JPH04301364A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH04301364A
JPH04301364A JP3066356A JP6635691A JPH04301364A JP H04301364 A JPH04301364 A JP H04301364A JP 3066356 A JP3066356 A JP 3066356A JP 6635691 A JP6635691 A JP 6635691A JP H04301364 A JPH04301364 A JP H04301364A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
phase
tungsten carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3066356A
Other languages
Japanese (ja)
Other versions
JP2553780B2 (en
Inventor
Koji Yamamura
康治 山村
Yoshio Moriwaki
良夫 森脇
Hajime Seri
世利 肇
Yoichiro Tsuji
庸一郎 辻
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3066356A priority Critical patent/JP2553780B2/en
Publication of JPH04301364A publication Critical patent/JPH04301364A/en
Application granted granted Critical
Publication of JP2553780B2 publication Critical patent/JP2553780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve initial activity and charge/discharge efficiency by sticking the second phase, mainly composed of tungsten carbide, to a surface of hydrogen storage alloy powder by specific weight relating to the hydrogen storage alloy. CONSTITUTION:To a surface of hydrogen storage alloy powder in which a general formula of hydrogen storage alloy is expressed by ABalpha(alpha=1.5 to 2.5) with an alloy phase belonging substantially to Laves phase of intermetal compound and a crystal structure of the alloy in at least one of hexagonal symmetry C14 type and cubic symmetry C15 type, the second phase, mainly composed of tungsten carbide, is attached by a mechanical granulation method or the like. Here, a proportion of the tungsten carbide is set to 0.5 to 20wt.% relating to the hydrogen storage alloy. In this way, electrochemical hydrogen storage reaction at the time of charge is accelerated to improve charge/discharge efficiency.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はニッケル−水素蓄電池な
どのアルカリ蓄電池に利用される水素吸蔵合金電極に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used in alkaline storage batteries such as nickel-hydrogen storage batteries.

【0002】0002

【従来の技術】各種の電源として広く使われている蓄電
池として鉛蓄電池とアルカリ蓄電池がある。このうちア
ルカリ蓄電池は高信頼性が期待でき、小形軽量化も可能
などの理由で小型電池は各種ポータブル機器用に、大型
は産業用として使われてきた。
BACKGROUND OF THE INVENTION Lead storage batteries and alkaline storage batteries are widely used as various power sources. Among these, alkaline storage batteries are expected to be highly reliable and can be made smaller and lighter, so small batteries have been used for various portable devices, and large ones for industrial use.

【0003】このアルカリ蓄電池において、正極は一部
空気極や酸化銀極なども取り上げられているが、ほとん
どの場合ニッケル極である。ポケット式から焼結式に代
わって特性が向上し、さらに密閉化が可能になるととも
に用途も広がった。
[0003] In this alkaline storage battery, although some air electrodes and silver oxide electrodes are used as the positive electrode, in most cases, the positive electrode is a nickel electrode. The pocket type was replaced by the sintered type, which improved its properties, made it possible to seal it more tightly, and expanded its uses.

【0004】一方負極としてはカドミウムの他に亜鉛,
鉄,水素などが対象となっている。最近一層の高エネル
ギー密度を達成するために金属水素化物すなわち水素吸
蔵合金電極を使ったニッケル−水素蓄電池が注目され、
製法などに多くの提案がされている。
On the other hand, in addition to cadmium, zinc,
Targets include iron and hydrogen. Recently, nickel-hydrogen storage batteries using metal hydrides, i.e., hydrogen-absorbing alloy electrodes, have attracted attention in order to achieve even higher energy density.
Many proposals have been made regarding manufacturing methods.

【0005】水素吸蔵合金極の製法としては合金粉末を
焼結する方式と発泡状,繊維状,パンチングメタルなど
の多孔性支持体に充填や塗着する方式のペースト式があ
る。このうち製法が簡単なのがペースト式である。水素
吸蔵合金はカドミウム極や亜鉛極などと同様に電子伝導
性の点で比較的優れているので非焼結式極の可能性は大
きい。すなわち結着剤とともにペースト状としこれを3
次元または2次元構造の多孔性導電板に充填または塗着
している。
[0005] There are two methods for producing hydrogen storage alloy electrodes: a method in which alloy powder is sintered, and a paste method in which it is filled or applied to a porous support such as foamed, fibrous, or punched metal. Among these, the paste method is the easiest to manufacture. Hydrogen storage alloys, like cadmium electrodes and zinc electrodes, have relatively good electronic conductivity, so there is great potential for non-sintered electrodes. In other words, it is made into a paste with a binder, and this is
It is filled or coated on a porous conductive plate with a dimensional or two-dimensional structure.

