JP2541653B2 - Method for manufacturing oxide superconductor - Google Patents

Method for manufacturing oxide superconductor

Info

Publication number
JP2541653B2
JP2541653B2 JP1077179A JP7717989A JP2541653B2 JP 2541653 B2 JP2541653 B2 JP 2541653B2 JP 1077179 A JP1077179 A JP 1077179A JP 7717989 A JP7717989 A JP 7717989A JP 2541653 B2 JP2541653 B2 JP 2541653B2
Authority
JP
Japan
Prior art keywords
oxide
powder
oxide superconductor
residual carbon
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1077179A
Other languages
Japanese (ja)
Other versions
JPH02255556A (en
Inventor
学 吉田
均 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1077179A priority Critical patent/JP2541653B2/en
Publication of JPH02255556A publication Critical patent/JPH02255556A/en
Application granted granted Critical
Publication of JP2541653B2 publication Critical patent/JP2541653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超電導体及びその製造方法に関する
ものである。
TECHNICAL FIELD The present invention relates to an oxide superconductor and a method for producing the same.

〔従来の技術〕[Conventional technology]

近年、酸化物超電導体は高い臨界温度を示すことで注
目を集め、電力分野、核磁気共鳴装置、磁気シールド等
の各分野での用途が期待されている。これら酸化物超電
導体の中・大型品または複雑形状品を成形して焼結体と
して得るためには、通常のセラミックスの製造法と同様
に原料粉末に結合剤、可塑剤、分散剤等の成形助剤を添
加して成形焼成することになる。更に原料粉末をスラリ
ー化または湿式粉砕するには、酸化物超電導粉末が水と
の反応で劣化するため有機溶媒を用いることになる。従
来、セラミックス成形体を焼成する場合、通常、酸化性
雰囲気中500℃以下、主に150〜300℃の温度で一定時間
保持し成形助剤、残留炭素成分を分解除去する焼成スケ
ジュールを経て、その後本焼成している。アルミナ、ジ
ルコニア等従来のセラミックスでは、700℃までの熱処
理で通常の成形助剤、有機溶媒の残留物はほぼ完全に分
解除去され焼結体中の残留炭素量は約0.1重量%以下に
なり、焼結体に及ぼす影響は少なかった。
In recent years, oxide superconductors have attracted attention due to their high critical temperature, and are expected to be used in various fields such as electric power fields, nuclear magnetic resonance devices, and magnetic shields. In order to form a medium- or large-sized product or a complex-shaped product of these oxide superconductors to obtain a sintered body, a binder, a plasticizer, a dispersant, etc. are molded into the raw material powder in the same manner as in ordinary ceramics manufacturing methods. Auxiliary agents are added and molding and firing are performed. Further, when the raw material powder is slurried or wet-milled, an organic solvent is used because the oxide superconducting powder deteriorates due to the reaction with water. Conventionally, when firing a ceramic molded body, it is usually held in an oxidizing atmosphere at 500 ° C. or less, mainly at a temperature of 150 to 300 ° C. for a certain period of time, through a firing schedule of decomposing and removing a forming aid and residual carbon components, and thereafter. The main firing is done. With conventional ceramics such as alumina and zirconia, the heat treatment up to 700 ° C. removes the residues of ordinary forming aids and organic solvents almost completely, and the residual carbon content in the sintered body becomes about 0.1 wt% or less. The effect on the sintered body was small.

〔発明が解決しようとする課題〕 発明者らは、上記の従来から行われていたセラミック
ス焼成法を、成形助剤を添加し、及び/または有機溶媒
中で処理した酸化物超電導成形体において適用した場
合、500℃以下で成形助剤等による残留炭素分の大部分
は分解除去されるが、焼成後の焼結体中の残留炭素量を
0.5重量%以下にすることができず、超電導特性が成形
助剤等を用いない乾式法による超電導体に比較して著し
く低下することを見出した。
[Problems to be Solved by the Invention] The present inventors have applied the above-mentioned conventional ceramics firing method to an oxide superconducting molded article that has a molding aid added thereto and / or is treated in an organic solvent. In the case of 500 ° C or less, most of the residual carbon content due to the molding aid is decomposed and removed, but the residual carbon amount in the sintered body after firing is
It has been found that the content of superconductivity cannot be reduced to 0.5% by weight or less, and the superconducting properties are significantly deteriorated as compared with the superconductor prepared by the dry method without using a molding aid.

