JP2006316348A - Thin ribbon of amorphous iron alloy - Google Patents

Thin ribbon of amorphous iron alloy Download PDF

Info

Publication number
JP2006316348A
JP2006316348A JP2006085785A JP2006085785A JP2006316348A JP 2006316348 A JP2006316348 A JP 2006316348A JP 2006085785 A JP2006085785 A JP 2006085785A JP 2006085785 A JP2006085785 A JP 2006085785A JP 2006316348 A JP2006316348 A JP 2006316348A
Authority
JP
Japan
Prior art keywords
amorphous
magnetic flux
flux density
ribbon
thermal stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006085785A
Other languages
Japanese (ja)
Other versions
JP4948868B2 (en
Inventor
Takeshi Imai
武 今井
Shigekatsu Ozaki
茂克 尾崎
Yuji Hiramoto
祐二 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006085785A priority Critical patent/JP4948868B2/en
Publication of JP2006316348A publication Critical patent/JP2006316348A/en
Application granted granted Critical
Publication of JP4948868B2 publication Critical patent/JP4948868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin ribbon of an amorphous iron alloy in which the increase of magnetic flux density, the improvement of thermal stability, amorphousness, and processability, and the reduction of iron loss in an Fe-B-Si-based amorphous alloy are obtained. <P>SOLUTION: Regarding the thin ribbon of an amorphous iron alloy, adequate amounts of N, C and P are incorporated into a thin ribbon of an Fe-B-Si-based amorphous alloy, thus its thermal stability, amorphousness, processability (brittleness) and iron loss are improved without remarkably deteriorating its magnetic flux density. The thin ribbon of an amorphous iron alloy comprises 5 to 25 at.% B, 1 to 30 at.% Si, 0.001 to 0.2% N, 0.003 to 10% C, and 0.001 to 0.2% P, the remainder being iron and unavoidable impurities. In the thin ribbon, the ≤15% iron can be replaced with one or more members selected among up to 15% cobalt and nickel and up to 5% chromium. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電力用トランス、高周波用トランス等の鉄芯に用いられるFe系非晶質合金薄帯に関するものである。特に、高磁束密度を具備し、熱的安定性、非晶質形性能、加工性および鉄損に優れたFe系非晶質合金薄帯に関する。   The present invention relates to an Fe-based amorphous alloy ribbon used for iron cores such as power transformers and high-frequency transformers. In particular, the present invention relates to a Fe-based amorphous alloy ribbon having a high magnetic flux density and excellent in thermal stability, amorphous shape performance, workability and iron loss.

非晶質合金薄帯を電力用トランス、高周波用トランス等の鉄芯素材として用いる技術的課題としては、珪素鋼板を用いる場合に比較してトランス製造時の材料使用量、例えば鉄芯、銅線が多くなり、製造コストが高くなることが挙げられる。これは、非晶質合金薄帯の多くが、飽和磁化力が小さく、トランスでの設計磁束密度を低くせざるを得ないという理由によるもので、その結果として鉄芯断面積が大きくなるためである。   Technical issues of using amorphous alloy ribbons as iron core materials for power transformers, high-frequency transformers, etc. include the amount of materials used in transformer production compared to the use of silicon steel sheets, such as iron cores and copper wires. This increases the manufacturing cost. This is because many of the amorphous alloy ribbons have a low saturation magnetic force and the design magnetic flux density in the transformer has to be lowered. As a result, the iron core cross-sectional area increases. is there.

そこで、非晶質合金薄帯の磁束密度を向上させるために様々な研究がなされてきた。例えば、特許文献1では、Fe8020の組成からなる非晶質合金薄帯において飽和磁束密度1.57〜1.61T(Tesla) が得られること、Si,Pを添加することで脆化温度、延性を改善しうることが提案されている。また、特許文献2では、Fe−B−Si−C系の非晶質合金薄帯において、Co添加により高磁束密度を確認しているものの、Coは高価な元素であることからコスト的に難点がある。そこで、Coを使用することなく高磁束密度を実現しうる成分系として、非特許文献1にはFe−B−C系の非晶質合金薄帯が紹介され、この成分系で1.78Tの飽和磁束密度を達成したことが報告されているが、Fe−B−Si−C系の非晶質合金薄帯と比較して鉄損が悪いこと、焼鈍時やトランス動作時の磁気特性安定で代表される熱的安定性が低位であるという問題がある。 Therefore, various studies have been made to improve the magnetic flux density of the amorphous alloy ribbon. For example, in Patent Document 1, a saturation magnetic flux density of 1.57 to 1.61 T (Tesla) is obtained in an amorphous alloy ribbon having a composition of Fe 80 B 20 , and embrittlement occurs by adding Si and P. It has been proposed that the temperature and ductility can be improved. In Patent Document 2, although high magnetic flux density is confirmed by adding Co in an Fe—B—Si—C-based amorphous alloy ribbon, since Co is an expensive element, it is difficult in terms of cost. There is. Therefore, as a component system capable of realizing a high magnetic flux density without using Co, Non-Patent Document 1 introduced an Fe—B—C-based amorphous alloy ribbon, and in this component system, 1.78 T is obtained. Although it has been reported that the saturation magnetic flux density has been achieved, the iron loss is lower than that of the Fe-B-Si-C amorphous alloy ribbon, and the magnetic characteristics are stable during annealing and transformer operation. There is a problem that the thermal stability represented is low.

更に、特許文献3では、P:0.008〜0.1質量%の微量添加によりS,Mnなどの不純物元素含有の許容量を拡大しうることが提案されているが、P添加に伴う熱的安定性や加工性(脆性)への影響については評価されていない。また、特許文献4では、Crを含む非晶質合金薄帯にNを添加することで、薄帯の硬度上昇や最大透磁率、鉄損の改善が提案されているが、依然として熱的安定性、加工性の問題は解決されていない。   Furthermore, Patent Document 3 proposes that the allowable amount of impurity elements such as S and Mn can be increased by adding a trace amount of P: 0.008 to 0.1% by mass. The impact on mechanical stability and workability (brittleness) has not been evaluated. Patent Document 4 proposes increasing the hardness of the ribbon, improving the maximum magnetic permeability, and improving the iron loss by adding N to the amorphous alloy ribbon containing Cr. However, thermal stability still remains. The processability problem has not been solved.

