JPH01145364A - Production of high-temperature superconducting ceramics - Google Patents

Production of high-temperature superconducting ceramics

Info

Publication number
JPH01145364A
JPH01145364A JP62301431A JP30143187A JPH01145364A JP H01145364 A JPH01145364 A JP H01145364A JP 62301431 A JP62301431 A JP 62301431A JP 30143187 A JP30143187 A JP 30143187A JP H01145364 A JPH01145364 A JP H01145364A
Authority
JP
Japan
Prior art keywords
alkaline earth
earth element
oxide
earth metal
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62301431A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Hiroshi Miura
洋 三浦
Kosuke Ito
伊藤 幸助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62301431A priority Critical patent/JPH01145364A/en
Publication of JPH01145364A publication Critical patent/JPH01145364A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the title ceramics of high critical temperature, giving great critical current density, by forming mixed powder made up of rare earth element oxide, copper oxide, alkaline earth metal peroxide and alkaline earth metal oxide followed by sintering. CONSTITUTION:Raw powder made up of rare earth element oxide, copper oxide (e.g., CuO), >=5mol% of alkaline earth metal peroxide (e.g., BaO2) and alkaline earth metal oxide (e.g., BaO) is preliminarily calcined and formed followed by sintering at 750 to 950 deg.C, thus obtaining the objective oxide of rare earth element-alkaline earth metal-copper-based high-temperature superconducting ceramics of the formula AxByCu3O7-2 (A is at least one kind of rare earth element selected from Sc, Y, La, Nd, Sm, Eu, Gd, Dy and Ho; B is at least one kind of alkaline earth metal selected from Sr and Ba; 0.8<x<1.2; 1.6<y<2.4).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温超電導セラミックスの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing high temperature superconducting ceramics.

(従来技術及びその問題点) Y−Ba−Cu−0系に代表される稀土類元素−アルカ
リ土贋元素−銅の酸化物からなる成業欠損型層状ペロプ
スカイト構2造を有する高温超電導物質は、交通機関、
重電機器、コンビエータ−1医療機器の多方面への応用
が期待されている。
(Prior art and its problems) A high-temperature superconducting material having a layered perovskite structure consisting of a rare earth element-alkaline earth element-copper oxide represented by the Y-Ba-Cu-0 system. is transportation,
It is expected that heavy electrical equipment and Combiator 1 medical equipment will be applied in many fields.

これらの酸化物系高温超電導セラミックスは、液体窒素
のような安価な冷媒で冷却することによっても超電導状
態になるため、液体ヘリウム中でしか超電導状態を示さ
ないNb−Ti系超電導合金などの代わりに、超電導マ
グネットなどに使えれば、経済的に大きなメリットがあ
る。
These oxide-based high-temperature superconducting ceramics also become superconducting when cooled with an inexpensive coolant such as liquid nitrogen, so they can be used instead of Nb-Ti-based superconducting alloys, which only exhibit superconducting state in liquid helium. If it can be used for things like superconducting magnets, it would have great economic benefits.

しかし、これまで作られてきた超電導セラミツ   “
クスは臨界電流密度が数+A/cdと低く、従来−般的
に使われてきたNb−Ti系超電導合金の1/200〜
1/400に過ぎないという欠点があった。
However, the superconducting ceramics that have been made so far “
The critical current density of carbon steel is as low as several + A/cd, which is 1/200 to 1/200 of that of conventionally commonly used Nb-Ti superconducting alloys.
The drawback was that it was only 1/400.

また、常電導〜超電導の転移の温度幅が広く急峻さに欠
けているという点も問題であった。
Another problem was that the temperature range of the transition from normal conductivity to superconductivity was wide and lacked steepness.

これらの問題点の原因の一つとして、超電導セラミック
スが多孔質で密度が小さいことが指摘されている。
It has been pointed out that one of the causes of these problems is that superconducting ceramics are porous and have a low density.

これまで稀土讃元素−アルカリ土頚元素−鰐酸化物系高
温超電導セラミ゛ツクスは、各々の元素の原料化合物と
して酸化物、水酸化物あるいは炭酸塩を用いて、乾式混
合法あるいは湿式混合法で調製した原料粉末を、加圧・
焼結して作られてきた。
Hitherto, high-temperature superconducting ceramics based on rare earth elements, alkaline earth elements, and alligator oxides have been produced using oxides, hydroxides, or carbonates as raw material compounds of each element, using dry or wet mixing methods. The prepared raw material powder is pressurized and
It is made by sintering.

