JP2004185956A - Nickel-hydrogen storage battery - Google Patents

Nickel-hydrogen storage battery Download PDF

Info

Publication number
JP2004185956A
JP2004185956A JP2002350907A JP2002350907A JP2004185956A JP 2004185956 A JP2004185956 A JP 2004185956A JP 2002350907 A JP2002350907 A JP 2002350907A JP 2002350907 A JP2002350907 A JP 2002350907A JP 2004185956 A JP2004185956 A JP 2004185956A
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
storage battery
negative electrode
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002350907A
Other languages
Japanese (ja)
Inventor
Osamu Kaita
理 貝田
Munehiro Tabata
宗弘 田端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002350907A priority Critical patent/JP2004185956A/en
Publication of JP2004185956A publication Critical patent/JP2004185956A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nickel-hydrogen storage battery capable of preventing a minute short circuit between a positive electrode and a negative electrode without causing self-discharge. <P>SOLUTION: This nickel-hydrogen storage battery is equipped with the positive electrode containing nickel hydroxide as a main constituent; the negative electrode containing a hydrogen storage alloy as a main constituent; a separator for separating both the electrodes from each other; and an alkaline electrolyte; and provided with a cation exchanger between the positive electrode and the negative electrode. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池として広く使われているニッケル水素蓄電池、特にそのセパレータに関するものである。
【0002】
【従来の技術】
従来、ニッケル水素蓄電池に用いられる正極は次のようにして作製されている。
まず、カーボニルニッケル粉末を主成分とするスラリーを芯体にコーティングし、これを還元雰囲気で焼結して多孔性ニッケル焼結基板を作製する。続いて、この多孔性ニッケル基板中に、硝酸ニッケルを主成分とする含浸液を含浸した後、水酸化ナトリウムなどのアルカリ溶液中で中和して、活物質となる水酸化ニッケルを基板中に充填する。
【0003】
このようにして作製される焼結式ニッケルの正極以外にも、多孔質のスポンジ状ニッケルのシートに、水酸化ニッケルを主成分とする活物質の粉末をスラリー状にしたものをコーティングにより充填し、圧縮した非焼結式の正極板も用いられている。
【0004】
これらのニッケル正極板は、活物質の利用率を向上させるために、活物質に金属コバルト、コバルト酸化物ないし水酸化物を添加する方法(例えば、特許文献1及び2参照。)、活物質粒子の表面に酸化コバルトの被覆層を形成する方法(例えば、特許文献3参照。)などがよく知られている。
【0005】
また、正極の充電受け入れ性を改良するために、活物質としてコバルト、マンガンなどを固溶した水酸化ニッケルを用いることも知られている(特許文献4参照。)。また、初期サイクルの特性劣化の原因となるγ−NiOOHの生成を抑制するために、酸化コバルトを添加する例もある(例えば、特許文献5参照。)。さらに、α←→γ型充放電による高次反応が期待される複水酸化物として、Ni−Mn複水酸化物が提案されている(例えば、非特許文献1参照。)。
【0006】
【特許文献1】
特公昭63−37733号公報
【特許文献2】
特開平4−229953号公報
【特許文献3】
米国特許第6013390号明細書
【特許文献4】
特開昭51−122737号公報
【特許文献5】