特開平03−264654号公報Japanese Patent Laid-Open No. 03-264654 特開平03−500668号公報Japanese Patent Laid-Open No. 03-5000668 特開平09−95760号公報JP 09-95760 A 特開昭62−74050号公報JP-A-62-74050 Hatta et al.: JEEEE Trans. Magnetics MAG-14(1978)1013Hatta et al .: JEEEE Trans. Magnetics MAG-14 (1978) 1013

Fe−B−Si系あるいは、Fe−B−Si−C系の非晶質合金薄帯の高磁束密度化を図るためには、Fe以外の成分の量を減らすことが有効であるが、このようにすると、熱的安定性、非晶質形成能、加工性(脆性)、鉄損が改善されないという問題がある。また、これに加えてさらに、安価な鉄源を利用して安定な鉄損が得られるFe系非晶質合金薄帯は、これまでに得ることができなかった。   In order to increase the magnetic flux density of the Fe-B-Si-based or Fe-B-Si-C-based amorphous alloy ribbon, it is effective to reduce the amount of components other than Fe. If it does so, there exists a problem that thermal stability, an amorphous formation ability, workability (brittleness), and an iron loss are not improved. In addition to this, an Fe-based amorphous alloy ribbon capable of obtaining stable iron loss using an inexpensive iron source has not been obtained so far.

本発明者らは、Fe−B−Si系およびFe−B−Si−C系の非晶質合金にNを含有させることにより、結晶化促進元素と言われている不純物元素(Al等)を表面酸化層に濃縮させることが可能になり、これにより非晶質合金薄帯の亀裂伝播が防止され加工性が大きく改善することを見出した。このN含有の効果は、特に、低鉄損、非晶質形性能の改善効果に有効なPを含有させる際の問題(Pを含有させることにより薄帯に亀裂が伝播し易くなる)を解消し、これにより、高磁束密度を具備し、熱的安定性、非晶質形性能、加工性(脆性)、鉄損に優れたFe系非晶質合金薄帯の製造が可能となった。
また、Pを含有させる上でNを含有させることは、磁束密度や耐食性の特性や焼鈍条件等の改善を目的としてFeの一部をNi、Co、Crに置換した際に生じる薄帯脆化問題を改善する効果もあることも判明した。
これらの知見を基に検討を重ね、本発明を完成するに至った。その要旨は次の通りである。
(1)原子%で、B:5〜25%、Si:1〜30%、N:0.001〜0.2%、を含有し、残部Feおよび不可避的不純物からなることを特徴とするFe系非晶質合金薄帯。
(2)原子%で、さらに、C:0.003〜10%、P:0.001〜0.2%の一種または二種を含有し、残部Feおよび不可避的不純物からなることを特徴とする(1)に記載のFe系非晶質合金薄帯。
(3)原子%で、B:10〜20%、Si:1〜10%、N:0.001〜0.2%、C:0.02〜2%、P:0.001〜0.2%、とすることを特徴とする(2)に記載のFe系非晶質合金薄帯。
(4)原子%で、B:5〜12%、Si:1〜5%、N:0.001〜0.2%、C:1〜10%、P:0.001〜0.2%、とすることを特徴とする(2)に記載のFe系非晶質合金薄帯。
(5)原子%で、Fe量の15%以下をCo、Niあるいは5%以下のCrから1種または2種以上で置換したことを特徴とする(1)〜(4)のいずれかの項に記載のFe系非晶質合金薄帯。
The present inventors have added an impurity element (Al or the like), which is said to be a crystallization promoting element, by adding N to an Fe-B-Si-based and Fe-B-Si-C-based amorphous alloy. It has been found that it can be concentrated on the surface oxide layer, which prevents crack propagation in the amorphous alloy ribbon and greatly improves the workability. This N-containing effect eliminates the problem of containing P, which is particularly effective in improving the performance of low iron loss and amorphous form (the inclusion of P makes it easier for cracks to propagate through the ribbon). This makes it possible to produce an Fe-based amorphous alloy ribbon having a high magnetic flux density and excellent in thermal stability, amorphous form performance, workability (brittleness), and iron loss.
In addition, the inclusion of N in addition to P is a thin-band embrittlement that occurs when part of Fe is replaced with Ni, Co, Cr for the purpose of improving magnetic flux density, corrosion resistance characteristics, annealing conditions, and the like. It also turned out to be effective in improving the problem.
Based on these findings, studies have been repeated and the present invention has been completed. The summary is as follows.
(1) Fe containing at least 5% by atom, B: 5 to 25%, Si: 1 to 30%, N: 0.001 to 0.2%, and remaining Fe and unavoidable impurities Amorphous alloy ribbon.
(2) Atomic%, and further comprising one or two of C: 0.003 to 10% and P: 0.001 to 0.2%, the balance being Fe and unavoidable impurities The Fe-based amorphous alloy ribbon according to (1).
(3) Atomic%, B: 10-20%, Si: 1-10%, N: 0.001-0.2%, C: 0.02-2%, P: 0.001-0.2 %, The Fe-based amorphous alloy ribbon according to (2).
(4) Atomic%, B: 5-12%, Si: 1-5%, N: 0.001-0.2%, C: 1-10%, P: 0.001-0.2%, (2) The Fe-based amorphous alloy ribbon according to (2).
(5) The term according to any one of (1) to (4), wherein 15% or less of the amount of Fe in atomic% is substituted with Co, Ni or 5% or less with one or more kinds of Cr. 2. An Fe-based amorphous alloy ribbon described in 1.

本発明によれば、高磁束密度を具備し、熱的安定性、非晶質形成能、加工性(脆性)、鉄損を改善したFe系非晶質合金薄帯を提供することが可能となる。   According to the present invention, it is possible to provide a Fe-based amorphous alloy ribbon having a high magnetic flux density and improved thermal stability, amorphous forming ability, workability (brittleness), and iron loss. Become.

先ず、本発明における成分組成とその範囲について説明する。なお、成分組成の範囲は特段の指定が無い限りは、何れも原子%である。   First, the component composition and its range in the present invention will be described. The range of the component composition is atomic% unless otherwise specified.

Bは非晶質形成能と熱的安定性の改善に有効な元素であり、各特性の要求に応じて適正量が添加される。Bが5%未満では非晶質相を安定して得ることはできず、一方、25%を超えると融点上昇により非晶質相形成が困難になる。低鉄損、熱的安定性を重視する場合には、Bは10〜20%が好ましく、高磁束密度を重視する場合には半金属元素を低減する必要があることから5〜12%とすることが好ましい。   B is an element effective for improving the amorphous forming ability and the thermal stability, and an appropriate amount is added according to the requirements of each characteristic. If B is less than 5%, an amorphous phase cannot be stably obtained. On the other hand, if B exceeds 25%, formation of the amorphous phase becomes difficult due to an increase in melting point. When importance is attached to low iron loss and thermal stability, B is preferably 10 to 20%, and when importance is placed on high magnetic flux density, it is necessary to reduce the metalloid element, so 5 to 12%. It is preferable.

