JPH04302499A - Manufacture of magnetic shield body - Google Patents

Manufacture of magnetic shield body

Info

Publication number
JPH04302499A
JPH04302499A JP3089385A JP8938591A JPH04302499A JP H04302499 A JPH04302499 A JP H04302499A JP 3089385 A JP3089385 A JP 3089385A JP 8938591 A JP8938591 A JP 8938591A JP H04302499 A JPH04302499 A JP H04302499A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic shield
temperature
oxide
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3089385A
Other languages
Japanese (ja)
Inventor
Mamoru Ishii
守 石井
Hiromasa Shimojima
浩正 下嶋
Keizo Tsukamoto
塚本 惠三
Senjo Yamagishi
山岸 千丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP3089385A priority Critical patent/JPH04302499A/en
Publication of JPH04302499A publication Critical patent/JPH04302499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To manufacture a magnetic shield body wherein an oxide high- temperature superconductor is used and which is high in shield property. CONSTITUTION:The sintered body of an oxide high-temperature superconductor such as Bi and Ti is baked again after hydrostatic pressurization treatment. The obtained magnetic shield body is high in density, and can shield a high magnetic field.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は磁気シールド体の製造方
法に関し、特に酸化物系高温超伝導体を用いた磁気シー
ルド体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetic shield, and more particularly to a method of manufacturing a magnetic shield using an oxide-based high-temperature superconductor.

【0002】超伝導体を用いた磁気シールド体は、磁界
内に配置された磁気シールド体の内部空間を外部磁界か
らシールドしたり、あるいは磁気シールド体の内部に配
置された磁界発生源の外部への磁気の漏洩を防止するの
に用いられる。
[0002] A magnetic shield using a superconductor shields the internal space of the magnetic shield placed in a magnetic field from an external magnetic field, or shields a magnetic field generating source placed inside the magnetic shield from an external magnetic field. used to prevent magnetic leakage.

【0003】近年、この磁気シールド体として、液体窒
素温度以上で超伝導特性を示す酸化物系高温超伝導体を
利用したものが鋭意研究されているが、その製造方法と
しては、酸化物系高温超伝導体となる粉末を金型に充填
後、プレス成形により成形し、焼成するものであった。
[0003] In recent years, intensive research has been conducted on magnetic shielding materials that utilize oxide-based high-temperature superconductors that exhibit superconductivity above the liquid nitrogen temperature. After filling a mold with powder that would become a superconductor, it was press-molded and fired.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記プ
レス成形を用いる方法では、成形体の焼成時に超伝導相
が生成して超伝導体粒子が成長することにより、焼結体
の密度の低下が生じ、磁気シールド特性が低下し、得ら
れた磁気シールド体では高い磁界をシールドすることは
困難であった。
[Problems to be Solved by the Invention] However, in the above-mentioned method using press forming, a superconducting phase is generated during firing of the compact and superconductor particles grow, resulting in a decrease in the density of the sintered compact. , the magnetic shielding properties deteriorated, and it was difficult for the obtained magnetic shielding body to shield high magnetic fields.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記の問題
を解決すべく研究を重ねた結果、酸化物系高温超伝導体
の成形体を再加圧することにより、その磁気シールド特
性を向上せしめることができた。
[Means for Solving the Problems] As a result of repeated research in order to solve the above problems, the present inventors have improved the magnetic shielding properties by repressurizing a molded body of an oxide-based high temperature superconductor. I was able to force it.

【0006】すなわち、本発明は、酸化物系高温超伝導
材料の焼結体を静水圧加圧処理した後、再度焼成するこ
とを特徴とする磁気シールド体の製造方法である。
That is, the present invention is a method for manufacturing a magnetic shielding body, which is characterized in that a sintered body of an oxide-based high-temperature superconducting material is hydrostatically pressed and then fired again.