特開昭63−48746号公報
【非特許文献1】
木宮宏和他、「Ni−Mn複水酸化物のアルカリ蓄電池用正極材料と
しての可能性」、1995年電気化学秋季大会予稿集,p.181
【0007】
【発明が解決しようとする課題】
コバルトなどの金属元素を添加物として含む正極板を用いて、ニッケル水素蓄電池を構成した場合、その電池を高温に放置したり過放電状態にしたりすると、自己放電特性が悪化することが多かった。その原因を解明するために、自己放電特性の悪化した電池を解析した結果、正極と負極が微少短絡することにより、自己放電を起こすことが分かった。
【0008】
例えば、正極にコバルトを添加した場合、電池を50℃程度以上の高温に放置したり過放電状態にしたりすると、正極中に添加したコバルトがアルカリ電解液中に溶出し、溶出したコバルトイオンはセパレータを通って負極表面に到達する。負極表面では、水素吸蔵合金中の水素原子が水素イオンになる反応が起こるため、負極表面に到達したコバルトイオンは負極表面で還元されて金属コバルトとして析出する。その析出が続くと、金属コバルトはセパレータを通して正極まで到達し、微少短絡を発生する。
【0009】
上記のコバルト以外にも、マンガンを固溶したニッケル水酸化物やNi−Mn複水酸化物を充填した正極からはMnが溶出し、負極へ移動する。また、正極に不純物としてCuを含むと、そのCuが溶出して負極へ移動する。これらのマンガンや銅もコバルトの場合と同様の不都合を生じさせる。
【0010】
本発明は、これら従来の課題を解決するものであり、正極から溶出するCo、Mn又はCuなどの不純物が負極側へ移動することなく、正極と負極の微少短絡を防ぐことができ、自己放電を起こすことのないニッケル水素蓄電池を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明は、水酸化ニッケルを主成分とする正極と、水素吸蔵合金を主成分とする負極と、両電極を隔離するセパレータと、アルカリ電解液とを具備し、前記正極と前記負極との間に無機の陽イオン交換体を備えるニッケル水素蓄電池を提供する。この無機の陽イオン交換体は、セパレータに担持させるか、あるいは正極と対向する負極側に担持させるのが好ましい。また、無機の陽イオン交換体を、セパレータの体積に対し、5〜10%含むことが好ましい。
【0012】
【発明の実施の形態】
本発明に係るニッケル水素蓄電池は、水酸化ニッケルを主成分とする正極と、水素吸蔵合金を主成分とする負極と、両電極を隔離するセパレータと、アルカリ電解液とを具備し、前記正極と前記負極との間に無機の陽イオン交換体を備えることを特徴とする。この構成により、正極からアルカリ電解液中に溶出した金属イオンを負極に到達する前に無機の陽イオン交換体にトラップさせることができ、微少短絡の原因となる負極上への金属の析出を抑制することができる。
【0013】
このセパレータは、無機の陽イオン交換体を担持するようにした。これにより、正極から析出する金属イオンを容易にトラップすることができる。また、従来のアルカリ蓄電池自体の製造工程を変更する必要がないので、既存の設備のまま、本発明のニッケル水素蓄電池を製造することができる。また、無機の陽イオン交換体は、セパレータの体積に対し5〜10%担持すればよく、これにより、容量維持率の高いニッケル水素蓄電池を提供することができる。
【0014】
無機の陽イオン交換体を従来のセパレータに担持する代わりに、負極の正極と対向する表面に、無機の陽イオン交換体を担持してもよい。この構成により、アルカリ電解液に溶解した金属イオンが、最も析出しやすい負極表面に到達する直前で無機の陽イオン交換体に効果的にトラップさせることができる。
【0015】
本発明では、イオン交換体として無機の陽イオン交換体を使用しているが、それは有機の陽イオン交換体では、強アルカリに耐えることができないからである。
本発明の陽イオン交換を行うものには、沸石類、酸性白土、泥炭、亜炭などの天然物や、合成ゼオライトなどがある。
【0016】
【実施例】
以下、本発明の実施例を説明する。
《実施例1》
ニッケル水素蓄電池の正極板の製造工程について説明する。
まず、平均粒径が約10μmの活物質である球状水酸化ニッケル95重量部と、水酸化コバルト5重量部と、0.8%のカルボキシメチルセルロース水溶液45重量部とを混練し、スラリー状とした。次に、このスラリーをスポンジ状ニッケルシート上に塗着して乾燥し、1トン/cmで加圧して、所定寸法に切断した。このようにして、正極板を作製した。
【0017】
次に、負極板の製造工程について説明する。
まず、市販のミッシュメタル(以下Mmと表記するものでLa、Ce、Nd、Pr、Smの混合物をいう)、Ni、Co、Mn及びAlを、原子比でMm:Ni:Co:Mn:Alが1:3.55:0.7:0.45:0.3となるように秤量して混合した。この混合物を真空高周波溶解炉にて溶解し、MmNi3.55Co0.7 Mn0.45Al0.3で表される合金を作成した。次いで、この合金を機械的に100μm(平均20μm)以下に粉砕した(この粉砕した合金を以下、合金粉体という)。この合金粉体に増粘剤としてカルボキシメチルセルロース(CMC)、結着剤としてスチレンブタジエンラバー(SBR)のエマルジョン及び水を添加した後、これらを混練してペーストを作成した。次に、このペーストをパンチングメタル集電体の両面に塗着・乾燥してプレスし、所定寸法に切断して負極板とした。