Siも同様に、非晶質形成能と熱的安定性の改善に有効な元素であり、各特性の要求に応じて適正量が添加される。Siが1%未満では非晶質相を安定して形成することはできず、一方、30%超では熱的安定性の改善効果が飽和する。低鉄損、熱的安定性を重視する場合には、Siは1〜10%が好ましく、高磁束密度を重視する場合には半金属元素を低減する必要があることから1〜5%とすることが好ましい。   Similarly, Si is an element effective for improving amorphous forming ability and thermal stability, and an appropriate amount is added according to the requirements of each characteristic. If Si is less than 1%, an amorphous phase cannot be stably formed, while if it exceeds 30%, the effect of improving thermal stability is saturated. When importance is attached to low iron loss and thermal stability, Si is preferably 1 to 10%, and when importance is attached to high magnetic flux density, it is necessary to reduce the metalloid element, so 1 to 5%. It is preferable.

Nは熱的安定性、非晶質形性能および非晶質薄帯の加工性(脆性)の改善に有効な元素であり、各特性の要求に応じて適正な含有量が決定される。Nが0.001%未満ではこれら特性の改善が見られず、一方、0.2%超では熱的安定性の効果が飽和する。Nは好ましくは0.003%、0.004%、0.006%、0.007%、0.008%、0.009%程度、さらには、0.02%、0.03%、0.04%、0.05%程度含んでいてもよい。一方、0.1%を超えてのNの添加はコストが嵩み、好ましくは、0.09%、0.08%、0.07%、0.06%程度であれば添加コストは下がる。
なお、不純物が含まれる鉄源を使用してCoやNi、Crを含有させる場合において低鉄損の効果を主として狙う場合には、Nは必ずしも添加を必須とするものではなく、不可避的不純物として含有している程度でもよい。
N is an element effective for improving thermal stability, amorphous form performance, and workability (brittleness) of the amorphous ribbon, and an appropriate content is determined according to the requirements of each characteristic. If N is less than 0.001%, these characteristics are not improved, while if it exceeds 0.2%, the effect of thermal stability is saturated. N is preferably about 0.003%, 0.004%, 0.006%, 0.007%, 0.008%, 0.009%, or 0.02%, 0.03%, 0.0. It may contain about 04% and 0.05%. On the other hand, the addition of N exceeding 0.1% increases the cost. Preferably, the addition cost decreases if it is about 0.09%, 0.08%, 0.07%, or 0.06%.
In the case where Co, Ni, and Cr are contained using an iron source containing impurities, N is not necessarily required to be added, and N is not necessarily indispensable as an inevitable impurity. It may be contained.

Cは薄帯の磁束密度の向上、非晶質形性能の改善(鋳造性向上)に有効な元素であり、各特性の要求に応じて適正量な含有量が決定される。Cを0.001%以上、好ましくは0.003%以上含有させることによって、溶湯と冷却基板の濡れ性が向上して良好な薄帯を形成することができる。さらに、Cが0.01%以上、好ましくは0.02%以上では非晶質形性能の改善効果が得られ、より好ましくは0.03%、0.06%、0.08%、0.1%、0.15%、0.2%、0.3%、0.5%、0.6%、0.7%、0.8%、0.9%、さらには、1%、2%、3%、4%、5%含有させることも可能である。一方、10%超では磁束密度の改善効果が低下する。低鉄損、熱的安定性を重視する場合には、Cは0.02〜2%が好ましく、高磁束密度を重視する場合にはB量を低減するために融点が上昇するので半金属元素のCを1〜10%添加することが好ましい。   C is an element effective for improving the magnetic flux density of the ribbon and improving the amorphous form performance (improving castability), and an appropriate amount is determined according to the requirements of each characteristic. By containing C in an amount of 0.001% or more, preferably 0.003% or more, the wettability between the molten metal and the cooling substrate is improved, and a good ribbon can be formed. Further, when C is 0.01% or more, preferably 0.02% or more, an effect of improving the amorphous form performance is obtained, and more preferably 0.03%, 0.06%, 0.08%,. 1%, 0.15%, 0.2%, 0.3%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, or 1%, 2 %, 3%, 4%, 5% can also be contained. On the other hand, if it exceeds 10%, the effect of improving the magnetic flux density decreases. When importance is attached to low iron loss and thermal stability, C is preferably 0.02 to 2%, and when importance is attached to high magnetic flux density, the melting point rises to reduce the amount of B. It is preferable to add 1 to 10% of C.

Pは鉄損、非晶質形性能の改善に有効な元素であり、各特性の要求に応じて適正量が含有される。Pの含有により非晶質形性能が改善し、不純物元素含有の許容量が拡大するが、Pが0.001%未満では非晶質形性能改善効果が見られずまた鉄損改善効果も見られない。Pを含有させることにより非晶質形性能が向上するが、一方で、Pの含有量の増加に伴い薄帯に亀裂が伝播し易くなり、加工性が劣化する問題が発生する。さらにPが0.2%を超えると非晶質薄帯のロール冷却面を外側にして曲げ、破壊する際の曲げ破壊直径が大きくなり非晶質薄帯の加工性(脆性)が悪化する。Pは、0.002%、0.003%、0.004%、0.006%、0.008%、0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、さらには、0.12%、0.15%程度含まれていてもよい。   P is an element effective for improving iron loss and amorphous form performance, and an appropriate amount is contained according to the requirements of each characteristic. The inclusion of P improves the amorphous form performance and increases the allowable amount of impurity elements, but if P is less than 0.001%, the amorphous form performance improvement effect is not seen and the iron loss improvement effect is also seen. I can't. Inclusion of P improves the amorphous form performance, but on the other hand, as the P content increases, cracks are easily propagated to the ribbon, resulting in a problem that workability deteriorates. Further, when P exceeds 0.2%, the bending fracture diameter at the time of bending and breaking with the roll cooling surface of the amorphous ribbon becomes larger, and the workability (brittleness) of the amorphous ribbon is deteriorated. P is 0.002%, 0.003%, 0.004%, 0.006%, 0.008%, 0.01%, 0.02%, 0.03%, 0.04%, 0.0. 05%, 0.06%, 0.07%, 0.08%, and further 0.12% and 0.15% may be included.