そこで、成形助剤等を用いた酸化物超電導成形体にお
いても、成形体助剤等を用いない場合と同等の超電導特
性を有する酸化物超電導焼結体を得ることを目的として
本発明を完成した。
Therefore, the present invention was completed for the purpose of obtaining an oxide superconducting sintered body having superconducting properties equivalent to those in the case of not using a molding aid or the like, even in an oxide superconducting molded product using a molding aid or the like. .

〔課題を解決するための手段〕[Means for solving the problem]

本発明によれば、酸化物超電導体の粉末を成形助剤ま
たは/及び有機溶媒を用いて成形体とし、該成形体を酸
化性雰囲気中800〜930℃で4時間以上熱処理した後、焼
成することにより、残留炭素量が0.3重量%以下の酸化
物超電導焼結体を得ることを特徴とする酸化物超電導体
の製造方法が提供される。
According to the present invention, a powder of an oxide superconductor is formed into a molded body by using a molding aid and / or an organic solvent, and the molded body is heat-treated in an oxidizing atmosphere at 800 to 930 ° C. for 4 hours or more and then fired. Thus, there is provided a method for producing an oxide superconductor characterized by obtaining an oxide superconducting sintered body having a residual carbon amount of 0.3% by weight or less.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明における酸化物超電導体としては、例えば、要
すれば微量のCaが混入してもよいM−Ba−Cu−O系化合
物(但し、MはSc、Tl、Y及びLa、Eu、Gd、Er、Yb、Lu
等のランタニドから選ばれる一種以上を表す。)及びBi
−Sr−Ca−Cu−O系化合物等の多層ペロブスカイト構造
を有するものが挙げられる。
Examples of the oxide superconductor in the present invention include M-Ba-Cu-O-based compounds (where M is Sc, Tl, Y and La, Eu, Gd, Er, Yb, Lu
Represents one or more selected from lanthanides and the like. ) And Bi
Examples thereof include those having a multi-layer perovskite structure such as a —Sr—Ca—Cu—O-based compound.

本発明において上記の酸化物超電導体等は、上記Mに
該当する例えば、イットリウム酸化物粉体、スカンジウ
ム酸化物粉体、ランタン酸化物粉体等の金属酸化物粉
体、炭酸バリウム粉体、銅酸化物粉体、ビスマス酸化物
粉体及び炭酸カルシウム粉体等の混合粉体を仮焼して酸
化物超電導体組成物を得る。その後、その組成物に、通
常、結合剤、可塑剤等成形助剤を添加し、有機溶媒を用
いてスラリー等を形成し、必要であれば造粒後金型等に
より成形体に成型して、最終的には焼成して焼結体を得
る。
In the present invention, the oxide superconductor and the like correspond to M, for example, metal oxide powder such as yttrium oxide powder, scandium oxide powder, lanthanum oxide powder, barium carbonate powder, and copper. A mixed powder such as oxide powder, bismuth oxide powder and calcium carbonate powder is calcined to obtain an oxide superconductor composition. Then, to the composition, usually, a molding aid such as a binder or a plasticizer is added, and a slurry or the like is formed using an organic solvent, and if necessary, after granulation, it is molded into a molded body by a mold or the like. Finally, it is fired to obtain a sintered body.

本発明においては、焼成の予備処理として酸素雰囲気
中800〜930℃、好ましくは860〜900℃で4時間以上熱処
理した後、焼成焼結する。熱処理温度が800℃未満及び9
30℃を越えると残留炭素分が0.5重量%以上となり、超
電導特性が低下する。
In the present invention, as a preliminary treatment for firing, heat treatment is performed in an oxygen atmosphere at 800 to 930 ° C., preferably 860 to 900 ° C. for 4 hours or more, and then firing and sintering. Heat treatment temperature less than 800 ℃ and 9
If the temperature exceeds 30 ° C, the residual carbon content will be 0.5% by weight or more, and the superconducting properties will deteriorate.