【0018】
この負極板と先に作成した正極板(容量:1000mAh)とをポリアミドの不織布からなるセパレータを介して渦巻状に巻いて電極群を作成した。次いで、この電極群を電池缶内に挿入した後、電池缶内に電解液(30wt%のKOH水溶液)を注入した。最後に安全弁付きの封口板で電池缶の開口部を封口して密閉型ニッケル水素蓄電池を作成した。
【0019】
ここで、セパレータとして用いた不織布にはジルコニウム系の無機の陽イオン交換体(商品名:IXE−100 東亜合成化学工業(株)製)を、不織布体積に対して5%担持させた。詳しくは、ポリアミドの不織布に対し、水などの分散媒に分散させた無機の陽イオン交換体粉末(粒径0.1〜5μm)をスプレー法で塗着・乾燥させることで、セパレータ内に均一に担持させた。それ以外にも、無機の陽イオン交換体の粒子をセパレータの繊維を紡糸する原料に添加してもよい。
【0020】
このような、無機の陽イオン交換体を担持したセパレータを備えたニッケル水素蓄電池5個(A〜E)と、無機の陽イオン交換体を含まない従来のセパレータを備えたニッケル水素蓄電池5個(F〜J)を準備し、55℃での自己放電特性を比較した。自己放電特性の測定方法としては、作製したニッケル水素蓄電池を1Cで1.5時間充電を行い、55℃に放置して1週間後の容量低下を比較した。その測定結果を図1に示す。
【0021】
図1より、実施例の5個のニッケル水素蓄電池の容量維持率の平均は97%であり、A〜Eのすべての電池において、高い容量維持率を示した。それに対し、比較例の電池は、5個のうち、容量維持率が90%を超えるものもあるが、特に、FとJでは80%よりも低い値を示した。
このように、無機の陽イオン交換体を担持させたセパレータを用いると、自己放電特性が改善することが分かった。
【0022】
上記の測定後に、比較例として用いたニッケル水素蓄電池のうち容量維持率が80%前後のもの(F、H、J)を解析した結果、正極と負極が微少短絡している個所が見られた。その原因として、金属コバルトがセパレータ中に析出していることが分かった。それに対し、無機の陽イオン交換体を担持させたセパレータを用いたニッケル水素蓄電池を解析した結果、そのような微少短絡箇所は見られなかった。
【0023】
《実施例2》
次に、セパレータに担持させる無機の陽イオン交換体量の最適値を調べるために、セパレータに担持させる無機の陽イオン交換体の量を変えて、実施例1と同様に容量維持率を比較した。
セパレータ体積に対して、1〜20%の無機の陽イオン交換体を担持させて、実施例1と同様に5個ずつニッケル水素蓄電池を作成し、容量維持率を実施例1と同じ方法で測定した。
【0024】
その結果、無機の陽イオン交換体を多く担持するほど、容量維持率の低い(80%前後)電池は減り、特に、無機の陽イオン交換体を5〜10%担持させると容量維持率の高い電池を得ることができた。しかし、無機の陽イオン交換体を15%程度担持させると、ニッケル水素蓄電池のレート特性の低下が見られた。これは、無機の陽イオン交換体を担持させることで、セパレータの目が詰まり抵抗が上昇したためであり、従って、無機の陽イオン交換体を15%以上担持させることは好ましくないことが分かった。
【0025】
なお、この実施例では、スポンジ状ニッケルシートを基板とした正極を用いたが、それに限られるものではない。次に説明する製法でつくられた正極を用いることもできる。パンチング穴を開けた鉄板にニッケルメッキをした芯体に、カーボニルニッケル粉末を主成分とするスラリーをコーティングし、還元雰囲気で焼結させて多孔性ニッケル基板を形成する。そして、この多孔性ニッケル基板中に、硝酸ニッケルを主成分とし硝酸コバルトを添加物として含む含浸液に含浸して乾燥した後、水酸化ナトリウム溶液中で中和してつくられた活物質となる水酸化ニッケルを充填する焼結型の正極を用いることもできる。
【0026】
また、負極は、組成MmNi3.55Co0.7 Mn0.45Al0.3のような水素吸蔵合金の粉末を用いたが、その組成や製造方法に関して、上記実施例に限定されるものではない。
また、セパレータは、ポリアミドの不織布を用いたが、これに限定されることはなく、フッ素系樹脂などニッケル水素蓄電池のセパレータとして用いられる材料を利用することができる。
【0027】
さらに、イオン交換体としてジルコニウム系の無機の陽イオン交換体を用いたが、それに限定されることはなく、アンチモン系、チタン系などの無機の陽イオン交換体や、それ以外にもニッケル水素蓄電池内の強アルカリ中でも変質せずに、コバルト、マンガン、銅の金属イオンをトラップする性能のあるイオン交換体であればよい。
【0028】
この無機の陽イオン交換体は、本実施例においてはセパレータに均一に担持させたが、無機の陽イオン交換体をセパレータの一方の面に多く担持するようにして層状に形成し、この無機の陽イオン交換体を多く担持した方の面を負極と対向するようにして電極群を形成してもよい。この場合、負極とセパレータとの間に無機の陽イオン交換体を含む層が設けられているため、アルカリ電解液に溶解したコバルト、マンガン、銅の金属イオンが最も析出しやすい負極表面に到達する直前で無機の陽イオン交換体に効果的にトラップさせることができる。また、無機の陽イオン交換体を含む層が、層状に形成されているためにコバルト、マンガン、銅の金属イオンが負極へ到達するのを効果的に抑制することができる。