本発明においては、Fe量の15%以下をCo、Niあるいは5%以下のCrから1種または2種以上で置換すると、非晶質薄帯の脆化問題が発生せずに良好な非晶質薄帯が得られる。これらの元素は好ましくは、0.001%、0.002%、0.003%、0.005%、0.008%、0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%程度含んでいても良い。但し、Co、Niについては磁束密度の改善効果はあるが、高価であるため、原料コストを考慮するとFe量の10%以下、さらには5%以下の置換に留めておくのが好ましい。これらの元素は、さらに好ましくは、4%、3%、2%、1%以下でもよい。   In the present invention, when 15% or less of the amount of Fe is replaced with one or more of Co, Ni or 5% or less of Cr, the amorphous thin ribbon is not embrittled and a good amorphous state is obtained. A thin ribbon is obtained. These elements are preferably 0.001%, 0.002%, 0.003%, 0.005%, 0.008%, 0.01%, 0.02%, 0.03%, 0.04 %, 0.05%, 0.06%, 0.07%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6 % May be included. However, Co and Ni have an effect of improving the magnetic flux density, but are expensive. Therefore, considering the raw material cost, it is preferable to keep the replacement to 10% or less, and further 5% or less of the Fe amount. More preferably, these elements may be 4%, 3%, 2%, 1% or less.

安価な鉄源を用いた場合、例えば、鉄鉱石が原料である製鋼プロセスで生産される一部の鋼種を合金の鉄源に使用することが可能になるが、本発明の薄帯を製造するための鉄源は、この製鋼プロセスで生産される鋼種に限定される訳ではない。また、本発明において含有される微量成分は、合金等による積極的な添加をしてもよく、また、他の合金等から混入する不純物成分を積極的に活用することにより含有させても良い。
また、本発明の成分に、構成元素としてFe、B、Si以外に公知のTi、Zr、V、Nb、Mo、Cu等を含んでいても、何ら本発明の効果を損なうものではない。特に、Ti、Zrは非晶質形成能改善に効果があることが知られており、これらはそれぞれ0.01〜5%程度含有してもよい。
When an inexpensive iron source is used, for example, it is possible to use some steel types produced in a steelmaking process in which iron ore is a raw material as an alloy iron source, but the ribbon of the present invention is manufactured. The iron source for this is not limited to the steel type produced by this steelmaking process. Further, the trace component contained in the present invention may be positively added by an alloy or the like, or may be contained by actively utilizing an impurity component mixed from another alloy or the like.
Moreover, even if it contains well-known Ti, Zr, V, Nb, Mo, Cu etc. other than Fe, B, and Si as a constituent element in the component of this invention, the effect of this invention is not impaired at all. In particular, Ti and Zr are known to be effective for improving the amorphous forming ability, and these may be contained in an amount of about 0.01 to 5%.

本発明の薄帯は、本発明の合金成分を溶解し、溶湯をスロットノズル等を通して高速で移動している冷却板の上に噴出し、該溶湯を急冷凝固させる方法、例えば、単ロール法、双ロール法によって製造することができる。単ロール装置には、ドラムの内壁を使う遠心急冷装置、エンドレスタイプのベルトを使う装置、およびこれらの改良型である補助ロールやロール表面温度制御装置を付属させたもの、減圧下あるいは真空中、または不活性ガス中での鋳造装置も含まれる。本発明では、薄帯の板厚、板幅などの寸法は特に限定しないが、薄帯の板厚は、例えば、10μm以上100μm以下が好ましい。また、板幅は20mm以上が好ましい。   The ribbon of the present invention is a method for melting the alloy component of the present invention, spraying the molten metal on a cooling plate moving at high speed through a slot nozzle or the like, and rapidly quenching and solidifying the molten metal, It can be produced by a twin roll process. The single roll device is equipped with a centrifugal quenching device that uses the inner wall of the drum, a device that uses an endless belt, and an auxiliary roll or roll surface temperature control device that is an improved version thereof, under reduced pressure or in vacuum Or a casting apparatus in an inert gas is also included. In the present invention, the thickness and width of the ribbon are not particularly limited, but the thickness of the ribbon is preferably 10 μm or more and 100 μm or less, for example. The plate width is preferably 20 mm or more.

<実施例1>
直径580mmの銅合金製冷却ロール(ロール回転数800rpm)、試料溶解用の高周波誘導溶解装置、石英坩堝、坩堝先端に設けた長さ25mm、幅0.6mmのスリットノズルからなる単ロール非晶質合金薄帯製造装置を用いてFe−B−Si系の成分組成にNおよびC、Pを含有させた表1に示す成分で、幅25mm、厚さ28〜35μmの非晶質合金薄帯を製造した。なお、Fe源は不純物の少ない転炉鋼を用い、Bの添加はFe−Bとして、Siの添加はFe−Siとして、Cの添加は純Cとして、Pの添加はFe−Pとして、Nの添加は窒素ガス気流中で窒化鉄を配合することによって行なった。表1にその成分組成と得られた各特性を示した。なお、得られた非晶質合金薄帯の諸特性は以下に記述する方法で測定した。
<Example 1>
Single roll amorphous consisting of a 580 mm diameter copper alloy cooling roll (roll rotation speed 800 rpm), a high frequency induction melting device for sample dissolution, a quartz crucible, a slit nozzle 25 mm long and 0.6 mm wide provided at the crucible tip. Using an alloy ribbon manufacturing apparatus, an amorphous alloy ribbon having a width of 25 mm and a thickness of 28 to 35 μm was formed using the components shown in Table 1 in which N, C, and P were added to the Fe—B—Si component composition. Manufactured. The Fe source is converter steel with few impurities, B is added as Fe-B, Si is added as Fe-Si, C is added as pure C, P is added as Fe-P, N Was added by blending iron nitride in a nitrogen gas stream. Table 1 shows the component composition and the obtained characteristics. Various properties of the obtained amorphous alloy ribbon were measured by the methods described below.