【0007】(酸化物系高温超伝導材料)本発明におい
て使用する酸化物系高温超伝導材料は、焼成によって液
体窒素温度以上で超伝導特性を示す酸化物系高温超伝導
体となる材料であって、このような高温超伝導体として
は、
(Oxide-based high-temperature superconducting material) The oxide-based high-temperature superconducting material used in the present invention is a material that becomes an oxide-based high-temperature superconductor that exhibits superconducting properties at temperatures above the liquid nitrogen temperature when fired. So, as such a high-temperature superconductor,

【0009】 Ba2YCu3Oy           (焼成温度
 900〜950 ℃)Bi2Sr2Ca2Cu3Oy
      (焼成温度 800〜900 ℃)Bi2
Sr2Ca1Cu2Oy      (焼成温度 80
0〜900 ℃)Tl2Ba2Ca2Cu3Oy   
   (焼成温度900〜1000℃)Bi2−xPb
xSr2Ca2Cu3Oy (焼成温度 800〜90
0 ℃)Bi2−xPbxSr2Ca1Cu2Oy (
焼成温度 800〜900 ℃)等が挙げられる。
[0009] Ba2YCu3Oy (firing temperature 900-950°C) Bi2Sr2Ca2Cu3Oy
(Firing temperature 800-900°C) Bi2
Sr2Ca1Cu2Oy (firing temperature 80
0~900℃) Tl2Ba2Ca2Cu3Oy
(Calcination temperature 900-1000℃) Bi2-xPb
xSr2Ca2Cu3Oy (calcination temperature 800-90
0℃) Bi2-xPbxSr2Ca1Cu2Oy (
Firing temperature: 800 to 900°C), etc.

【0010】(焼結体)本発明における成形体の製造方
法としては慣用の方法を用いることができ、その方法は
特に限定されないが、例えばプレス成形、ドクターブレ
ード成形、押出し成形等により成形し、最終的に必要な
形状に加工する。
(Sintered body) Conventional methods can be used to produce the molded body of the present invention, and the method is not particularly limited, but for example, press molding, doctor blade molding, extrusion molding, etc. Process it into the final shape you need.

【0011】加工した成形体は、セラミックスの慣用の
方法により、焼成して焼結体とする。すなわち、得られ
た成形体を各高温超伝導体組成に適した温度で焼成する
ことにより、目的とする焼結体が得られる。
The processed molded body is fired into a sintered body by a conventional method for ceramics. That is, the desired sintered body can be obtained by firing the obtained molded body at a temperature suitable for each high-temperature superconductor composition.

【0012】(静水圧加圧処理)本発明の方法では、上
記で得られた焼結体に静水圧加圧処理を行う。すなわち
、焼結体をゴム等の可塑性の容器に封入し、これに液体
を経て均一な圧力を付与する。これにより焼結体の密度
が向上する。静水圧加圧処理において付与する圧力は、
300kg/cm2 以上が好ましい。圧力が300k
g/cm2 未満では密度の向上の効果はあまり期待で
きない。
(Isostatic pressure treatment) In the method of the present invention, the sintered body obtained above is subjected to a hydrostatic pressure treatment. That is, the sintered body is sealed in a plastic container made of rubber or the like, and a uniform pressure is applied to the container through the liquid. This improves the density of the sintered body. The pressure applied in hydrostatic pressure treatment is
300 kg/cm2 or more is preferable. pressure is 300k
If it is less than g/cm2, the effect of improving the density cannot be expected much.

【0013】(再焼成)静水圧加圧処理した焼結体は再
焼成して磁気シールド体とする。すなわち、静水圧加圧
処理を行った焼結体を各高温超伝導体組成に適した温度
で再焼成する。
(Re-firing) The sintered body subjected to the hydrostatic pressure treatment is re-fired to form a magnetic shield body. That is, the sintered body subjected to the hydrostatic pressure treatment is re-sintered at a temperature suitable for each high-temperature superconductor composition.

【0014】静水圧加圧処理と再焼成は、これを繰返す
ことにより、更に密度の高い磁気シールド体を得ること
ができる。繰返しの回数については特に限定しないが、
 1回から 3回が望ましい。
[0014] By repeating the hydrostatic pressure treatment and re-firing, a magnetic shielding body with even higher density can be obtained. There is no particular limit to the number of repetitions, but
Preferably 1 to 3 times.

【0015】得られた焼結体は、磁気シールド体として
の使用に際して、必要に応じて機械加工して所定の形状
としてもよい。
The obtained sintered body may be machined into a predetermined shape if necessary when used as a magnetic shielding body.

【0016】[0016]

【実施例】以下、実施例を用いて本発明を詳細に説明す
る。
EXAMPLES The present invention will be explained in detail below using examples.