【0029】
【発明の効果】
以上のように本発明によれば、セパレータ内に無機の陽イオン交換体を担持させて、あるいは、無機の陽イオン交換体を含む層をセパレータと負極との間に配置させて、ニッケル水素蓄電池を構成するようにした。この構成により、アルカリ電解液に溶解された金属イオンを無機の陽イオン交換体にトラップさせることができ、金属イオンが析出することにより起こる正極と負極の微少短絡を防ぐことができる。
【図面の簡単な説明】
【図1】本発明の実施例1におけるニッケル水素蓄電池の自己放電特性を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nickel-metal hydride storage battery widely used as a secondary battery, and particularly to a separator thereof.
[0002]
[Prior art]
Conventionally, a positive electrode used for a nickel-metal hydride storage battery is manufactured as follows.
First, a core material is coated with a slurry containing carbonyl nickel powder as a main component and sintered in a reducing atmosphere to produce a porous nickel sintered substrate. Subsequently, the porous nickel substrate is impregnated with an impregnating solution containing nickel nitrate as a main component, and then neutralized in an alkaline solution such as sodium hydroxide, and nickel hydroxide serving as an active material is introduced into the substrate. Fill.
[0003]
In addition to the sintered nickel positive electrode prepared in this way, a porous sponge-like nickel sheet is coated with a slurry of an active material powder mainly composed of nickel hydroxide and filled with a coating. A non-sintered positive electrode plate that has been compressed is also used.
[0004]
These nickel positive plates use a method of adding metal cobalt, cobalt oxide or hydroxide to the active material in order to improve the utilization rate of the active material (for example, see Patent Documents 1 and 2), active material particles. (For example, see Patent Document 3) is well known.
[0005]
It is also known to use nickel hydroxide in which cobalt, manganese, or the like is dissolved as an active material in order to improve the charge acceptability of the positive electrode (see Patent Document 4). In addition, there is an example in which cobalt oxide is added to suppress generation of γ-NiOOH which causes deterioration of characteristics in an initial cycle (for example, see Patent Document 5). Further, Ni-Mn double hydroxide has been proposed as a double hydroxide expected to have a higher order reaction due to α ← → γ-type charge / discharge (for example, see Non-Patent Document 1).