上記熱処理のための時間は、成形体密度及び成形体の
肉厚等により異なり、密度が高く、肉厚が厚い程長時間
必要になる。一般的には5〜40時間熱処理するのが好ま
しく、例えば密度60%(酸化物超電導体を形成する酸化
物の理論密度に対する相対密度の比率)で厚さ5〜10mm
の酸化物超電導成形体を得る場合には、10〜20時間熱処
理する必要がある。
The time for the heat treatment varies depending on the density of the molded body, the wall thickness of the molded body, and the like, and the higher the density and the thicker the wall, the longer the time required. Generally, it is preferable to perform heat treatment for 5 to 40 hours, for example, a density of 60% (ratio of relative density to theoretical density of oxide forming oxide superconductor) and thickness of 5 to 10 mm
In order to obtain the oxide superconducting molded body of (1), it is necessary to perform heat treatment for 10 to 20 hours.

通常のセラミックス成形体の湿式成形における焼成の
前処理としての熱処理は500℃前後で行われるのに対
し、本発明の酸化物超電導体においては炭素との結合力
が強く、800℃以上でかつ所定の時間熱処理しなければ
炭素分の除去が行われない。また930℃を越えると酸化
物超電導成形体の焼結が顕著となるため、残留炭素分と
雰囲気酸素との反応が進まず炭素分を含有したまま緻密
化が生じ残留炭素分の除去が十分でなくなるものと考え
られる。本発明においては、上記した800〜930℃の温度
で酸素雰囲気中で熱処理することにより超電導特性の優
れた超導電成形体を得ることができるものである。本発
明における酸化性雰囲気は、酸素ガスが好ましいが空気
を用いても実施することができる。
Whereas the heat treatment as a pretreatment for firing in the wet molding of a normal ceramics molded body is performed at around 500 ° C, the oxide superconductor of the present invention has a strong bonding force with carbon and is at 800 ° C or higher and at a predetermined temperature. The carbon content is not removed unless the heat treatment is performed for the time. Further, when the temperature exceeds 930 ° C, the oxide superconducting compact is significantly sintered, so that the reaction between the residual carbon content and atmospheric oxygen does not proceed and densification occurs with the carbon content contained, and the residual carbon content is not sufficiently removed. It is thought to disappear. In the present invention, a superconducting compact having excellent superconducting properties can be obtained by heat treatment in the oxygen atmosphere at the temperature of 800 to 930 ° C. The oxidizing atmosphere in the present invention is preferably oxygen gas, but can be carried out using air.

上記本発明の方法により製造される酸化物超電導体
は、酸化物超電導焼結体中の残留炭素量が0.3重量%以
下となり、極めて超電導特性が高いものとなる。酸化物
超電導焼結体中の残留炭素は、主に粒界或いは粒子表面
に存在すると考えられるため、残留炭素量が0.3重量%
を超えると超電導特性を阻害するものと推定される。酸
化物超電導焼結体の残留炭素量が0.15重量%以下になる
と、酸化物超電導体の超電導特性はさらに優れたものと
なる。
In the oxide superconductor produced by the method of the present invention, the residual carbon content in the oxide superconducting sintered body is 0.3% by weight or less, and the superconducting properties are extremely high. Residual carbon in the oxide superconducting sintered body is considered to exist mainly at grain boundaries or on the particle surface, so the residual carbon content is 0.3% by weight.
It is presumed that the superconducting property will be hindered if the value exceeds. When the residual carbon content of the oxide superconducting sintered body is 0.15% by weight or less, the superconducting properties of the oxide superconductor become further excellent.

〔実施例〕〔Example〕

以下、本発明について実施例によりさらに詳しく説明
する。なお、本発明は本実施例に限定されるものでな
い。
Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is not limited to this embodiment.