【0006】その中で、水素吸蔵合金電極の改善として
、たとえば水素吸蔵合金粉末のとくに耐酸化性、および
電極の利用率や成形性を改善するために粒子表面をニッ
ケルや銅でメッキして多孔性の金属層を形成する技術が
知られている。また特性向上のために合金製作後真空中
で熱処理したり、アルカリ溶液に浸漬するなどの工程が
提案されている。
Among these, improvements to hydrogen storage alloy electrodes include, for example, forming porous particles by plating the particle surface with nickel or copper in order to improve the oxidation resistance of the hydrogen storage alloy powder, as well as the utilization rate and formability of the electrode. Techniques for forming a transparent metal layer are known. Furthermore, in order to improve the properties, processes such as heat treatment in a vacuum or immersion in an alkaline solution after producing the alloy have been proposed.

【0007】さらに密閉形に適用する際にはとくに過充
電時に正極から発生する酸素ガスの吸収性を改良するた
めにふっ素樹脂や触媒の添加が試みられている。
Furthermore, when the battery is used in a closed type, attempts have been made to add a fluororesin or a catalyst to improve the absorption of oxygen gas generated from the positive electrode during overcharging.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の水素吸蔵合金電極を用いた電池には、とくに充放電サ
イクルの初期での充放電特性の改善や一層の利用率や高
率放電特性の改良の必要性がある。
[Problems to be Solved by the Invention] However, it is necessary to improve the charge-discharge characteristics, especially at the beginning of the charge-discharge cycle, to further improve the utilization rate, and to improve the high-rate discharge characteristics of batteries using the conventional hydrogen-absorbing alloy electrodes. There is a need.

【0009】これらの中で例えば、希土類・ニッケル系
合金の性能向上のために、La0.8Nd0.2Ni2
.9Co2.4Mo0.1Si0.1等の化学量論組成
からずれた合金を製造することにより、LaNi5ベー
ス合金の粒界にMoCo3を析出させ、これが良好な電
気化学反応を呈することが知られている(P.H.L.
 Notten and P. Hokkeling,
 ECS Fall Meeting Extende
d Abstracts, 120,1990)。
Among these, for example, La0.8Nd0.2Ni2 is used to improve the performance of rare earth/nickel alloys.
.. It is known that by producing an alloy with a non-stoichiometric composition such as 9Co2.4Mo0.1Si0.1, MoCo3 can be precipitated at the grain boundaries of the LaNi5-based alloy, which exhibits a good electrochemical reaction ( P.H.L.
Notten and P. Hokkeling,
ECS Fall Meeting Extend
d Abstracts, 120, 1990).

【0010】しかし、この方法は電気化学的に水素を吸
蔵放出する水素吸蔵合金と第2相としてのMoCo3を
同時に形成するものであり、LaNi5ベース合金のよ
うな金属間化合物の組成範囲が比較的狭い合金系では有
効であると考えられるが、広い組成範囲で安定な金属間
化合物に対しては必ずしも有効でなく種々の合金にこの
技術を適用することは困難であった。また従来、これら
の特性を改善する目的でPdブラック等の添加が試みら
れたが、この場合かなりの効果はあるものの、コスト的
な制約からより安価な方法が求められていた。
However, this method simultaneously forms a hydrogen storage alloy that absorbs and releases hydrogen electrochemically and MoCo3 as a second phase, and the composition range of intermetallic compounds such as LaNi5-based alloys is relatively narrow. Although it is thought to be effective for narrow alloy systems, it is not necessarily effective for intermetallic compounds that are stable over a wide composition range, and it has been difficult to apply this technique to various alloys. In the past, attempts have been made to add Pd black or the like to improve these properties, but although this is quite effective, a cheaper method has been sought due to cost constraints.