[0006]
[Patent Document 1]
JP-B-63-37733 [Patent Document 2]
Japanese Patent Application Laid-Open No. 4-2291993 [Patent Document 3]
US Patent No. 6013390 [Patent Document 4]
JP-A-51-122737 [Patent Document 5]
JP-A-63-48746 [Non-Patent Document 1]
Hirokazu Kimiya et al., "Possibility of Ni-Mn Double Hydroxide as Cathode Material for Alkaline Storage Battery", Proceedings of the 1995 Autumn Meeting of Electrochemistry, p. 181
[0007]
[Problems to be solved by the invention]
When a nickel-metal hydride storage battery is formed using a positive electrode plate containing a metal element such as cobalt as an additive, the self-discharge characteristics often deteriorate when the battery is left at a high temperature or in an overdischarged state. In order to elucidate the cause, an analysis of a battery having deteriorated self-discharge characteristics revealed that self-discharge occurs due to a minute short circuit between the positive electrode and the negative electrode.
[0008]
For example, when cobalt is added to the positive electrode, if the battery is left at a high temperature of about 50 ° C. or higher or is in an overdischarged state, the cobalt added to the positive electrode is eluted into the alkaline electrolyte, and the eluted cobalt ions are separated by the separator To reach the negative electrode surface. On the surface of the negative electrode, a reaction occurs in which hydrogen atoms in the hydrogen storage alloy are converted into hydrogen ions, so that the cobalt ions reaching the surface of the negative electrode are reduced on the surface of the negative electrode and deposited as metallic cobalt. As the deposition continues, the metallic cobalt reaches the positive electrode through the separator, causing a micro short circuit.
[0009]
In addition to the above cobalt, Mn elutes from the positive electrode filled with manganese solid solution nickel hydroxide or Ni-Mn double hydroxide and moves to the negative electrode. When the positive electrode contains Cu as an impurity, the Cu elutes and moves to the negative electrode. These manganese and copper also cause the same disadvantages as in the case of cobalt.
[0010]
The present invention solves these conventional problems, and can prevent a minute short circuit between the positive electrode and the negative electrode without causing impurities such as Co, Mn or Cu eluted from the positive electrode to move to the negative electrode side, and can prevent self-discharge. It is an object of the present invention to provide a nickel-metal hydride storage battery that does not cause a problem.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes a positive electrode mainly composed of nickel hydroxide, a negative electrode mainly composed of a hydrogen storage alloy, a separator for isolating both electrodes, and an alkaline electrolyte. A nickel-metal hydride storage battery provided with an inorganic cation exchanger between the positive electrode and the negative electrode. This inorganic cation exchanger is preferably supported on a separator or on the negative electrode side opposite to the positive electrode. Moreover, it is preferable to contain 5 to 10% of the inorganic cation exchanger with respect to the volume of the separator.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The nickel-metal hydride storage battery according to the present invention includes a positive electrode mainly composed of nickel hydroxide, a negative electrode mainly composed of a hydrogen storage alloy, a separator for isolating both electrodes, and an alkaline electrolyte. An inorganic cation exchanger is provided between the anode and the negative electrode. With this configuration, metal ions eluted from the positive electrode into the alkaline electrolyte can be trapped by the inorganic cation exchanger before reaching the negative electrode, and the deposition of metal on the negative electrode that causes a micro short circuit can be suppressed. can do.
[0013]
This separator supported an inorganic cation exchanger. Thereby, metal ions precipitated from the positive electrode can be easily trapped. Further, since there is no need to change the manufacturing process of the conventional alkaline storage battery itself, the nickel-metal hydride storage battery of the present invention can be manufactured with existing equipment. In addition, the inorganic cation exchanger only needs to support 5 to 10% of the volume of the separator, whereby a nickel-metal hydride storage battery having a high capacity retention ratio can be provided.
[0014]
Instead of supporting the inorganic cation exchanger on a conventional separator, an inorganic cation exchanger may be supported on the surface of the negative electrode facing the positive electrode. With this configuration, the metal ions dissolved in the alkaline electrolyte can be effectively trapped by the inorganic cation exchanger immediately before reaching the surface of the negative electrode where precipitation is most likely.
[0015]
In the present invention, an inorganic cation exchanger is used as an ion exchanger because an organic cation exchanger cannot withstand strong alkali.
The cation-exchange materials of the present invention include natural products such as zeolite, acid clay, peat and lignite, and synthetic zeolites.
[0016]
【Example】
Hereinafter, examples of the present invention will be described.
<< Example 1 >>
The manufacturing process of the positive electrode plate of the nickel-metal hydride storage battery will be described.