1)磁気特性は、得られた薄帯を360℃で1時間、窒素雰囲気中で磁場中焼鈍し、単板磁気測定装置(SST)にて測定し、磁束密度1.3T、周波数50Hzでの鉄損と磁場800A/mにおける磁束密度(B8)にて評価した。
2)熱的安定性は、キューリー温度を評価指標とし(キューリー温度が大きいほど熱的に安定)、振動試料型磁力計(VSM)にて測定した。
3)非晶質形性能は、結晶化温度(Tp)、融点(Tm)を示差走査熱量計(DSC)にて測定し、評価指標として、Tp/Tmで示した(Tp/Tmが大きいほど非晶質形性能が良好)。
4)脆性評価は、360℃で1時間、窒素雰囲気中で焼鈍した後の非晶質薄帯を薄帯のロール冷却面側を外側に曲げ、破壊する際の曲げ破壊直径を測定した(曲げ破壊直径が大きいほど脆性が悪化)。
非晶質薄帯を電力用トランス、高周波用トランス等の鉄芯に用いる場合、非晶質薄帯は非常に薄いため通常巻き鉄芯として用いられる。したがって鉄芯を製造する際に脆性は特に重要な特性となる。本発明者らが調査した結果、脆性評価指標とした曲げ破壊半径は4mm以下とする必要がある。また焼鈍温度等の製造条件や、設計条件等から、Tp/Tmは0.5以上、キュリー温度は350℃以上必要であることも分かった。一方、鉄損および磁束密度は鉄芯の設計にかかわるため、必要に応じて選択されている。(一般に低鉄損、高磁束密度が要求されるが、例えば、鉄損が若干高くても高磁束密度を優先して設計される、低鉄損が重要で磁束密度はあまり重要視されない設計等、対象機器に合わせて選択される。)
1) The magnetic properties were obtained by annealing the obtained ribbon at 360 ° C. for 1 hour in a nitrogen atmosphere in a magnetic field and measuring it with a single-plate magnetometer (SST), with a magnetic flux density of 1.3 T and a frequency of 50 Hz. Evaluation was based on iron loss and magnetic flux density (B8) at a magnetic field of 800 A / m.
2) Thermal stability was measured with a vibrating sample magnetometer (VSM) using the Curie temperature as an evaluation index (the higher the Curie temperature, the more thermally stable).
3) Amorphous form performance was measured by measuring the crystallization temperature (Tp) and melting point (Tm) with a differential scanning calorimeter (DSC), and expressed as an evaluation index by Tp / Tm (the larger Tp / Tm is, Amorphous form performance is good).
4) Evaluation of brittleness was performed by measuring the bending fracture diameter when the amorphous ribbon after annealing in a nitrogen atmosphere at 360 ° C. for 1 hour was bent to the outside on the roll cooling surface side of the ribbon and fractured (bending) The larger the fracture diameter, the worse the brittleness).
When an amorphous ribbon is used for an iron core such as a power transformer or a high-frequency transformer, the amorphous ribbon is very thin and is usually used as a wound iron core. Therefore, brittleness is a particularly important characteristic when manufacturing iron cores. As a result of investigation by the present inventors, the bending fracture radius used as a brittleness evaluation index needs to be 4 mm or less. It was also found from the manufacturing conditions such as the annealing temperature and the design conditions that Tp / Tm is 0.5 or more and the Curie temperature is 350 ° C. or more. On the other hand, the iron loss and the magnetic flux density are selected as necessary because they are related to the design of the iron core. (Generally, low iron loss and high magnetic flux density are required. For example, even if the iron loss is slightly high, the high magnetic flux density is preferentially designed. Low iron loss is important and the magnetic flux density is not considered very important. , Selected according to the target device.)

Figure 2006316348
Figure 2006316348

表1は本発明の請求項1、2の発明に関係する低鉄損で、高磁束密度を得る本発明例および比較例の成分組成とその評価結果である。表1において、比較例1はFe−B−Si系の非晶質薄帯でN、C、Pの何れも含有しておらずベースの成分組成である。比較例1に対しN、C、Pを含有させて得られた非晶質薄帯の磁気特性、熱的安定性、非晶質形性能、脆性を評価した。
本発明例1は比較例1に対してNを0.004%含有させており、熱的安定性、非晶質形性能、脆性が改善されている。本発明例2ではCを0.93%含有した上で、Nを0.004%含有させているため磁束密度も向上している。一方、本発明例3ではPを0.1%含有した上でNを0.004%含有させているため、鉄損が良好となっている。本発明例4ではCを0.93%、Pを0.1%、Nを0.004%含有させており熱的安定性、非晶質形性能、脆性、磁束密度、鉄損の全てにおいて改善されている。本発明例5ではC、Nは本発明例4と同じであるがPが0.2%含有さており、Feの減少により磁束密度が僅かに低下するが、鉄損値は大きく改善され、さらに非晶質形性能および脆性も改善されていた。一方、比較例2ではPが0.25%と過剰に含有されているため磁束密度は低下し、脆性が悪化していた。本発明例6〜8はCを0.93%、Pを0.1%含有させた上でNの含有量を変化させているが、磁束密度、鉄損が大きく変わることなく、N量の含有量の増加に伴い熱的安定性、非晶質形性能、脆性が向上されている。比較例3はNを0.25%と過剰に含有しておりN添加のコストが嵩んでいるが、熱的安定性、非晶質形成能はすでに飽和しており、またNの増加により磁束密度が低下している。
以上のことから熱的安定性、非晶質形成能、加工性(脆性)、鉄損が改善されることが解る。
Table 1 shows component compositions and evaluation results of the inventive examples and comparative examples that obtain a high magnetic flux density with low iron loss related to the first and second aspects of the present invention. In Table 1, Comparative Example 1 is an Fe-B-Si amorphous ribbon and does not contain any of N, C, and P, and has a base component composition. The magnetic properties, thermal stability, amorphous shape performance, and brittleness of the amorphous ribbon obtained by adding N, C, and P to Comparative Example 1 were evaluated.
Invention Example 1 contains 0.004% of N relative to Comparative Example 1, and has improved thermal stability, amorphous form performance, and brittleness. In Example 2 of the present invention, since 0.93% of C and 0.004% of N are contained, the magnetic flux density is also improved. On the other hand, Example 3 of the present invention contains 0.1% P and 0.004% N, so that the iron loss is good. In Invention Example 4, C is 0.93%, P is 0.1%, and N is 0.004%. In all of thermal stability, amorphous form performance, brittleness, magnetic flux density, and iron loss. It has been improved. In Inventive Example 5, C and N are the same as in Inventive Example 4, but 0.2% of P is contained, and the magnetic flux density is slightly reduced by the reduction of Fe, but the iron loss value is greatly improved. Amorphous form performance and brittleness were also improved. On the other hand, in Comparative Example 2, P was excessively contained at 0.25%, so that the magnetic flux density was lowered and the brittleness was deteriorated. In Examples 6 to 8 of the present invention, the N content was changed after adding 0.93% C and 0.1% P. However, the magnetic flux density and the iron loss were not significantly changed. As the content increases, the thermal stability, amorphous form performance, and brittleness are improved. Comparative Example 3 contains N excessively at 0.25%, and the cost of adding N is high, but the thermal stability and amorphous forming ability are already saturated. The density is decreasing.
From the above, it can be seen that thermal stability, amorphous forming ability, workability (brittleness), and iron loss are improved.

