−_b_−_cNi
_aFe_bMn_c)_xM_zここに、 M:C、B、P、Si、Geからなる元素の一種以上で
、 x、zは原子%であって、 x+z=100、 13≦z≦28 a、b、cは原子比であって、 0≦a≦0.20、0≦b≦0.20 0≦c≦0.20 で示される組成を有する飽和磁歪定数が±5×10^−
^6以内のアモルファス合金であって、不可避不純物で
あるMg含有量(重量)が15P.P.M以下であるこ
とを特徴とするアモルファス合金。 2 基本組成(Co_1_−_a_−_b_−_cNi
_aFe_bMn_c)_xT_yM_zここに、T:
遷移金属、 M:C、B、P、Si、Geからなる元素の一種以上 で、x、y、zは原子%であって、 x+y+z=100、y≦8、 13≦z≦28 a、b、cは原子比であって、 0≦a≦0.20、0≦b≦0.20 0≦c≦0.20 で示される組成を有する飽和磁歪定数が±5×10^−
^6以内のアモルファス合金であって、不可避不純物で
あるMg含有量(重量)が15P.P.M以下であるこ
とを特徴とするアモルファス合金。
[Claims] 1 Basic composition (Co_1_-_a_-_b_-_cNi
_aFe_bMn_c)_xM_zwhere, M: one or more elements consisting of C, B, P, Si, and Ge, x and z are atomic percent, x+z=100, 13≦z≦28 a, b, and c are The atomic ratio is 0≦a≦0.20, 0≦b≦0.20, 0≦c≦0.20, and the saturation magnetostriction constant is ±5×10^-
It is an amorphous alloy with an unavoidable impurity Mg content (weight) of 15P. P. An amorphous alloy characterized by having a molecular weight of M or less. 2 Basic composition (Co_1_-_a_-_b_-_cNi
_aFe_bMn_c)_xT_yM_zwhere, T:
Transition metal, M: one or more elements consisting of C, B, P, Si, Ge, x, y, z are atomic %, x+y+z=100, y≦8, 13≦z≦28 a, b , c is the atomic ratio, and the saturation magnetostriction constant is ±5×10^-
It is an amorphous alloy with an unavoidable impurity Mg content (weight) of 15P. P. An amorphous alloy characterized by having a molecular weight of M or less.
JP02112680A 1990-04-27 1990-04-27 Amorphous alloy ribbon Expired - Lifetime JP3080234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02112680A JP3080234B2 (en) 1990-04-27 1990-04-27 Amorphous alloy ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02112680A JP3080234B2 (en) 1990-04-27 1990-04-27 Amorphous alloy ribbon

Publications (2)

Publication Number Publication Date
JPH049453A true JPH049453A (en) 1992-01-14
JP3080234B2 JP3080234B2 (en) 2000-08-21

Family

ID=14592787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02112680A Expired - Lifetime JP3080234B2 (en) 1990-04-27 1990-04-27 Amorphous alloy ribbon

Country Status (1)

Country Link
JP (1) JP3080234B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541331A (en) * 1999-04-12 2002-12-03 アライドシグナル インコーポレイテッド Magnetic glassy alloys for high frequency applications
JP2004519554A (en) * 2000-08-08 2004-07-02 メトグラス・インコーポレーテッド Metallic glass alloys for electronic article surveillance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541331A (en) * 1999-04-12 2002-12-03 アライドシグナル インコーポレイテッド Magnetic glassy alloys for high frequency applications
JP2004519554A (en) * 2000-08-08 2004-07-02 メトグラス・インコーポレーテッド Metallic glass alloys for electronic article surveillance
JP2013168637A (en) * 2000-08-08 2013-08-29 Metglas Inc Glassy metal alloy for monitoring electron article

Also Published As

Publication number Publication date
JP3080234B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP5316921B2 (en) Fe-based soft magnetic alloy and magnetic component using the same
KR101014396B1 (en) Thin ribbon of amorphous iron alloy
KR102069927B1 (en) Ultrafine crystal alloy ribbon, fine crystal soft magnetic alloy ribbon, and magnetic parts using same
JP6080094B2 (en) Winding core and magnetic component using the same
JP3594123B2 (en) Alloy ribbon, member using the same, and method of manufacturing the same
JP5320768B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP6003899B2 (en) Fe-based early microcrystalline alloy ribbon and magnetic parts
TWI452146B (en) Ferromagnetic amorphous alloy ribbon and fabrication thereof
JP2006312777A (en) Rapidly cooled and solidified thin strip having excellent soft magnetic characteristics
JP2000328206A (en) Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
JP2004353090A (en) Amorphous alloy ribbon and member using the same
JP2868121B2 (en) Method for producing Fe-based magnetic alloy core
JP3432661B2 (en) Fe-based amorphous alloy ribbon
JP3722411B2 (en) Method for producing base material for iron-based amorphous alloy
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JPH049453A (en) Amorphous alloy
JP4798642B2 (en) Parts using Fe-based nanocrystalline alloys manufactured from high-toughness Fe-based amorphous alloys and high-toughness Fe-based amorphous alloys
JP4217038B2 (en) Soft magnetic alloy
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JP2006316348A (en) Thin ribbon of amorphous iron alloy
JP2001252749A (en) METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL
WO2022244819A1 (en) Fe-based amorphous alloy and fe-based amorphous alloy thin strip
JPH04110450A (en) Amorphous alloy
JP2001300697A (en) Method for producing amorphous ribon for nano- crystallized material and method for manufacturing nano-crystallized soft magnetic material using this ribon

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

EXPY Cancellation because of completion of term