First, 95 parts by weight of spherical nickel hydroxide as an active material having an average particle size of about 10 μm, 5 parts by weight of cobalt hydroxide, and 45 parts by weight of a 0.8% carboxymethylcellulose aqueous solution were kneaded to form a slurry. . Next, this slurry was applied onto a sponge-like nickel sheet, dried, pressed at 1 ton / cm 2 , and cut into a predetermined size. Thus, a positive electrode plate was produced.
[0017]
Next, a manufacturing process of the negative electrode plate will be described.
First, commercially available misch metal (hereinafter, referred to as Mm, which is a mixture of La, Ce, Nd, Pr, and Sm), Ni, Co, Mn, and Al are represented by an atomic ratio of Mm: Ni: Co: Mn: Al. Was 1: 3.55: 0.7: 0.45: 0.3. This mixture was melted in a vacuum high-frequency melting furnace to prepare an alloy represented by MmNi 3.55 Co 0.7 Mn 0.45 Al 0.3 . Next, this alloy was mechanically pulverized to 100 μm (average: 20 μm) or less (this pulverized alloy is hereinafter referred to as an alloy powder). After adding carboxymethyl cellulose (CMC) as a thickener and an emulsion of styrene butadiene rubber (SBR) and water as a binder to the alloy powder, they were kneaded to prepare a paste. Next, this paste was applied to both sides of a punched metal current collector, dried, pressed, and cut into a predetermined size to obtain a negative electrode plate.
[0018]
This negative electrode plate and the previously prepared positive electrode plate (capacity: 1000 mAh) were spirally wound through a separator made of a nonwoven fabric of polyamide to form an electrode group. Next, after inserting this electrode group into the battery can, an electrolytic solution (30 wt% KOH aqueous solution) was injected into the battery can. Finally, the opening of the battery can was sealed with a sealing plate equipped with a safety valve to produce a sealed nickel-metal hydride battery.
[0019]
Here, a zirconium-based inorganic cation exchanger (trade name: IX-100, manufactured by Toa Gosei Chemical Industry Co., Ltd.) was supported on the nonwoven fabric used as a separator in an amount of 5% based on the volume of the nonwoven fabric. More specifically, an inorganic cation exchanger powder (particle diameter: 0.1 to 5 μm) dispersed in a dispersion medium such as water is applied to a polyamide non-woven fabric by a spray method and dried to uniformly form the separator. Carried on the substrate. In addition, inorganic cation exchanger particles may be added to the raw material for spinning the fibers of the separator.
[0020]
Five nickel-metal hydride storage batteries (A to E) having such a separator carrying an inorganic cation exchanger and five nickel-metal hydride storage batteries having a conventional separator not containing an inorganic cation exchanger ( FJ) were prepared, and the self-discharge characteristics at 55 ° C were compared. As a method of measuring the self-discharge characteristic, the produced nickel-metal hydride storage battery was charged at 1 C for 1.5 hours, left at 55 ° C., and compared with a decrease in capacity after one week. FIG. 1 shows the measurement results.
[0021]
From FIG. 1, the average of the capacity retention rates of the five nickel-metal hydride batteries of the example was 97%, and all the batteries A to E showed high capacity retention rates. On the other hand, among the batteries of the comparative example, among the five batteries, the capacity retention ratio exceeded 90%, but in particular, F and J showed values lower than 80%.
As described above, it was found that the use of the separator supporting the inorganic cation exchanger improved the self-discharge characteristics.
[0022]
After the above measurement, the nickel-metal hydride storage batteries used as comparative examples whose capacity retention ratio was around 80% (F, H, J) were analyzed. As a result, a point where the positive electrode and the negative electrode were slightly short-circuited was found. . As a cause thereof, it was found that metallic cobalt was precipitated in the separator. On the other hand, as a result of analyzing a nickel-metal hydride storage battery using a separator supporting an inorganic cation exchanger, such a micro short-circuited portion was not found.
[0023]
<< Example 2 >>
Next, in order to examine the optimum value of the amount of the inorganic cation exchanger supported on the separator, the amount of the inorganic cation exchanger supported on the separator was changed, and the capacity retention ratio was compared as in Example 1. .