【0011】特に合金がAB2型のLaves相に属し
、その結晶構造が6方対称のC14型または立方対称の
C15型である水素吸蔵合金を用いたニッケル水素蓄電
池においては、初期において放電容量が小さいことが課
題であり、また急速な充放電電流では分極が比較的大き
く、充放電での電位特性が低下するという課題があった
[0011] In particular, in a nickel-metal hydride storage battery using a hydrogen storage alloy whose alloy belongs to the AB2 type Laves phase and whose crystal structure is a C14 type with hexagonal symmetry or a C15 type with cubic symmetry, the initial discharge capacity is small. This is a problem, and there is also the problem that polarization is relatively large with rapid charging and discharging current, resulting in a decrease in potential characteristics during charging and discharging.

【0012】本発明は上記課題を解決するものであり、
初期活性を向上させることにより、高い充放電効率を有
する水素吸蔵合金電極を提供することを目的とする。
[0012] The present invention solves the above problems,
The purpose of the present invention is to provide a hydrogen storage alloy electrode having high charge/discharge efficiency by improving initial activity.

【0013】[0013]

【課題を解決するための手段】本発明は上記目的を達成
するために主たる水素吸蔵合金の一般式がABα(α=
1.5〜2.5)で表され、合金相が実質的に金属間化
合物のLaves相に属し、その結晶構造が6方対称の
C14型と立方対称のC15型の少なくとも一方である
水素吸蔵合金粉末の表面に炭化タングステンを主成分と
する第2相を機械的造粒法などによって付着させるもの
である。
[Means for Solving the Problems] In order to achieve the above object, the present invention has a general formula of the main hydrogen storage alloy: ABα (α=
1.5 to 2.5), the alloy phase substantially belongs to the Laves phase of an intermetallic compound, and the crystal structure is at least one of the C14 type with hexagonal symmetry and the C15 type with cubic symmetry. A second phase containing tungsten carbide as a main component is attached to the surface of the alloy powder by mechanical granulation or the like.

【0014】[0014]

【作用】したがって本発明によれば水素吸蔵合金上に炭
化タングステンを主成分とする第2相を付着させること
によって充電時の電気化学的な水素吸蔵反応を加速し、
さらに充放電効率を大幅に改善できる。
[Operation] Therefore, according to the present invention, by depositing a second phase mainly composed of tungsten carbide on the hydrogen storage alloy, the electrochemical hydrogen storage reaction during charging is accelerated.
Furthermore, charging and discharging efficiency can be significantly improved.

【0015】[0015]

【実施例】以下、本発明の一実施例について説明する。[Embodiment] An embodiment of the present invention will be described below.

【0016】水素吸蔵合金として、主たる合金相がC1
5型Laves相合金の一つであるZrMn0.3Cr
0.3V0.15Ni1.25合金を用いた。炭化タン
グステンは400メッシュを通過させたものを用いた。
[0016] As a hydrogen storage alloy, the main alloy phase is C1.
ZrMn0.3Cr, one of the type 5 Laves phase alloys
A 0.3V0.15Ni1.25 alloy was used. Tungsten carbide passed through 400 mesh was used.

【0017】100メッシュを通過させた水素吸蔵合金
に炭化タングステンを水素吸蔵合金に対して15重量%
になるように調整し、ボールミルを用いて混合した。こ
の状態を電子顕微鏡で観察したところ、水素吸蔵合金の
表面に炭化タングステン粉末が部分的に点在している状
態が認められた。さらに、この混合粉末を粉砕し350
メッシュを通過させ電池負極用材料とした。
[0017] Tungsten carbide is added to the hydrogen storage alloy that has passed through 100 mesh in an amount of 15% by weight based on the hydrogen storage alloy.
and mixed using a ball mill. When this state was observed using an electron microscope, it was found that tungsten carbide powder was partially scattered on the surface of the hydrogen storage alloy. Furthermore, this mixed powder was crushed to 350
The material was passed through a mesh and used as a material for battery negative electrodes.