<実施例2>
実施例1と同様の方法で表2に示す成分で、幅25mm、厚さ28〜35μmのFe−B−Si−C−P−N系の非晶質合金薄帯を製造した。表2にその成分組成と得られた各特性を示した。なお、測定方法および評価方法は実施例1と同一である。
<Example 2>
An Fe—B—Si—C—P—N-based amorphous alloy ribbon having a width of 25 mm and a thickness of 28 to 35 μm was produced in the same manner as in Example 1 with the components shown in Table 2. Table 2 shows the component composition and the obtained characteristics. The measurement method and the evaluation method are the same as those in Example 1.

Figure 2006316348
Figure 2006316348

表2は本発明の請求項3の発明に関係する低鉄損で、加工性が良好で、中程度の磁束密度を得る本発明例および比較例の成分組成とその評価結果である。表2において、比較例4はP、Nの何れも含有しておらずベースの成分組成である。比較例4に対しP、Nを含有して得られた非晶質薄帯の磁気特性、熱的安定性、非晶質形成能、脆性を評価した。
本発明例9ではPが0.005%、Nが0.004%添加されており鉄損、脆性、熱的安定性の改善が見られた。本発明例10、11は、それぞれP:0.1%、P:0.2%、およびN:0.004%の含有でFeが減少したため磁束密度は僅かに低下するが鉄損値は大きく改善され、非晶質形性能、脆性も改善されていた。一方、比較例5ではPが0.25%と過剰に含有されているため磁束密度は低下し、脆性が悪化していた。本発明例12〜14はP:0.1%含有で低鉄損を示しており、非晶質形成能も改善されているが、さらにNの含有量の増加に伴い熱的安定性、非晶質形性能、脆性が改善している。比較例6はN:0.25%と過剰に含有しておりN添加のコストが嵩んでいるが、熱的安定性、非晶質形成能はすでに飽和しており、またNの増加により磁束密度が低下している。
以上のことから、表2の成分組成においても熱的安定性、非晶質形成能、加工性(脆性)、鉄損が改善されることが解る。
Table 2 shows the composition of the components of the present invention and the comparative example, which have low iron loss, good workability, and a moderate magnetic flux density, and the evaluation results. In Table 2, Comparative Example 4 contains neither P nor N and has a base component composition. For Comparative Example 4, the magnetic properties, thermal stability, amorphous forming ability, and brittleness of an amorphous ribbon obtained by containing P and N were evaluated.
In Invention Example 9, 0.005% P and 0.004% N were added, and iron loss, brittleness, and thermal stability were improved. In Examples 10 and 11 of the present invention, the magnetic flux density is slightly reduced but the iron loss value is large because Fe is decreased when P: 0.1%, P: 0.2%, and N: 0.004%, respectively. Improved, amorphous form performance and brittleness were also improved. On the other hand, in Comparative Example 5, P was excessively contained at 0.25%, so that the magnetic flux density was lowered and the brittleness was deteriorated. Inventive Examples 12 to 14 contain P: 0.1% and show low iron loss, and the amorphous forming ability is also improved. However, as the N content increases, thermal stability, Crystalline shape performance and brittleness are improved. Comparative Example 6 contains excessively N: 0.25% and the cost of adding N is high, but the thermal stability and amorphous forming ability are already saturated, and the increase in N increases the magnetic flux. The density is decreasing.
From the above, it can be seen that the thermal stability, amorphous forming ability, workability (brittleness), and iron loss are improved even in the component composition of Table 2.

<実施例3>
実施例1と同様の方法で表3に示す成分で、幅25mm、厚さ28〜35μmのFe−B−Si−C−P−N系の非晶質合金薄帯を製造した。表3にその成分組成と得られた各特性を示した。なお、測定方法および評価方法は実施例1と同一である。
<Example 3>
An Fe—B—Si—C—P—N-based amorphous alloy ribbon having a width of 25 mm and a thickness of 28 to 35 μm was manufactured using the components shown in Table 3 in the same manner as in Example 1. Table 3 shows the component composition and the obtained characteristics. The measurement method and the evaluation method are the same as those in Example 1.

Figure 2006316348
Figure 2006316348

表3は本発明の請求項4の発明に関係する高磁束密度を得る本発明例および比較例の成分組成とその評価結果である。表3において、比較例7はP、Nの何れも含有しておらずベースの成分組成である。比較例7に対しP、Nを含有して得られた非晶質薄帯の磁気特性、熱的安定性、非晶質形成能、脆性を評価した。
本発明例15ではPが0.005%、Nが0.004%含有されており鉄損、脆性、熱的安定性の改善が見られた。本発明例16、17は、それぞれP:0.1%、P:0.2%、およびN:0.004%の含有でFeが減少したため磁束密度は僅かに低下するが鉄損値は大きく改善され、さらに非晶質形性能および脆性も改善されていた。一方、比較例8ではPが0.25%と過剰に添加されているため磁束密度は低下し、脆化していた。本発明例18〜20はP:0.1%添加で低鉄損を示しており、非晶質形性能も改善されているが、さらにN量の含有量の増加に伴い熱的安定性、非晶質形性能、脆性が改善している。比較例9はN:0.25%と過剰に含有しておりN添加のコストが嵩んでいるが、熱的安定性、非晶質形成能はすでに飽和しており、またNの増加により磁束密度が低下している。
以上のことから、表3の成分組成においても熱的安定性、非晶質形成能、加工性(脆性)、鉄損が改善されることが解る。
Table 3 shows the composition of the components of the present invention and comparative examples for obtaining a high magnetic flux density related to the invention of claim 4 and the evaluation results thereof. In Table 3, Comparative Example 7 contains neither P nor N and has a base component composition. The comparative example 7 was evaluated for magnetic properties, thermal stability, amorphous forming ability, and brittleness of an amorphous ribbon obtained by containing P and N.
Invention Example 15 contained 0.005% P and 0.004% N, and improved iron loss, brittleness, and thermal stability. In Examples 16 and 17 of the present invention, the magnetic flux density is slightly decreased but the iron loss value is large because Fe is decreased by containing P: 0.1%, P: 0.2%, and N: 0.004%, respectively. There was also an improvement in amorphous form performance and brittleness. On the other hand, in Comparative Example 8, P was excessively added at 0.25%, so that the magnetic flux density was lowered and embrittled. Inventive Examples 18 to 20 show low iron loss when P: 0.1% is added, and the amorphous form performance is also improved. However, the thermal stability is increased as the N content increases, Amorphous form performance and brittleness are improved. Comparative Example 9 contains an excessive amount of N: 0.25%, and the cost of adding N is high, but the thermal stability and amorphous forming ability are already saturated. The density is decreasing.
From the above, it can be seen that the thermal stability, amorphous forming ability, workability (brittleness), and iron loss are improved even in the component composition of Table 3.