An inorganic cation exchanger of 1 to 20% with respect to the volume of the separator is supported, and five nickel-metal hydride storage batteries are prepared in the same manner as in the first embodiment, and the capacity retention is measured by the same method as in the first embodiment. did.
[0024]
As a result, as more inorganic cation exchangers are supported, the number of batteries having a lower capacity retention ratio (about 80%) is reduced. In particular, when 5 to 10% of the inorganic cation exchangers are supported, the capacity retention ratio is higher. Battery was obtained. However, when about 15% of the inorganic cation exchanger was supported, the rate characteristics of the nickel-metal hydride storage battery were deteriorated. This is because supporting the inorganic cation exchanger clogged the separator and increasing the resistance. Therefore, it was found that supporting 15% or more of the inorganic cation exchanger was not preferable.
[0025]
In this example, a positive electrode having a sponge-like nickel sheet as a substrate was used, but the present invention is not limited to this. It is also possible to use a positive electrode produced by the production method described below. A core having a perforated iron plate plated with nickel is coated with a slurry containing carbonyl nickel powder as a main component and sintered in a reducing atmosphere to form a porous nickel substrate. Then, the porous nickel substrate is impregnated with an impregnating solution containing nickel nitrate as a main component and cobalt nitrate as an additive, dried, and neutralized in a sodium hydroxide solution to become an active material. A sintered positive electrode filled with nickel hydroxide can also be used.
[0026]
The negative electrode used was a powder of a hydrogen storage alloy such as the composition MmNi 3.55 Co 0.7 Mn 0.45 Al 0.3 . However, the composition and the manufacturing method are limited to those in the above examples. is not.
In addition, although a non-woven fabric made of polyamide is used as the separator, the material is not limited to this, and a material used as a separator of a nickel-metal hydride storage battery, such as a fluorine-based resin, can be used.
[0027]
Furthermore, a zirconium-based inorganic cation exchanger was used as the ion exchanger, but the present invention is not limited to this. For example, an antimony-based or titanium-based inorganic cation exchanger, or a nickel-metal hydride storage battery may be used. Any ion exchanger may be used as long as it does not deteriorate even in the strong alkali inside and has the ability to trap metal ions of cobalt, manganese, and copper.
[0028]
In this embodiment, the inorganic cation exchanger was uniformly supported on the separator. However, the inorganic cation exchanger was formed in a layered manner such that the inorganic cation exchanger was supported on one surface of the separator in a large amount. The electrode group may be formed such that the surface supporting more cation exchangers faces the negative electrode. In this case, since a layer including an inorganic cation exchanger is provided between the negative electrode and the separator, cobalt, manganese, and copper metal ions dissolved in the alkaline electrolyte reach the surface of the negative electrode where the metal ions most easily precipitate. Immediately before, it can be effectively trapped by the inorganic cation exchanger. Further, since the layer containing the inorganic cation exchanger is formed in a layered form, it is possible to effectively suppress the metal ions of cobalt, manganese, and copper from reaching the negative electrode.
[0029]
【The invention's effect】
As described above, according to the present invention, an inorganic cation exchanger is supported in a separator, or a layer containing an inorganic cation exchanger is disposed between a separator and a negative electrode, and a nickel-metal hydride storage battery is provided. Was configured. With this configuration, the metal ions dissolved in the alkaline electrolyte can be trapped in the inorganic cation exchanger, and a minute short circuit between the positive electrode and the negative electrode caused by deposition of the metal ions can be prevented.
[Brief description of the drawings]
FIG. 1 is a diagram showing self-discharge characteristics of a nickel-metal hydride storage battery according to Embodiment 1 of the present invention.