【0018】次に、この材料の負極材料としての電気化
学特性を評価した。評価用電極は負極材料粉末に熱可塑
性樹脂微粉末を結着剤として電極材料粉末に対して1重
量%混合した。本実施例ではポリエチレン微粉末を使用
した。この結着剤を混合した粉末を多孔度95%,厚さ
0.8mmの発泡状ニッケル板に充填し、加圧した後、
減圧下120℃で1時間処理して電極を得た。この電極
を実施例の電極Aとする。この電極Aの特性を比較する
ために従来の方法による比較例としての電極も合わせて
作製した。従来の方法としてはZrMn0.3Cr0.
3V0.15Ni1.25の組成の水素吸蔵合金を粉砕
し、350メッシュを通過させて得た合金粉末を、炭化
タングステン粉末を付着させずに電極Aと同様の方法で
電極にした。この電極を比較例の電極Bとする。
Next, the electrochemical properties of this material as a negative electrode material were evaluated. The evaluation electrode was prepared by mixing 1% by weight of a negative electrode material powder with a thermoplastic resin fine powder as a binder based on the electrode material powder. In this example, polyethylene fine powder was used. After filling a foamed nickel plate with a porosity of 95% and a thickness of 0.8 mm with the powder mixed with this binder and pressurizing it,
An electrode was obtained by processing at 120° C. for 1 hour under reduced pressure. This electrode is referred to as electrode A of the example. In order to compare the characteristics of this electrode A, an electrode as a comparative example was also produced using a conventional method. As a conventional method, ZrMn0.3Cr0.
A hydrogen storage alloy having a composition of 3V0.15Ni1.25 was pulverized and the alloy powder obtained by passing it through 350 mesh was made into an electrode in the same manner as Electrode A without adhering tungsten carbide powder. This electrode is referred to as electrode B of the comparative example.

【0019】これらの電極を負極とし、対極に過剰の電
気容量を有する酸化ニッケル極を配し、電解液に比重1
.30の水酸化カリウム水溶液を用い、電解液が豊富な
条件下で水素吸蔵合金負極で容量規制を行なった開放系
で充放電を行った。充電は水素吸蔵合金1gあたり10
0mA×5.5時間、放電は合金1gあたり60mAで
端子電圧が0.8Vまでとした。
These electrodes are used as negative electrodes, and a nickel oxide electrode having an excessive capacitance is arranged as a counter electrode, and the electrolyte has a specific gravity of 1.
.. Charging and discharging were performed using an aqueous potassium hydroxide solution of No. 30 in an open system in which the capacity was regulated by a hydrogen storage alloy negative electrode under conditions in which the electrolyte was abundant. Charge is 10 per gram of hydrogen storage alloy
0 mA x 5.5 hours, the discharge was 60 mA per 1 g of alloy, and the terminal voltage was up to 0.8 V.

【0020】この結果、比較例の電極Bでは充放電サイ
クル初期での放電容量が低く、1サイクル目45mAh
/gであり、飽和容量は285mAh/gを示した。ま
た、飽和に達するまでに7サイクル以上を要した。これ
に対し、実施例の電極Aの場合では1イクル目で飽和放
電容量の74%、2サイクル目で飽和放電容量の88%
、5サイクル目で飽和に達し、その放電容量は313m
Ah/gを示した。この結果よりアルカリ蓄電池の負極
材料として炭化タングステンを添加することが初期活性
の向上に非常に有効であることが認められた。
As a result, electrode B of the comparative example had a low discharge capacity at the beginning of the charge/discharge cycle, with a discharge capacity of 45 mAh in the first cycle.
/g, and the saturated capacity was 285mAh/g. Moreover, it took more than 7 cycles to reach saturation. On the other hand, in the case of electrode A in the example, 74% of the saturated discharge capacity in the first cycle and 88% of the saturated discharge capacity in the second cycle.
, reaching saturation in the 5th cycle, and its discharge capacity is 313 m
Ah/g was shown. From these results, it was confirmed that the addition of tungsten carbide as a negative electrode material for alkaline storage batteries is very effective in improving initial activity.