実施例1〜9及び比較例1〜4 純度99.9%のY2O3粉末(平均粒径0.4μm)、BaCO3
末(平均粒径0.8μm)及びCuO粉末(平均粒径2.5μ
m)をモル比で1:4:6となるように調整した後、大気中9
40℃で10時間仮焼し、YBaCu3O7粉末を合成した。
Examples 1 to 9 and Comparative Examples 1 to 4 Y 2 O 3 powder having a purity of 99.9% (average particle size 0.4 μm), BaCO 3 powder (average particle size 0.8 μm) and CuO powder (average particle size 2.5 μm)
m) was adjusted to a molar ratio of 1: 4: 6, then 9
It was calcined at 40 ° C. for 10 hours to synthesize YBaCu 3 O 7 powder.

次いでこのYBaCu3O7粉末2kgに結合剤としてポリビニ
ルブチラール(PVB)50g及び非イオン系分散剤5gを混合
し、ポリポット容器内のトルエン2中にジルコニア玉
石1kgと共に入れ、回転ミルで16時間粉砕・混合してス
ラリーを作製した。このスラリーをスプレードライヤー
により平均粒系50μmに造粒した。この粉末を鉄製金型
を用いて、30×40×5乃至10mmの成形体に成型し、2.5
トン/cm2の静水圧でラバープレスした。
Next, 2 g of this YBaCu 3 O 7 powder was mixed with 50 g of polyvinyl butyral (PVB) as a binder and 5 g of a nonionic dispersant, and the mixture was placed in toluene 2 in a polypot container together with 1 kg of zirconia boulders and pulverized with a rotary mill for 16 hours. A slurry was prepared by mixing. This slurry was granulated with a spray dryer to an average particle size of 50 μm. This powder is molded into a molded body of 30 × 40 × 5 to 10 mm using an iron mold, and 2.5
Rubber pressing was performed at a hydrostatic pressure of ton / cm 2 .

得られた成形体を第1図に示した焼成スケジュールに
より第1表に示した温度及び時間で熱処理して焼成し
た。
The obtained molded body was heat-treated and fired at the temperature and time shown in Table 1 according to the firing schedule shown in FIG.

得られた焼結体の嵩密度は、溶液にケロシンを用いて
アルキメデス法により測定した。残留炭素量は化学分析
により測定した。臨界電流密度は焼結体を20×4×2mm
に加工して、4端子法により液体窒素中(77K)で測定
した。
The bulk density of the obtained sintered body was measured by the Archimedes method using kerosene in the solution. The residual carbon amount was measured by chemical analysis. The critical current density is 20 x 4 x 2 mm for the sintered body.
And processed in liquid nitrogen (77K) by the 4-terminal method.

以上の結果を第1表に示した。 The above results are shown in Table 1.

上記実施例及び比較例から明らかなように、本発明の
800〜930℃で熱処理したものは、残留炭素量が0.30重量
%以下となり、臨界電界密度が50A/cm2以上を示し超電
導体としての特性を十分備えているのに対し、比較例の
熱処理をしないもの、940℃及び780℃で処理したものは
残留炭素量が0.6重量%以上であり、また880℃で2時間
しか保持しないものは、残留炭素量が0.5重量%以上
で、臨界電界密度が10A/cm2以下となり超電導特性が劣
る。
As is clear from the above Examples and Comparative Examples,
What was heat-treated at 800 to 930 ° C had a residual carbon content of 0.30% by weight or less and a critical electric field density of 50 A / cm 2 or more and had sufficient characteristics as a superconductor, whereas the heat treatment of Comparative Example Those not treated, those treated at 940 ° C and 780 ° C have a residual carbon content of 0.6% by weight or more, and those retained at 880 ° C for only 2 hours have a residual carbon content of 0.5% by weight or more and a critical electric field density of It becomes less than 10 A / cm 2 and the superconducting property is inferior.

〔発明の効果〕〔The invention's effect〕

本発明は、酸化物超電導体の焼結体を得るため、従来
のセラミックス成形体の焼成スケジュールでは優れた超
電導特性を得ることができないという知見を得たことに
基づき達成されたもので、焼成前の熱処理温度を800〜9
30℃の高温で所定時間保持するものである。
The present invention has been achieved based on the finding that excellent sintering characteristics cannot be obtained with a conventional ceramics compact firing schedule in order to obtain a sintered body of an oxide superconductor. Heat treatment temperature of 800 ~ 9
It is kept at a high temperature of 30 ° C for a predetermined time.

本発明によれば、残留炭素量が0.3重量%以下の十分
な超電導特性を有する各種形状の酸化物超電導体を得る
ことができる。
According to the present invention, it is possible to obtain various shapes of oxide superconductors having a sufficient residual carbon content of 0.3% by weight or less and having sufficient superconducting properties.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明における一実施例の焼成スケジュール
を表したものである。縦軸は温度を、横軸は時間を示し
ている。
FIG. 1 shows the firing schedule of one embodiment of the present invention. The vertical axis represents temperature and the horizontal axis represents time.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体の粉末を成形助剤または/
及び有機溶媒を用いて成形体とし、該成形体を酸化性雰
囲気中800〜930℃で4時間以上熱処理した後、焼成する
ことにより、残留炭素量が0.3重量%以下の酸化物超電
導焼結体を得ることを特徴とする酸化物超電導体の製造
方法。
1. A molding aid or / and a powder of an oxide superconductor.
And a molded body using an organic solvent, and the molded body is heat-treated in an oxidizing atmosphere at 800 to 930 ° C. for 4 hours or more and then fired to give an oxide superconducting sintered body having a residual carbon amount of 0.3% by weight or less. And a method for producing an oxide superconductor.
JP1077179A 1989-03-29 1989-03-29 Method for manufacturing oxide superconductor Expired - Lifetime JP2541653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1077179A JP2541653B2 (en) 1989-03-29 1989-03-29 Method for manufacturing oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1077179A JP2541653B2 (en) 1989-03-29 1989-03-29 Method for manufacturing oxide superconductor

Publications (2)

Publication Number Publication Date
JPH02255556A JPH02255556A (en) 1990-10-16
JP2541653B2 true JP2541653B2 (en) 1996-10-09

Family

ID=13626578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1077179A Expired - Lifetime JP2541653B2 (en) 1989-03-29 1989-03-29 Method for manufacturing oxide superconductor

Country Status (1)

Country Link
JP (1) JP2541653B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136816A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Method for producing target for superconductive film formation, target for superconductive film formation, and method for producing oxide superconductive conductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451324A (en) * 1987-08-21 1989-02-27 Matsushita Electric Ind Co Ltd Production of oxide superconducting material
JPH01141866A (en) * 1987-11-27 1989-06-02 Ube Ind Ltd Production of ceramic sintered body superconducting at high temperature

Also Published As

Publication number Publication date
JPH02255556A (en) 1990-10-16

Similar Documents

Publication Publication Date Title
KR910007383B1 (en) Method of manufacturing oxide superconductor and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
KR100479532B1 (en) Ceria based solid electrolytes
CN1027329C (en) Super conducting ceramics
JP2541653B2 (en) Method for manufacturing oxide superconductor
JP3007730B2 (en) Rare earth oxide-alumina sintered body and method for producing the same
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP2980650B2 (en) Method for producing rare earth oxide superconductor
KR940007596B1 (en) Manufacturing method of superconducting ceramic
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
Yan et al. Conventional and Chemical Processing of High Tc Superconductors
JPH01160860A (en) Production of sintered material of oxide superconductor
JPH01145364A (en) Production of high-temperature superconducting ceramics
Poeppel et al. Ceramic Processing Of High-T [sub] c [/sub] Superconductors
MATSUDA et al. Densification of superconducting Ba2YCu4O8 ceramics by two-stage sintering
JPH01108149A (en) Oxide superconducting material
JPH02120225A (en) Production of coating film or thin plate of superconducting ceramic
JPS63310766A (en) Production of superconducting material
JPS63303851A (en) Sintered body of superconducting ceramic
JPS63270340A (en) Production of sintered superconducting oxide ceramics
JPS63277571A (en) Production of sintered aluminum nitride having high thermal conductivity
JPH01264954A (en) Production of high-temperature superconductor
Kaneko et al. Effects of the additions of various metal oxides on the low-temperature sintering and the electrical properties of Pb (Zr, Ti) O/sub 3/ceramics
Tartaj et al. Preparation and characterization of superconducting YBa2Cu3Ox thick films obtained by screen-printing
JPS63270309A (en) Oxide superconductor