<実施例4>
実施例1と同様の方法で表4に示す成分で、幅25mm、厚さ28〜35μmのFe−B−Si−C−P−N系非晶質合金薄帯のFeをCo、Ni、Crで置換した非晶質合金薄帯を製造した。表4にその成分組成と得られた各特性を示した。なお、測定方法および評価方法は実施例1と同一である。
<Example 4>
In the same manner as in Example 1, the Fe-B-Si-C-P-N type amorphous alloy ribbon with a width of 25 mm and a thickness of 28 to 35 [mu] m was changed to Fe, Co, Ni, Cr with the components shown in Table 4. Amorphous alloy ribbons replaced with were produced. Table 4 shows the component composition and the obtained characteristics. The measurement method and the evaluation method are the same as those in Example 1.

Figure 2006316348
Figure 2006316348

表4は本発明の請求項5の発明に関係する磁束密度や耐食性改善を目的とした本発明例および比較例の成分組成とその評価結果である。表4において、本発明例21〜24は磁束密度改善のためにFeをCoで、本発明例25はNiでそれぞれ置換している。さらに、本発明例21はC、Pを、本発明例22はCを、本発明例23はPを含有させていない成分組成である。本発明例26は耐食性改善を目的としてFeをCrで置換している。本発明例27は磁束密度、耐食性の両方の改善を目的としてFeをCo、Ni、Crで置換している。なお、NiおよびCrはFe源およびFe−B等の添加合金から微量が不可避的に混入した(例えば、表4の本発明例21のNi:0.03%およびCr:0.05%)。比較例10、11は本発明例21、22に対してNを含有しない例であり、比較例12は本発明例23に対してNを比較例24に対しN、Pを含有しない例である。
また、比較例12〜14は本発明例24〜27に対し、N、Pを含有しない例である。
本発明例ではいずれもNの含有効果により曲げ破壊直径が何れも40%程度減少し、4mm以下となっており脆性改善がなされていることが解る。また、Pの効果により鉄損も良好となり、P添加による脆性もNの含有効果により改善されている。
以上のことからFeをCo、Ni、Crで置換した場合においてもPおよびNの含有効果により薄帯特性が改善されることが解る。
Table 4 shows the composition of the components of the inventive examples and comparative examples for the purpose of improving the magnetic flux density and the corrosion resistance related to the invention of claim 5 and the evaluation results. In Table 4, the inventive examples 21 to 24 are substituted with Fe for the magnetic flux density improvement, and the inventive example 25 is substituted with Ni. Inventive Example 21 is a component composition not containing C and P, Inventive Example 22 is a component composition not containing C, and Inventive Example 23 is a component composition not containing P. In Invention Example 26, Fe is replaced with Cr for the purpose of improving the corrosion resistance. In Invention Example 27, Fe is replaced by Co, Ni, and Cr for the purpose of improving both the magnetic flux density and the corrosion resistance. A small amount of Ni and Cr was inevitably mixed from the Fe source and an additive alloy such as Fe-B (for example, Ni: 0.03% and Cr: 0.05% in Invention Example 21 in Table 4). Comparative Examples 10 and 11 are examples that do not contain N with respect to Invention Examples 21 and 22, and Comparative Example 12 is an example that does not contain N with respect to Invention Example 23 and N and P with respect to Comparative Example 24. .
Moreover, Comparative Examples 12-14 are examples which do not contain N and P with respect to Invention Examples 24-27.
It can be seen that in all of the examples of the present invention, the bending fracture diameter is reduced by about 40% due to the N-containing effect, and is reduced to 4 mm or less, thereby improving brittleness. Moreover, the iron loss is also good due to the effect of P, and the brittleness due to the addition of P is also improved due to the effect of containing N.
From the above, it can be seen that even when Fe is replaced with Co, Ni, and Cr, the ribbon properties are improved by the effect of containing P and N.

本発明の合金薄帯は、Nの添加効果により熱的安定性、非晶質形成能、加工性(脆性)、鉄損が改善される。また、電力トランスや高周波トランスの鉄芯用や、更には磁気シ−ルド材などの鉄芯用軟磁性材料として、幅広く使用することができる。   The alloy ribbon of the present invention is improved in thermal stability, amorphous forming ability, workability (brittleness), and iron loss by the effect of addition of N. Further, it can be widely used as an iron core for power transformers and high-frequency transformers, and further as a soft magnetic material for iron cores such as a magnetic shield material.

Claims (5)

原子%で、B :5〜25%、
Si:1〜30%、
N :0.001〜0.2%
を含有し、残部Feおよび不可避的不純物からなることを特徴とするFe系非晶質合金薄帯。
Atomic%, B: 5-25%,
Si: 1 to 30%
N: 0.001 to 0.2%
Fe-based amorphous alloy ribbon characterized by comprising Fe and the balance Fe and inevitable impurities.
原子%で、さらに、
C :0.003〜10%、
P :0.001〜0.2%
の一種または二種を含有し、残部Feおよび不可避的不純物からなることを特徴とする請求項1に記載のFe系非晶質合金薄帯。
Atomic%, and
C: 0.003 to 10%,
P: 0.001 to 0.2%
2. The Fe-based amorphous alloy ribbon according to claim 1, wherein the Fe-based amorphous alloy ribbon comprises at least one of the above and the balance Fe and unavoidable impurities.
原子%で、
B :10〜20%、
Si:1〜10%、
N :0.001〜0.2%、
C :0.02〜2%、
P :0.001〜0.2%
とすることを特徴とする請求項2に記載のFe系非晶質合金薄帯。
Atomic%
B: 10-20%
Si: 1 to 10%,
N: 0.001 to 0.2%,
C: 0.02 to 2%,
P: 0.001 to 0.2%
The Fe-based amorphous alloy ribbon according to claim 2.
原子%で、
B :5〜12%、
Si:1〜5%、
N :0.001〜0.2%、
C :1〜10%、
P :0.001〜0.2%
とすることを特徴とする請求項2に記載のFe系非晶質合金薄帯。
Atomic%
B: 5-12%,
Si: 1 to 5%
N: 0.001 to 0.2%,
C: 1-10%,
P: 0.001 to 0.2%
The Fe-based amorphous alloy ribbon according to claim 2.
原子%で、Fe量の15%以下をCo、Niあるいは5%以下のCrから1種または2種以上で置換したことを特徴とする請求項1〜4のいずれかの項に記載のFe系非晶質合金薄帯。   The Fe system according to any one of claims 1 to 4, wherein 15% or less of the amount of Fe in atomic% is substituted with Co, Ni, or 5% or less with one or more of Cr. Amorphous alloy ribbon.
JP2006085785A 2005-04-15 2006-03-27 Fe-based amorphous alloy ribbon Active JP4948868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085785A JP4948868B2 (en) 2005-04-15 2006-03-27 Fe-based amorphous alloy ribbon