乾式混合法は、超電導セラミックスの構成成分の酸化物
あるいは炭酸塩の粉末、例えばA80゜(Aは稀土類元
素を示す)、BeO2(Bはアルカリ土類元素を示す)
、CuOの粉末を出発原料として、ボールミル、措潰機
あるいは乳棒・乳鉢などで粉砕、混合した後に焼結して
、超電導セラミックスの原料粉末を調製す・る方法であ
る。
The dry mixing method uses powders of oxides or carbonates that are constituent components of superconducting ceramics, such as A80° (A represents a rare earth element), BeO2 (B represents an alkaline earth element).
, CuO powder is used as a starting material, and the raw material powder for superconducting ceramics is prepared by pulverizing and mixing in a ball mill, crusher, pestle, mortar, etc., and then sintering.

一方、湿式混合法は、乾式法と同様の出発原料に、出発
原料と反応せずかつこれを実質的に溶解しない溶媒を加
えて、機械的に混合する方法である。
On the other hand, the wet mixing method is a method in which a solvent that does not react with and does not substantially dissolve the starting materials is added to the same starting materials as in the dry method, and the mixture is mechanically mixed.

以上いずれの方法を用いて超電導セラミックスの原料粉
末を調製しても、これらを成形、焼結して超電導セラミ
ックスにしたとき、臨界温度が低く、臨界電流密度も小
さいことが問題になっている。
No matter which of the above methods is used to prepare raw material powders for superconducting ceramics, there are problems in that when they are molded and sintered to form superconducting ceramics, the critical temperature is low and the critical current density is also low.

(問題点解決のための技術的手段) 本発明者等は、主として稀土類元素−アルカリ土類元素
−銅の酸化物からなる酸素欠損型層状ペロプスカイト構
造を有する高温超電導セラミックスを製造する際に、少
なくとも一部のアルカリ土類元素の原料化合物としてア
ルカリ土類元素の過酸化物を用いることにより、上記問
題点が解決出来ることを見出した。
(Technical means for solving the problem) The present inventors have developed a method for producing high-temperature superconducting ceramics having an oxygen-deficient layered perovskite structure mainly consisting of rare earth element-alkaline earth element-copper oxides. It has been found that the above problems can be solved by using a peroxide of an alkaline earth element as a raw material compound for at least a part of the alkaline earth element.

本発明の高温超電導セラミックスの原料粉末の調製法に
ついて以下に説明する。。
A method for preparing raw material powder for high temperature superconducting ceramics of the present invention will be described below. .

まず、本発明における稀土類元素−アルカリ土類元素−
銅の酸化物系高温超電導セラミックスは、次の一般式、
AxByCu307−zで表され、式中AはSc、Y、
La、、Nd55m、Eu、Gd。
First, rare earth elements in the present invention - alkaline earth elements -
Copper oxide-based high-temperature superconducting ceramics have the following general formula:
It is represented by AxByCu307-z, where A is Sc, Y,
La,, Nd55m, Eu, Gd.

Dy、Ho及びErから選択される少なくとも一種類の
稀土類元素、BはSr及びBaから選択される少なくと
も一種顕のアルカリ土類元素を示し、Xは0.8より大
きく、1.2より小さく、Yは1.6より大きく、2.
4より小さい数値である。
at least one kind of rare earth element selected from Dy, Ho and Er; B represents at least one kind of alkaline earth element selected from Sr and Ba; X is larger than 0.8 and smaller than 1.2; , Y is greater than 1.6, 2.
It is a numerical value smaller than 4.

また本発明における高温超電導セラミックスは、上記−
毀式中の銅の一部を最大50%まで他の金属、例えばV
、ZrSNbSMo%HESTa。
Further, the high temperature superconducting ceramics in the present invention include the above-
Up to 50% of the copper in the process can be replaced with other metals, such as V
, ZrSNbSMo%HESTa.

’w、pbあるいはBiで置換されたものも含んでいる
'w, pb or Bi substitutions are also included.

本発明においては、前記の一般式で表される高温超電導
セラミックスの原料粉末を製造する際に、稀土類元素及
び銅の原料化合物として、稀土類元素及び銅の酸化物、
アルカリ土類元素の原料化合物として、アルカリ土類元
素の過酸化物と酸化物の混合物を用いる。
In the present invention, when producing raw material powder for high temperature superconducting ceramics represented by the above general formula, rare earth elements and copper oxides,
As the raw material compound of the alkaline earth element, a mixture of peroxide and oxide of the alkaline earth element is used.

アルカリ土類元素の原料化合物中におけるアルカリ土類
元素の過酸化物の割合は、5モル%以上であることが好
ましい0例えばアルカリ土類元素がBaの場合、原料化
合物としてのBaOまたは、BaC0,05モル%以上
を、Bad、に置換する。置換するアルカリ土類元素の
過酸化物の割合が、5モル%より小さいときは、超電導
特性の向上効果が現れない。
The proportion of the peroxide of the alkaline earth element in the raw material compound of the alkaline earth element is preferably 5 mol% or more. For example, when the alkaline earth element is Ba, BaO or BaC0, 05 mol% or more is replaced with Bad. When the proportion of the peroxide of the substituted alkaline earth element is less than 5 mol %, the effect of improving the superconducting properties does not appear.

高温超電導セラミックス成分元素の各々の原料化合物を
混合粉砕する方法としては、乾式、湿式法いずれでも良
いが、工業的規模で大量混合粉砕する場合は、湿式法が
操作上安全で好ましい。
The raw material compounds of the high-temperature superconducting ceramic component elements may be mixed and pulverized using either a dry method or a wet method, but when mixing and pulverizing on a large scale on an industrial scale, the wet method is preferred because it is operationally safe.

混合粉砕された原料粉末を、700〜950℃で仮焼成
し、この焼成粉末を通常知られた方法で成形した後、7
50〜950℃で焼結させて、高温超電導セラミックス
焼結体が得られる。混合粉砕された原料粉末を、仮焼成
せずにそのまま成形した後焼結させても、高温超電導セ
ラミックス焼結体が得られる。
The mixed and pulverized raw material powder is calcined at 700 to 950°C, and the calcined powder is molded by a commonly known method.
A high-temperature superconducting ceramic sintered body is obtained by sintering at 50 to 950°C. A high-temperature superconducting ceramic sintered body can be obtained even if the mixed and pulverized raw material powders are shaped as they are without being pre-fired and then sintered.

(実施例) 以下に本発明の実施例を示す。(Example) Examples of the present invention are shown below.

実施例1 酸化イツトリウム(Y意03)0.5モル、BaO□0
.5モル、BaCO51,5モル及びCuO3モルの粉
末をらいかい器を用いて乾式混合した。この混合粉末を
空気中で820″C12時間仮焼成した。この粉末を1
 t /cdの圧力で成形し、これを900’Cで6時
間加熱して高温超電導セラミックス焼結体を得た。
Example 1 Yttrium oxide (Yi03) 0.5 mol, BaO□0
.. Powders of 5 mol, BaCO5 1.5 mol and CuO 3 mol were dry mixed using a sieve. This mixed powder was calcined in air at 820"C for 12 hours. This powder was
It was molded at a pressure of t/cd and heated at 900'C for 6 hours to obtain a high-temperature superconducting ceramic sintered body.

得られた超電導セラミックス焼結体の臨界温度、臨界電
流密度は下記の通りであった。
The critical temperature and critical current density of the obtained superconducting ceramic sintered body were as follows.

臨界温度   95   K 臨界電流回度 325  A/C111実施例2 アルカリ土類元素の原、糾化合物として、BaO□1モ
ル、BaCO31モルを用いた以外は、実施例1と同様
に行った。
Critical temperature: 95 K Critical current: 325 A/C111 Example 2 The same procedure as in Example 1 was carried out except that 1 mole of BaO□ and 1 mole of BaCO were used as the source of the alkaline earth element and the condensation compound.

得られた超電導セラミックス焼結体の臨界温度、臨界電
流密度は下記の通りであった。
The critical temperature and critical current density of the obtained superconducting ceramic sintered body were as follows.

臨界温度 ・ 96   K 臨界電流密度 328  A/c−d 実施例3 アルカリ土類元素の原料化合物として、Ba0゜2モル
を用いた以外は、実施例1と同様に行った。
Critical temperature: 96 K Critical current density: 328 A/c-d Example 3 The same procedure as in Example 1 was conducted except that 0.2 mol of Ba was used as the raw material compound for the alkaline earth element.

得られた超電導セラミックス焼結体の臨界温度、臨界電
流密度は下記の通りであった。
The critical temperature and critical current density of the obtained superconducting ceramic sintered body were as follows.

臨界温度   96   K 臨界電流回度 330  A/cd 実施例4〜7 希土類元素の化合物として酸化イツトリウムの代わりに
ネオジウム、エルビウム、サマリウムあるいはユーロピ
ウムの酸化物を用いた以外は、実施例3と同様に行った
Critical temperature: 96 K Critical current speed: 330 A/cd Examples 4 to 7 The same procedure as in Example 3 was carried out except that oxides of neodymium, erbium, samarium, or europium were used instead of yttrium oxide as the rare earth element compound. Ta.

得られた超電導セラミックス焼結体の臨界温度、臨界電
流密度は下記の通りであった。
The critical temperature and critical current density of the obtained superconducting ceramic sintered body were as follows.