Claims (5)

水酸化ニッケルを主成分とする正極と、水素吸蔵合金を主成分とする負極と、両電極を隔離するセパレータと、アルカリ電解液とを具備し、前記正極と前記負極との間に無機の陽イオン交換体を備えることを特徴とするニッケル水素蓄電池。A positive electrode mainly composed of nickel hydroxide, a negative electrode mainly composed of a hydrogen storage alloy, a separator for isolating the two electrodes, and an alkaline electrolyte; and an inorganic positive electrode between the positive electrode and the negative electrode. A nickel-metal hydride storage battery comprising an ion exchanger. 前記セパレータが前記無機の陽イオン交換体を担持している請求項1記載のニッケル水素蓄電池。The nickel-metal hydride storage battery according to claim 1, wherein the separator supports the inorganic cation exchanger. 前記無機の陽イオン交換体は、前記セパレータの体積に対し、5〜10%含む請求項2記載のニッケル水素蓄電池。The nickel-metal hydride storage battery according to claim 2, wherein the inorganic cation exchanger contains 5 to 10% of the volume of the separator. 前記負極が、前記正極と対向する側に前記無機の陽イオン交換体を担持している請求項1記載のニッケル水素蓄電池。The nickel-metal hydride storage battery according to claim 1, wherein the negative electrode supports the inorganic cation exchanger on a side facing the positive electrode. 前記正極は、Co、Mn及びCuからなる群より選択される少なくとも1種の元素を含む請求項1ないし4のいずれかに記載のニッケル水素蓄電池。The nickel-metal hydride storage battery according to any one of claims 1 to 4, wherein the positive electrode includes at least one element selected from the group consisting of Co, Mn, and Cu.
JP2002350907A 2002-12-03 2002-12-03 Nickel-hydrogen storage battery Pending JP2004185956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350907A JP2004185956A (en) 2002-12-03 2002-12-03 Nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350907A JP2004185956A (en) 2002-12-03 2002-12-03 Nickel-hydrogen storage battery

Publications (1)

Publication Number Publication Date
JP2004185956A true JP2004185956A (en) 2004-07-02

Family

ID=32752965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350907A Pending JP2004185956A (en) 2002-12-03 2002-12-03 Nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP2004185956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011101987A1 (en) * 2010-02-22 2013-06-17 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
WO2018100815A1 (en) * 2016-12-02 2018-06-07 旭化成株式会社 Nonaqueous electrolyte battery inorganic particles, and nonaqueous electrolyte battery using these

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011101987A1 (en) * 2010-02-22 2013-06-17 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
JP5534369B2 (en) * 2010-02-22 2014-06-25 トヨタ自動車株式会社 Lithium ion secondary battery, its manufacturing method and vehicle
WO2018100815A1 (en) * 2016-12-02 2018-06-07 旭化成株式会社 Nonaqueous electrolyte battery inorganic particles, and nonaqueous electrolyte battery using these
US11489233B2 (en) 2016-12-02 2022-11-01 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte battery inorganic particles, and nonaqueous electrolyte battery using these

Similar Documents

Publication Publication Date Title
US8951666B2 (en) Nickel hydrogen rechargeable battery with rare earth-Mg-Ni based hydrogen storage
WO2003047014A1 (en) Active electrode composition with graphite additive
EP2551943B1 (en) Nickel hydrogen rechargeable battery
KR20160065877A (en) A high efficiency nickel-iron battery
JP5119577B2 (en) Nickel metal hydride battery
US8053114B2 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JP5959003B2 (en) Nickel metal hydride secondary battery and negative electrode for nickel metal hydride secondary battery
JP2012227106A (en) Nickel-metal hydride battery
US20110052983A1 (en) Negative electrode for alkaline storage battery and alkaline storage battery
EP3439080B1 (en) Negative electrode for alkali secondary battery, alkali secondary battery including negative electrode and method for producing negative electrode
KR102576419B1 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery containing this positive electrode
JP5142428B2 (en) Method for producing hydrogen storage alloy electrode for nickel metal hydride storage battery
JP2004185956A (en) Nickel-hydrogen storage battery
JP4930674B2 (en) Sealed alkaline storage battery and its assembled battery
JP4110562B2 (en) battery
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP6049048B2 (en) Nickel metal hydride secondary battery
JP5309479B2 (en) Alkaline storage battery
JP2008269888A (en) Nickel-hydrogen storage battery
JP2006236692A (en) Nickel hydrogen storage battery
JP2001223000A (en) Alkaline secondary battery
JP2022182856A (en) Hydrogen storage alloy negative electrode and nickel hydrogen secondary battery including the same
KR100288472B1 (en) Nickel electrode active material, nickel electrode using same, nickel alkaline storage battery and manufacturing method thereof
JP2013211122A (en) Alkaline storage battery