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005118272 2005-04-15
JP2005118272 2005-04-15
JP2006085785A JP4948868B2 (en) 2005-04-15 2006-03-27 Fe-based amorphous alloy ribbon

Publications (2)

Publication Number Publication Date
JP2006316348A true JP2006316348A (en) 2006-11-24
JP4948868B2 JP4948868B2 (en) 2012-06-06

Family

ID=37537272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085785A Active JP4948868B2 (en) 2005-04-15 2006-03-27 Fe-based amorphous alloy ribbon

Country Status (1)

Country Link
JP (1) JP4948868B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123100A1 (en) 2008-03-31 2009-10-08 日立金属株式会社 Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
JP2018505957A (en) * 2014-12-11 2018-03-01 メトグラス・インコーポレーテッド Fe-Si-B-C amorphous alloy ribbon and transformer core comprising the same
JP2021536129A (en) * 2018-12-17 2021-12-23 チンタオ ユンルー アドバンスド マテリアルズ テクノロジー カンパニー リミテッド Iron-based amorphous alloy strip and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601373B2 (en) * 1974-07-20 1985-01-14 新日本製鐵株式会社 Method for producing amorphous alloy with excellent strength and corrosion resistance
JPS6286146A (en) * 1985-10-14 1987-04-20 Nippon Yakin Kogyo Co Ltd High permeability amorphous alloy having high corrosion resistance, strength and wear resistance and method for modifying magnetic characteristic of said alloy
JPH0815193A (en) * 1994-07-01 1996-01-19 Kawasaki Steel Corp Embrittlement evaluating method for amorphous metal
JP2708410B2 (en) * 1986-11-06 1998-02-04 ユニチカ株式会社 Amorphous metal wire
JPH10277710A (en) * 1997-04-03 1998-10-20 Nippon Steel Corp Production of fe base amorphous alloy strip
JP2004066294A (en) * 2002-08-06 2004-03-04 Ykk Corp Method for joining metallic material using high density energy beam heat source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601373B2 (en) * 1974-07-20 1985-01-14 新日本製鐵株式会社 Method for producing amorphous alloy with excellent strength and corrosion resistance
JPS6286146A (en) * 1985-10-14 1987-04-20 Nippon Yakin Kogyo Co Ltd High permeability amorphous alloy having high corrosion resistance, strength and wear resistance and method for modifying magnetic characteristic of said alloy
JP2708410B2 (en) * 1986-11-06 1998-02-04 ユニチカ株式会社 Amorphous metal wire
JPH0815193A (en) * 1994-07-01 1996-01-19 Kawasaki Steel Corp Embrittlement evaluating method for amorphous metal
JPH10277710A (en) * 1997-04-03 1998-10-20 Nippon Steel Corp Production of fe base amorphous alloy strip
JP2004066294A (en) * 2002-08-06 2004-03-04 Ykk Corp Method for joining metallic material using high density energy beam heat source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123100A1 (en) 2008-03-31 2009-10-08 日立金属株式会社 Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
US8414712B2 (en) 2008-03-31 2013-04-09 Hitachi Metals, Ltd. Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
JP2018505957A (en) * 2014-12-11 2018-03-01 メトグラス・インコーポレーテッド Fe-Si-B-C amorphous alloy ribbon and transformer core comprising the same
JP2021536129A (en) * 2018-12-17 2021-12-23 チンタオ ユンルー アドバンスド マテリアルズ テクノロジー カンパニー リミテッド Iron-based amorphous alloy strip and its manufacturing method
JP7463348B2 (en) 2018-12-17 2024-04-08 チンタオ ユンルー アドバンスド マテリアルズ テクノロジー カンパニー リミテッド Iron-based amorphous alloy strip and manufacturing method thereof

Also Published As

Publication number Publication date
JP4948868B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
KR101014396B1 (en) Thin ribbon of amorphous iron alloy
TWI512767B (en) Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
JP5320764B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP4268621B2 (en) Rapidly solidified ribbon with excellent soft magnetic properties
JP5320768B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP2018123424A (en) Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN STRIP HAVING EXCELLENT SOFT MAGNETIC PROPERTIES
US7918946B2 (en) Fe-based amorphous alloy excellent in soft magnetic properties
JP2018083984A (en) Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY RIBBON WITH EXCELLENT SOFT MAGNETIC PROPERTY
JP5361149B2 (en) Fe-based amorphous alloy ribbon
JP3432661B2 (en) Fe-based amorphous alloy ribbon
JP4948868B2 (en) Fe-based amorphous alloy ribbon
JP2001279387A (en) INEXPENSIVE Fe-BASE MASTER ALLOY FOR MANUFACTURING RAPIDLY SOLIDIFIED THIN STRIP
JP6601139B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties
JP3434844B2 (en) Low iron loss, high magnetic flux density amorphous alloy
JP3644248B2 (en) Iron-based amorphous alloy for transformers with excellent soft magnetic properties
JP3709149B2 (en) Fe-based amorphous alloy ribbon with high magnetic flux density
JP4593313B2 (en) Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof
JP2001152301A (en) Soft magnetic glassy alloy
JP6443112B2 (en) Fe-based amorphous alloy and amorphous alloy ribbon with excellent soft magnetic properties
JP5320765B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP2022177475A (en) Fe-BASED AMORPHOUS ALLOY HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS AND Fe-BASED AMORPHOUS ALLOY RIBBON HAVING EXCELLENT SOFT MAGNETIC CHARACTERISTICS
JP2001252749A (en) METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL
WO2022244819A1 (en) Fe-based amorphous alloy and fe-based amorphous alloy thin strip
JPH09202951A (en) Ferrous amorphous alloy for transformer excellent in soft magnetic property and having good workability
CN117321239A (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4948868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350