実施例 希土類    臨界 臨界電流番号  元素化
合物  温度 密度 K   A/aJ 4   NdzOa    93  317s   E
ra’s    9s   32B6   Sm、Os
    94  3157   EuzOs    9
3  316比較例1 アルカリ土類元素の原料化合物として、BaCO52モ
ルを用いた以外は、実施例1と同様に行った。
Examples Rare earth Critical Critical current number Element compound Temperature Density K A/aJ 4 NdzOa 93 317s E
ra's 9s 32B6 Sm, Os
94 3157 EuzOs 9
3 316 Comparative Example 1 The same procedure as in Example 1 was carried out except that 52 mol of BaCO was used as the raw material compound of the alkaline earth element.

得られた超電導セラミックス焼結体の臨界温度、臨界電
流密度は下記の通りであった。
The critical temperature and critical current density of the obtained superconducting ceramic sintered body were as follows.

臨界温度   91   K 臨界電流密度 271  A/d 特許出願人    宇部興産株式会社Critical temperature 91 K Critical current density 271 A/d Patent applicant: Ube Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  主として稀土類元素−アルカリ土類元素−銅の酸化物
からなる酸素欠損型層状ペロブスカイト構造を有する高
温超電導セラミックスを製造する際に、少なくとも一部
のアルカリ土類元素の原料化合物としてアルカリ土類元
素の過酸化物を用いることを特徴とする高温超電導セラ
ミックスの製造方法。
When producing high-temperature superconducting ceramics having an oxygen-deficient layered perovskite structure mainly consisting of rare earth element-alkaline earth element-copper oxides, an alkaline earth element is used as a raw material compound of at least a part of the alkaline earth element. A method for producing high-temperature superconducting ceramics, characterized by using peroxide.
JP62301431A 1987-12-01 1987-12-01 Production of high-temperature superconducting ceramics Pending JPH01145364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62301431A JPH01145364A (en) 1987-12-01 1987-12-01 Production of high-temperature superconducting ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62301431A JPH01145364A (en) 1987-12-01 1987-12-01 Production of high-temperature superconducting ceramics

Publications (1)

Publication Number Publication Date
JPH01145364A true JPH01145364A (en) 1989-06-07

Family

ID=17896799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62301431A Pending JPH01145364A (en) 1987-12-01 1987-12-01 Production of high-temperature superconducting ceramics

Country Status (1)

Country Link
JP (1) JPH01145364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149423A (en) * 1988-12-01 1990-06-08 Dowa Mining Co Ltd Production of oxide superconducting powder
CN102276255A (en) * 2011-06-02 2011-12-14 西北工业大学 Preparation method for sheet-like barium titanate microcrystalline powder
CN102834879A (en) * 2010-04-26 2012-12-19 株式会社藤仓 Oxide superconducting conductor and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149423A (en) * 1988-12-01 1990-06-08 Dowa Mining Co Ltd Production of oxide superconducting powder
CN102834879A (en) * 2010-04-26 2012-12-19 株式会社藤仓 Oxide superconducting conductor and production method therefor
US8772201B2 (en) 2010-04-26 2014-07-08 Fujikura Ltd. Oxide superconducting conductor and method of manufacturing the same
CN102276255A (en) * 2011-06-02 2011-12-14 西北工业大学 Preparation method for sheet-like barium titanate microcrystalline powder

Similar Documents

Publication Publication Date Title
EP0305179A1 (en) Melt-produced high temperature superconductor
AU604827B2 (en) New superconductive compounds of the k2nif4 structural type having a high transition temperature, and method for fabricating same
JP2571789B2 (en) Superconducting material and its manufacturing method
JP2533108B2 (en) Superconducting material
JPH01145364A (en) Production of high-temperature superconducting ceramics
JPH01138132A (en) Meltable superconductor and its production
JPH01264954A (en) Production of high-temperature superconductor
KR910001306B1 (en) Superconductive compound of k2nif4 structural type having high transition temperature and method for fabricating same
JP2709380B2 (en) How to make a superconducting magnet
JP2597578B2 (en) Superconductor manufacturing method
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
CN1031620A (en) New superconductive compound and preparation method thereof with ni-type structure of potassium fluoride of high transition temperature
JP2585621B2 (en) How to make superconducting material
Suresha et al. High temperature superconductivity in Y-Ba-Cu-Nb-O system
JPH01264955A (en) Production of high-temperature superconductor
JP2859283B2 (en) Oxide superconductor
JP2597579B2 (en) Superconductor manufacturing method
JPH0569059B2 (en)
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JPH01224259A (en) Production of high-temperature superconducting ceramics
JPH0446015A (en) Oxide superconducting material and its production
Hermann et al. Melt-produced high temperature superconductor
JPH0222128A (en) Production of raw material powder for high-temperature superconductor
JPS63233067A (en) Preparation of superconductive ceramic
JPH01224258A (en) Production of high-temperature superconducting ceramics