【0021】次にこれらの電極AおよびBを使用して密
閉型電池を構成し、密閉型電池の評価を行なった。密閉
型電極の作製方法について説明する。まず、前記の電極
A,Bをそれぞれ幅3.3cm,長さ21cm,厚さ0
.50mmに調整し、リード板を所定の2カ所に取り付
けた。 そして、正極,セパレータと組み合わせて円筒状に3層
に渦巻き状にしてSCサイズの電槽に収納した。このと
きの正極は、公知の発泡式ニッケル極を選び、幅3.3
cm,長さ16cmとして用いた。この場合もリード板
を2カ所に取り付けた。またセパレータは、親水性を付
与したポリプロピレン不織布を用いた。電解液としては
、比重1.30の水酸化カリウム水溶液に水酸化リチウ
ムを30g/l溶解して用いた。これを封口して密閉型
電池とした。この電池は、正極容量規制で公称容量は2
.5Ahである。この密閉形電池で水素吸蔵合金電極の
電極Aで構成した電池を電池A、同様に電極Bで構成し
た電池を電池Bとする。
Next, a sealed battery was constructed using these electrodes A and B, and the sealed battery was evaluated. A method for manufacturing a sealed electrode will be explained. First, the electrodes A and B are each 3.3 cm wide, 21 cm long, and 0 thick.
.. The length was adjusted to 50 mm, and lead plates were attached to two predetermined locations. Then, it was combined with a positive electrode and a separator to form a cylindrical three-layer spiral and housed in an SC size battery case. The positive electrode at this time was a well-known foamed nickel electrode with a width of 3.3 mm.
cm, and the length was 16 cm. In this case as well, lead plates were attached at two locations. Moreover, a polypropylene nonwoven fabric imparted with hydrophilicity was used as the separator. As the electrolytic solution, 30 g/l of lithium hydroxide was dissolved in an aqueous potassium hydroxide solution having a specific gravity of 1.30. This was sealed to form a sealed battery. This battery has a nominal capacity of 2 due to positive electrode capacity regulations.
.. It is 5Ah. In this sealed battery, a battery constructed with electrode A, which is a hydrogen storage alloy electrode, is designated as battery A, and a battery similarly constructed with electrode B is designated as battery B.

【0022】これらの電池をそれぞれ10コずつ作製し
通常の充放電サイクル試験によって評価した結果につい
て説明する。
[0022] Ten of each of these batteries were prepared and evaluated by a normal charge/discharge cycle test, and the results will be described.

【0023】まず初期の放電電圧と容量を比較した。1
0時間率で容量の130%定電流充電を行ない、同様に
10時間率で0.9Vまでの定電流放電を行なったとこ
ろ、電池Aは平均電圧は1.25Vであり、放電容量は
2サイクル以後ほぼ2.5Ahであった。ところが電池
Bでは平均放電電圧は1.20Vであり、放電容量は2
サイクルで2.5Ahに達せずサイクルの増加とともに
放電容量が増大し、ほぼ一定になるまでに5サイクルを
必要とした。
First, the initial discharge voltage and capacity were compared. 1
When battery A was charged at a constant current of 130% of its capacity at a 0-hour rate and similarly discharged at a constant current to 0.9V at a 10-hour rate, the average voltage of battery A was 1.25V, and the discharge capacity was 2 cycles. After that, it was approximately 2.5 Ah. However, in battery B, the average discharge voltage is 1.20V, and the discharge capacity is 2.
The discharge capacity did not reach 2.5Ah during the cycle, and as the number of cycles increased, the discharge capacity increased, and it took five cycles to reach a nearly constant level.

【0024】同様に、充電を1C(1時間率)で150
%まで、放電は同じく1C(1時間率)で終止電圧1.
0Vとし20℃での充放電サイクルを繰り返した結果で
は電池Aは平均放電電圧1.23Vであったのに対し電
池Bは1.11Vであり、急速充放電でさらに電池Aは
優れた放電特性を有していることもわかった。
Similarly, charging at 1C (1 hour rate)
%, the discharge is the same at 1C (1 hour rate) and the final voltage is 1.
As a result of repeated charging and discharging cycles at 0V and 20°C, battery A had an average discharge voltage of 1.23V, while battery B had an average discharge voltage of 1.11V, indicating that battery A had even better discharge characteristics with rapid charging and discharging. It was also found that it has

【0025】なお、炭化タングステンを主成分とする第
2相の付着量が0.5重量%に満たない場合、充放電効
率が低下し、20重量%を超えると単位重量あたりのエ
ネルギー密度が低下する。
[0025] If the amount of the second phase mainly composed of tungsten carbide is less than 0.5% by weight, the charge/discharge efficiency will decrease, and if it exceeds 20% by weight, the energy density per unit weight will decrease. do.