【0017】実施例1 原料粉末として、モル比でBi:Pb:Sr:Ca:C
u=1.92:0.48:2.0:2.0:3.2 と
なるように Bi2O3、PbO 、SrCO3 、C
aCO3 及びCuO を配合し、エタノールを加えて
樹脂ミル及び樹脂ボールで混合した後、乾燥し、得られ
た粉末を 850℃で50時間仮焼して、Bi1.8P
b0.2Sr2Ca2Cu3Oy 酸化物系高温超伝導
粉末を作製した。
Example 1 As raw material powder, the molar ratio is Bi:Pb:Sr:Ca:C
Bi2O3, PbO, SrCO3, C so that u=1.92:0.48:2.0:2.0:3.2
After blending aCO3 and CuO, adding ethanol and mixing with a resin mill and resin ball, drying, and calcining the obtained powder at 850°C for 50 hours to obtain Bi1.8P.
b0.2Sr2Ca2Cu3Oy oxide-based high temperature superconducting powder was produced.

【0018】この粉末を成形圧 350kg/cm2で
プレス成形し、圧力1500kg/cm2で静水圧加圧
処理を行い、外径45mm、内径 8mm、長さ60m
mの管状成形体を得た。
[0018] This powder was press-molded at a molding pressure of 350 kg/cm2, and subjected to isostatic pressure treatment at a pressure of 1500 kg/cm2, resulting in an outer diameter of 45 mm, an inner diameter of 8 mm, and a length of 60 m.
A tubular molded body of m was obtained.

【0019】この成形体を、大気雰囲気中 850℃で
 100時間焼成し、焼成炉中で放冷して、密度4.5
g/cm3の管状焼結体を得た。
[0019] This molded body was fired at 850°C for 100 hours in an air atmosphere, allowed to cool in a firing furnace, and had a density of 4.5.
A tubular sintered body of g/cm3 was obtained.

【0020】次に、上記で得られた管状焼結体を、圧力
1500kg/cm2で静水圧加圧処理を行い、大気雰
囲気中 850℃で50時間、再度焼成して、外形40
mm、内径10mm、長さ50mm、密度5.2g/c
m3の管状磁気シールド体を得た。
Next, the tubular sintered body obtained above was subjected to isostatic pressure treatment at a pressure of 1500 kg/cm2, and fired again at 850° C. for 50 hours in an air atmosphere to reduce the outer diameter to 40.
mm, inner diameter 10mm, length 50mm, density 5.2g/c
A tubular magnetic shield body of m3 was obtained.

【0021】得られた磁気シールド体を液体窒素中で冷
却した状態で、外部から直流磁界を加え、ホール素子を
用いて管状磁気シールド体の中央での磁気シールド特性
を測定した。その結果、管状磁気シールド体内部中央で
の内部磁束密度が 1ガウスを超えたのは、外部磁束密
度が 115ガウスのときであった。
[0021] While the obtained magnetic shield was cooled in liquid nitrogen, a DC magnetic field was applied from the outside, and the magnetic shielding characteristics at the center of the tubular magnetic shield were measured using a Hall element. As a result, the internal magnetic flux density at the center of the tubular magnetic shield body exceeded 1 Gauss when the external magnetic flux density was 115 Gauss.

【0022】実施例2 原料粉末として、モル比でBi:Pb:Sr:Ca:C
u=1.92:0.48:2.0:2.0:3.2とな
るように Bi2O3、PbO 、SrCO3 、Ca
CO3 及びCuO を配合し、エタノールを加えて樹
脂ミル及び樹脂ボールで混合した後、乾燥し、得られた
粉末を 850℃で50時間仮焼し、Bi1.8Pb0
.2Sr2Ca2Cu3Oy 酸化物系高温超伝導粉末
を作製した。
Example 2 As raw material powder, the molar ratio is Bi:Pb:Sr:Ca:C
Bi2O3, PbO, SrCO3, Ca so that u=1.92:0.48:2.0:2.0:3.2
After blending CO3 and CuO, adding ethanol and mixing with a resin mill and resin ball, drying, and calcining the obtained powder at 850°C for 50 hours, Bi1.8Pb0
.. A 2Sr2Ca2Cu3Oy oxide-based high-temperature superconducting powder was produced.

【0023】この粉末100gと、バインダとしてPV
B 4g、可塑剤としてDBP 3g、分散剤としてオ
レイン酸エチル 1g 並びに溶媒としてエタノール5
0ml及びキシレン15mlを樹脂ミル及び樹脂ボール
を用いて混合し、泥漿を作製した。
100g of this powder and PV as a binder
4g of B, 3g of DBP as a plasticizer, 1g of ethyl oleate as a dispersant and 5g of ethanol as a solvent.
0 ml and xylene 15 ml were mixed using a resin mill and a resin ball to prepare a slurry.

【0024】得られた泥漿をドクターブレード装置を用
いて厚さ1500μm に塗工し、乾燥して厚さ100
0μm の厚さのグリーンシートとした。
The obtained slurry was applied to a thickness of 1500 μm using a doctor blade device, and dried to a thickness of 100 μm.
A green sheet with a thickness of 0 μm was prepared.

【0025】得られたグリーンシートを直径 8mm、
長さ60mmの円筒形のアルミナ巻芯に巻きつけた後、
圧力1500kg/cm2で静水圧加圧処理を行ってシ
ートを接着し、外形45mm、内径 8mm、長さ60
mmの管状成形体を得た。
[0025] The obtained green sheet has a diameter of 8 mm,
After winding it around a cylindrical alumina core with a length of 60 mm,
The sheets were bonded using hydrostatic pressure treatment at a pressure of 1500 kg/cm2, and the outer diameter was 45 mm, the inner diameter was 8 mm, and the length was 60 mm.
A tubular molded body of mm was obtained.

【0026】この成形体を大気雰囲気中 1℃/分の速
度で 500℃まで昇温し、脱脂を行った後、大気雰囲
気中 850℃で 100時間焼成後、炉内で放冷して
、密度5.4g/cm3の管状焼結体を作製した。
[0026] This molded body was heated to 500°C at a rate of 1°C/min in an air atmosphere, degreased, then fired at 850°C in an air atmosphere for 100 hours, and then allowed to cool in a furnace to determine its density. A tubular sintered body weighing 5.4 g/cm3 was produced.

【0027】次に得られた管状焼結体を圧力1500k
g/cm2で静水圧加圧処理を行い、大気雰囲気中 8
50℃で50時間再度焼成することを 2回繰り返し、
外径40mm、内径10mm、長さ50mm、密度6.
1g/cm3の管状磁気シールド体を得た。
Next, the obtained tubular sintered body was subjected to a pressure of 1500 k.
Hydrostatic pressure treatment was carried out at g/cm2 in atmospheric atmosphere.
Repeat baking at 50℃ for 50 hours twice,
Outer diameter 40mm, inner diameter 10mm, length 50mm, density 6.
A tubular magnetic shield of 1 g/cm3 was obtained.

【0028】得られた磁気シールド体を液体窒素中で冷
却した状態で、外部から直流磁界を加え、ホール素子を
用いて管状磁気シールド体の中央での磁気シールド特性
を測定した。その結果、管状磁気シールド体内部中央で
の内部磁束密度が 1ガウスを超えたのは、外部磁束密
度が 200ガウスのときであった。
While the obtained magnetic shield was cooled in liquid nitrogen, a direct current magnetic field was applied from the outside, and the magnetic shielding characteristics at the center of the tubular magnetic shield were measured using a Hall element. As a result, the internal magnetic flux density at the center of the tubular magnetic shield body exceeded 1 Gauss when the external magnetic flux density was 200 Gauss.

【0029】比較例1 原料粉末として、モル比でBi:Pb:Sr:Ca:C
u=1.92:0.48:2.0:2.0:3.2 と
なるように Bi2O3、PbO 、SrCO3 、C
aCO3 及びCuO を配合し、エタノールを用いて
樹脂ミル、樹脂ボールで混合後、乾燥した粉末を 85
0℃で50時間仮焼し、Bi1.8Pb0.2Sr2C
a2Cu3Oy 酸化物系高温超伝導粉末を作製した。
Comparative Example 1 As raw material powder, Bi:Pb:Sr:Ca:C in molar ratio
Bi2O3, PbO, SrCO3, C so that u=1.92:0.48:2.0:2.0:3.2
Blend aCO3 and CuO, mix with ethanol in a resin mill and resin ball, and then dry the powder.85
Calcined at 0℃ for 50 hours, Bi1.8Pb0.2Sr2C
A2Cu3Oy oxide-based high-temperature superconducting powder was produced.

【0030】この粉末を成形圧 350kg/cm2で
プレス成形し、圧力1500kg/cm2で静水圧加圧
処理を行い、外形40mm、内径10mm、長さ50m
mの管状成形体を得た。この成形体を、大気雰囲気中 
850℃で 100時間焼成した後、焼成炉中で放冷し
て、密度4.5g/cm3の磁気シールド体を得た。得
られた磁気シールド体を液体窒素中で冷却した状態で、
外部から直流磁界を加え、ホール素子を用いて管状磁気
シールド体の中央での磁気シールド特性を測定した。そ
の結果、管状磁気シールド体内部中央での内部磁束密度
が 1ガウスを超えたのは、外部磁束密度が40ガウス
のときであった。
[0030] This powder was press-molded at a molding pressure of 350 kg/cm2, and subjected to isostatic pressure treatment at a pressure of 1500 kg/cm2, resulting in an outer diameter of 40 mm, an inner diameter of 10 mm, and a length of 50 m.
A tubular molded body of m was obtained. This molded body is placed in the atmosphere.
After firing at 850° C. for 100 hours, it was allowed to cool in a firing furnace to obtain a magnetic shield body with a density of 4.5 g/cm 3 . With the obtained magnetic shield body cooled in liquid nitrogen,
A DC magnetic field was applied from the outside, and the magnetic shielding characteristics at the center of the tubular magnetic shielding body were measured using a Hall element. As a result, the internal magnetic flux density at the center of the tubular magnetic shield body exceeded 1 Gauss when the external magnetic flux density was 40 Gauss.

【0031】[0031]

【発明の効果】本発明の方法によれば、酸化物系高温超
伝導材料の焼結体に静水圧加圧処理を行い、再度焼成す
ることにより、密度が高く、高い磁界をシールドするこ
とが可能な磁気シールド体を作製でき、酸化物系超伝導
体の応用分野を大幅に拡大できる。
[Effects of the Invention] According to the method of the present invention, by subjecting a sintered body of an oxide-based high-temperature superconducting material to hydrostatic pressure treatment and firing it again, it is possible to shield high density and high magnetic fields. This makes it possible to create a magnetic shielding material that can significantly expand the field of application of oxide-based superconductors.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  酸化物系高温超伝導材料の焼結体を静
水圧加圧処理した後、再度焼成することを特徴とする磁
気シールド体の製造方法。
1. A method for manufacturing a magnetic shielding body, which comprises subjecting a sintered body of an oxide-based high-temperature superconducting material to hydrostatic pressure treatment and then firing it again.
JP3089385A 1991-03-29 1991-03-29 Manufacture of magnetic shield body Pending JPH04302499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3089385A JPH04302499A (en) 1991-03-29 1991-03-29 Manufacture of magnetic shield body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3089385A JPH04302499A (en) 1991-03-29 1991-03-29 Manufacture of magnetic shield body

Publications (1)

Publication Number Publication Date
JPH04302499A true JPH04302499A (en) 1992-10-26

Family

ID=13969201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3089385A Pending JPH04302499A (en) 1991-03-29 1991-03-29 Manufacture of magnetic shield body

Country Status (1)

Country Link
JP (1) JPH04302499A (en)

Similar Documents

Publication Publication Date Title
JPH04302499A (en) Manufacture of magnetic shield body
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
JP2926196B2 (en) Manufacturing method of magnetic shield
JP2541653B2 (en) Method for manufacturing oxide superconductor
JPH04252993A (en) Manufacturing magnetic shield body
JPH0518778B2 (en)
JP3005660B2 (en) Manufacturing method of magnetic shield
JPH01176268A (en) Production of high-temperature superconductor
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
JPH04139026A (en) Oxide superconducting material and its production
JPH0193459A (en) Production of superconducting substance
JPH02133364A (en) Production of y-based oxide superconductor
JPS63310766A (en) Production of superconducting material
JPH01278461A (en) Production of superconductor
JPH01188458A (en) Production of superconducting ceramic
JPH01164726A (en) Oxide superconducting material
JPH01131087A (en) Production of superconducting substance
JPS63288952A (en) Production of superconductor
JPH01278463A (en) Production of superconductor
JPH04202046A (en) Production of superconducting ceramic sintered body
JPH01119555A (en) Production of ceramic superconducting material
JPS63288951A (en) Production of superconductor
JPS63288949A (en) Production of superconductor
JPS63288955A (en) Production of superconductor
JPS63291850A (en) Production of superconductor