【0026】以上はAB2型Laves相合金の場合で
あるが、LaNi5ベース合金でも同様の優れた結果を
得ることができた。
Although the above is the case of AB2 type Laves phase alloy, similar excellent results were also obtained with LaNi5 base alloy.

【0027】また、本実施例における水素吸蔵合金の混
合はボールミルを用いて行なったが、高速気流中衝撃法
により炭化タングステン粉末を水素吸蔵合金表面上に複
合固定化したものについても優れた結果を得ることがで
きた。
Although the hydrogen storage alloy in this example was mixed using a ball mill, excellent results were also obtained when tungsten carbide powder was compositely immobilized on the surface of the hydrogen storage alloy using a high-speed air impact method. I was able to get it.

【0028】[0028]

【発明の効果】上記実施例より明らかなように本発明の
水素吸蔵合金電極は、合金粉末の表面に炭化タングステ
ンを主成分とする第2相を付着させることにより、初期
活性を向上させ、充放電効率も非常に安価な手段で改善
できるものである。
Effects of the Invention As is clear from the above examples, the hydrogen storage alloy electrode of the present invention improves the initial activity and improves charging by attaching a second phase mainly composed of tungsten carbide to the surface of the alloy powder. The discharge efficiency can also be improved by very inexpensive means.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水素を電気化学的に吸蔵,放出する水素吸
蔵合金粉末の表面に炭化タングステンを主成分とする第
2相を水素吸蔵合金に対して0.5〜20重量%付着さ
せてなる水素吸蔵合金電極。
Claim 1: A second phase containing tungsten carbide as a main component is attached to the surface of a hydrogen storage alloy powder that electrochemically absorbs and releases hydrogen in an amount of 0.5 to 20% by weight based on the hydrogen storage alloy. Hydrogen storage alloy electrode.
【請求項2】主たる水素吸蔵合金の一般式がABα(α
=1.5〜2.5)で表され、合金相が実質的に金属間
化合物Laves相に属し、その結晶構造が6方対称の
C14型と立方対称のC15型の少なくとも一方である
請求項1記載の水素吸蔵合金電極。
Claim 2: The general formula of the main hydrogen storage alloy is ABα(α
= 1.5 to 2.5), the alloy phase substantially belongs to the intermetallic compound Laves phase, and the crystal structure is at least one of the C14 type with hexagonal symmetry and the C15 type with cubic symmetry. 1. The hydrogen storage alloy electrode according to 1.
【請求項3】炭化タングステンの粉末を付着させた水素
吸蔵合金が機械的造粒や高速気流中衝撃法のいずれか、
またはそれらを組み合わせた表面改質法により作製され
たものである請求項1記載の水素吸蔵合金電極。
[Claim 3] The hydrogen storage alloy to which tungsten carbide powder is attached is processed by either mechanical granulation or high-speed air impact method.
2. The hydrogen storage alloy electrode according to claim 1, which is produced by a surface modification method using a method or a combination thereof.
JP3066356A 1991-03-29 1991-03-29 Hydrogen storage alloy electrode Expired - Lifetime JP2553780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066356A JP2553780B2 (en) 1991-03-29 1991-03-29 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066356A JP2553780B2 (en) 1991-03-29 1991-03-29 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH04301364A true JPH04301364A (en) 1992-10-23
JP2553780B2 JP2553780B2 (en) 1996-11-13

Family

ID=13313493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066356A Expired - Lifetime JP2553780B2 (en) 1991-03-29 1991-03-29 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2553780B2 (en)

Also Published As

Publication number Publication date
JP2553780B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US5506070A (en) Metal hydride electrode, nickel electrode and nickel-hydrogen battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US8053114B2 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JPH0745281A (en) Nickel electrode for alkaline storage battery and alkaline storage battery using this nickel electrode
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH04301364A (en) Hydrogen storage alloy electrode
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP3533766B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH04301045A (en) Hydrogen storage alloy electrode
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JPH06318455A (en) Nickel-hydrogen battery
JP2004185956A (en) Nickel-hydrogen storage battery
JPH04264362A (en) Hydrogen storage alloy electrode
JP2019125472A (en) Alkaline secondary battery
JPH0668875A (en) Manufacture of hydrogen storage alloy electrode for battery
JPH06124704A (en) Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode