JPH04300253A - Production of porous piezoelectric element - Google Patents

Production of porous piezoelectric element

Info

Publication number
JPH04300253A
JPH04300253A JP3062830A JP6283091A JPH04300253A JP H04300253 A JPH04300253 A JP H04300253A JP 3062830 A JP3062830 A JP 3062830A JP 6283091 A JP6283091 A JP 6283091A JP H04300253 A JPH04300253 A JP H04300253A
Authority
JP
Japan
Prior art keywords
pore
piezoelectric element
forming material
powder
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3062830A
Other languages
Japanese (ja)
Other versions
JP2994778B2 (en
Inventor
Yoshiaki Kurihara
栗原 義昭
Koichi Mizumura
水村 光一
Hiroshi Ohashi
寛 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP6283091A priority Critical patent/JP2994778B2/en
Publication of JPH04300253A publication Critical patent/JPH04300253A/en
Application granted granted Critical
Publication of JP2994778B2 publication Critical patent/JP2994778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To produce a porous piezoelectric element having uniform distribution of fine holes, high mechanical strength and excellent processing properties. CONSTITUTION:A mixed solution blended with piezoelectric material powder 2, a binder 4 and a thermally vaporizable hole-forming material 3 is sprayed together with compressed air 13 to hot air 14 set at a temperature <=vaporizing temperature of the hole-forming material 2 and dried to granulate compounded powder 7 comprising the surface of the hole-forming substance coated with the piezoelectric material powder 2. The prepared compounded powder 7 is molded to give a molded article, which is burnt at >=the vaporizing temperature of the hole-forming material 3.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば超音波圧電素子
に使用する多孔質圧電素子の製造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of porous piezoelectric elements used, for example, in ultrasonic piezoelectric elements.

【0002】0002

【従来の技術】圧電素子は、例えば超音波センサ、マイ
クロフォン、ピックアップのような機械的なひずみを電
気信号に変換する変換器として広く用いられている。電
気信号を入力して機械的な出力を得る逆の変換作用も、
音波や超音波のトランスデューサ、ヘッドフォンなどに
利用されている。この圧電素子は、例えばPb(Zr,
Ti)O3のような圧電材料からなり、内部に無数の微
細な空孔が形成された多孔質形状になっている。
2. Description of the Related Art Piezoelectric elements are widely used as transducers for converting mechanical strain into electrical signals, such as in ultrasonic sensors, microphones, and pickups. The reverse conversion action of inputting an electrical signal and obtaining a mechanical output is also possible.
It is used in sonic and ultrasonic transducers, headphones, etc. This piezoelectric element is made of, for example, Pb (Zr,
It is made of a piezoelectric material such as Ti)O3, and has a porous shape with countless fine pores formed inside.

【0003】この多孔質圧電素子は、図4に示すように
、圧電材料粉と、焼成熱により気化する空孔形成材とを
ボールミルで混合し、得られた混合粉を加圧成形したも
のを焼成して製造される。空孔形成材には、例えば平均
粒径が5μm程度のポリメチルメタクリレート樹脂球が
用いられ、焼成熱により気化するとその部分に空孔が形
成される。製造された多孔質圧電素子には用途に応じて
切削加工や研磨加工が施される。
As shown in FIG. 4, this porous piezoelectric element is made by mixing piezoelectric material powder and a pore-forming material that is vaporized by the heat of firing in a ball mill, and then press-molding the resulting mixed powder. Manufactured by firing. For example, polymethyl methacrylate resin spheres having an average particle size of about 5 μm are used as the pore-forming material, and when the resin spheres are vaporized by the heat of firing, pores are formed in the portions. The manufactured porous piezoelectric element is subjected to cutting or polishing depending on the intended use.

【0004】多孔質圧電素子は上記のように製造されて
きたが、ボールミルを用いて圧電材料粉と空孔形成材と
を混合すると空孔形成材が帯電し、空孔形成材同士が連
結したり凝集することがある。図5にボールミルを用い
て混合された混合粉を示す。このような混合粉を加圧成
形して焼成すると、凝集した空孔形成材3が気化した跡
には連続した空孔や大きな空孔が形成されてしまう。大
きな空孔がある多孔質圧電素子は機械強度が低く、微細
な加工に適していない。
Porous piezoelectric elements have been manufactured as described above, but when the piezoelectric material powder and the pore-forming material are mixed using a ball mill, the pore-forming material is charged and the pore-forming materials are connected to each other. or may aggregate. Figure 5 shows the mixed powder mixed using a ball mill. When such a mixed powder is pressure-molded and fired, continuous pores or large pores are formed in the remains where the aggregated pore-forming material 3 has evaporated. Porous piezoelectric elements with large pores have low mechanical strength and are not suitable for fine processing.

【0005】[0005]

【発明が解決しようとする課題】本発明は前記の課題を
解決するためなされたもので、微細な空孔が均一に分布
し、機械強度が高く、微細加工性が優れた多孔質圧電素
子が得られる多孔質圧電素子の製造方法を提供すること
を目的とする。
[Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a porous piezoelectric element with uniform distribution of fine pores, high mechanical strength, and excellent microprocessability. It is an object of the present invention to provide a method for manufacturing the porous piezoelectric element obtained.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
めになされた本発明の多孔質圧電素子の製造方法を、実
施例に対応する図面を用いて説明する。
[Means for Solving the Problems] A method for manufacturing a porous piezoelectric element of the present invention, which has been made to achieve the above object, will be explained using drawings corresponding to embodiments.

【0007】図1に示すように本発明の多孔質圧電素子
の製造方法は、圧電材料粉2と粘結材4と加熱気化性の
空孔形成材3とを混合した混合液5を、空孔形成材2の
気化温度以下に温度設定された熱風14中に圧搾空気1
3とともに噴霧して乾燥させ、空孔形成材3の表面を圧
電材料粉2で被覆した複合粉体7を造粒する。得られた
複合粉体7を成形した成形体を空孔形成材3の気化温度
以上の温度で焼成する。
As shown in FIG. 1, the method for manufacturing a porous piezoelectric element of the present invention involves adding a mixed liquid 5 of a piezoelectric material powder 2, a caking material 4, and a heat-vaporizable pore-forming material 3 to the air. Compressed air 1 is placed in hot air 14 whose temperature is set below the vaporization temperature of pore-forming material 2.
3 and dried to form a composite powder 7 in which the surface of the pore-forming material 3 is coated with the piezoelectric material powder 2. A molded body obtained by molding the obtained composite powder 7 is fired at a temperature equal to or higher than the vaporization temperature of the pore-forming material 3.

【0008】圧電材料粉2は、例えば、Pb(Zr,T
i)O3 である。
The piezoelectric material powder 2 is, for example, Pb (Zr, T
i) O3.

【0009】圧電材料粉2は最大粒径が1μm以下のも
のを使用する。最大粒径が1μmを越えるものは、空孔
形成材3を密に被覆することが困難である。
The piezoelectric material powder 2 used has a maximum particle size of 1 μm or less. If the maximum particle size exceeds 1 μm, it is difficult to cover the pore-forming material 3 densely.

【0010】空孔形成材3は加熱気化性で、気化温度が
200〜1000℃である材料、例えば、ポリメチルメ
タクリレート樹脂を使用する。気化温度が200℃以下
の場合には、造粒された複合粉体7中の空孔形成材3が
熱風14で溶融したり気化する恐れがある。一方、10
00℃以上になると、焼成の際に空孔形成材3が完全に
気化しないことがあり、所望の特性が得られなくなる。
The pore-forming material 3 is a heat-vaporizable material having a vaporization temperature of 200 to 1000° C., such as polymethyl methacrylate resin. If the vaporization temperature is 200° C. or lower, there is a risk that the pore-forming material 3 in the granulated composite powder 7 may be melted or vaporized by the hot air 14. On the other hand, 10
If the temperature exceeds 00° C., the pore-forming material 3 may not be completely vaporized during firing, making it impossible to obtain desired characteristics.

【0011】空孔形成材3の平均粒径は2〜30μmの
ものが好ましい。平均粒径が2μm以下のときは圧電材
料粉2と空孔形成材3との粒径が近接するため、複合粉
体化が困難になる。平均粒径が30μm以上のときは焼
成体の空孔径が大きくなり、圧電素子の機械強度や微細
加工性が低下する。
[0011] The average particle size of the pore-forming material 3 is preferably 2 to 30 μm. When the average particle size is 2 μm or less, the particle sizes of the piezoelectric material powder 2 and the pore-forming material 3 are close to each other, making it difficult to form a composite powder. When the average particle size is 30 μm or more, the pore size of the fired body becomes large, and the mechanical strength and microfabricability of the piezoelectric element decrease.

【0012】粘結材4としては、例えば1〜5%のポリ
ビニルアルコール水溶液が好適である。
[0012] As the binder 4, for example, a 1 to 5% aqueous polyvinyl alcohol solution is suitable.

【0013】なお、熱風14の温度は空孔形成材3の気
化温度以下に設定しておく。熱風14の温度が空孔形成
材3の気化温度よりも高くなると、空孔形成材3が熱風
14で溶融したり気化して所望の複合粉体7が得られな
くなる。
The temperature of the hot air 14 is set below the vaporization temperature of the pore-forming material 3. If the temperature of the hot air 14 becomes higher than the vaporization temperature of the pore-forming material 3, the pore-forming material 3 will be melted or vaporized by the hot air 14, making it impossible to obtain the desired composite powder 7.

【0014】[0014]

【作用】圧電材料粉2、空孔形成材および粘結材4の混
合液5を圧搾空気とともに熱風中に噴霧すると、個々の
空孔形成材3は圧電材料粉2および粘結材4で別々に覆
われた状態で乾燥し、複合粉体7が造粒される。造粒さ
れた複合粉体7を加圧成形した場合でも空孔形成材3同
士は接触しないため、空孔形成材3が連結したり凝集す
ることはない。得られた複合粉体7の成形物を焼成する
と、空孔形成材3は焼成熱で気化し、その部分には微細
な独立した空孔が形成される。
[Operation] When the mixed liquid 5 of the piezoelectric material powder 2, the pore-forming material and the caking material 4 is sprayed into hot air together with compressed air, the individual pore-forming materials 3 are separated by the piezoelectric material powder 2 and the caking material 4. The composite powder 7 is granulated by drying while being covered with. Even when the granulated composite powder 7 is pressure-molded, the pore-forming materials 3 do not come into contact with each other, so the pore-forming materials 3 do not connect or aggregate. When the obtained molded composite powder 7 is fired, the pore-forming material 3 is vaporized by the heat of firing, and fine independent pores are formed in that part.

【0015】[0015]

【実施例】以下、本発明の実施例を説明する。先ず、図
1を用いて本発明の多孔質圧電素子の製造方法に用いる
造粒装置の概略を説明する。
[Examples] Examples of the present invention will be described below. First, the outline of a granulation apparatus used in the method for manufacturing a porous piezoelectric element of the present invention will be explained using FIG.

【0016】この造粒装置は、圧電材料粉2、空孔形成
材3および粘結材4が混合されたスラリー5を収容した
スラリー容器11と、スラリー5を乾燥して複合粉体7
を造粒する乾燥チャンバ10と、乾燥した複合粉体7を
分離するサイクロン16とをこの順に連結したものであ
る。スラリー容器11は送液ポンプ12を介し、乾燥チ
ャンバ10の内部に取付けられたノズル15に連結して
いる。ノズル15は二重構造になっており、スラリー容
器11はその内側ノズル(1.2mmφ)に接続される
。外側ノズル(1.7mmφ)は乾燥チャンバ10外部
の圧搾空気源13に接続している。乾燥チャンバ10の
内部には180℃の熱風14が毎分0.45m3の速度
で送気されている。 乾燥チャンバ10の排出側にはサイクロン16が連結さ
れ、その後段には排気ポンプ18が接続されている。
This granulation device includes a slurry container 11 containing a slurry 5 in which a piezoelectric material powder 2, a pore-forming material 3, and a caking material 4 are mixed, and a composite powder 7 by drying the slurry 5.
A drying chamber 10 for granulating the composite powder 7 and a cyclone 16 for separating the dried composite powder 7 are connected in this order. The slurry container 11 is connected to a nozzle 15 installed inside the drying chamber 10 via a liquid pump 12 . The nozzle 15 has a double structure, and the slurry container 11 is connected to the inner nozzle (1.2 mmφ). The outer nozzle (1.7 mmφ) is connected to a compressed air source 13 outside the drying chamber 10. Hot air 14 at 180° C. is blown into the drying chamber 10 at a rate of 0.45 m 3 per minute. A cyclone 16 is connected to the discharge side of the drying chamber 10, and an exhaust pump 18 is connected to the downstream side.

【0017】複合粉体の造粒は以下のように行なう。送
液ポンプ12を駆動してノズル15の内側ノズルからス
ラリー5を噴出する。同時に外側ノズルから1kg/c
m2の圧搾空気を噴出し、乾燥チャンバ10の内部にス
ラリー5を噴霧する。霧化したスラリー粒6は空孔形成
材3が完全に独立しており、夫々の空孔形成材3の粒子
表面が圧電材料粉2と粘結材4とで覆われたまま熱風1
4中で乾燥され、複合粉体7が造粒される。造粒された
複合粉体7は熱風14の流れとともにサイクロン16に
流入して分離される。熱風14は排気ポンプ18を経て
放出される。
Granulation of the composite powder is carried out as follows. The liquid feeding pump 12 is driven to eject the slurry 5 from the inner nozzle of the nozzle 15. At the same time, 1kg/c from the outside nozzle
m2 of compressed air is ejected to spray the slurry 5 inside the drying chamber 10. In the atomized slurry particles 6, the pore forming material 3 is completely independent, and the particle surface of each pore forming material 3 is covered with the piezoelectric material powder 2 and the caking material 4 while being exposed to the hot air 1.
4, and the composite powder 7 is granulated. The granulated composite powder 7 flows into a cyclone 16 with the flow of hot air 14 and is separated. Hot air 14 is discharged via exhaust pump 18.

【0018】図2に得られた複合粉体7を示す。夫々の
複合粉体7は一個の空孔形成材3を核とし、その全表面
が圧電材料粉2と粘結材4とで被覆されている。この複
合粉体7を加圧成形すると空孔形成材3は均一に分布し
た状態で成形され、空孔形成材3同士が接触することは
ない。所望の形状に成形した成形体を常法に従って焼成
すれば多孔質圧電素子が得られる(図3参照)。複合粉
体7を加圧成形した場合でも空孔形成材3同士は接触し
ないため、空孔形成材3が連結したり凝集することはな
い。得られた複合粉体の成形物を焼成すると、空孔形成
材3は焼成熱で気化し、微細な空孔が均一に分布した多
孔質圧電素子が製造される。
FIG. 2 shows the composite powder 7 obtained. Each composite powder 7 has one pore-forming material 3 as a core, and its entire surface is coated with piezoelectric material powder 2 and caking material 4. When this composite powder 7 is pressure-molded, the pore-forming materials 3 are molded in a uniformly distributed state, and the pore-forming materials 3 do not come into contact with each other. A porous piezoelectric element can be obtained by firing a molded body formed into a desired shape according to a conventional method (see FIG. 3). Even when the composite powder 7 is pressure-molded, the pore-forming materials 3 do not come into contact with each other, so the pore-forming materials 3 do not connect or aggregate. When the resulting molded composite powder is fired, the pore-forming material 3 is vaporized by the heat of firing, producing a porous piezoelectric element in which fine pores are uniformly distributed.

【0019】空孔形成材3として平均粒径が5μm、気
化温度240℃のポリメチルメタクリレート樹脂球5重
量部、圧電材料粉2として最大粒径が1μmのPb(Z
r,Ti)O3粉45重量部、粘結材4としてポリビニ
ルアルコールの2.5%水溶液50重量部を容器11に
入れ、充分に撹拌、混合してスラリー5を調製し、上記
の手順に従って複合粉体7を得た。得られた複合粉体、
約4cm3 を、成形圧1.4t/cm2で加圧成形し
、1270℃で1時間焼成したところ、得られた多孔質
圧電素子は、機械強度が高く、微細加工性が優れていた
As the pore forming material 3, 5 parts by weight of polymethyl methacrylate resin spheres with an average particle diameter of 5 μm and a vaporization temperature of 240° C., as the piezoelectric material powder 2, Pb (Z) with a maximum particle diameter of 1 μm.
r, Ti) 45 parts by weight of O3 powder and 50 parts by weight of a 2.5% aqueous solution of polyvinyl alcohol as the binder 4 are placed in a container 11, stirred and mixed thoroughly to prepare a slurry 5, and then composited according to the above procedure. Powder 7 was obtained. The obtained composite powder,
Approximately 4 cm 3 was pressure-molded at a molding pressure of 1.4 t/cm 2 and fired at 1270° C. for 1 hour. The resulting porous piezoelectric element had high mechanical strength and excellent microfabricability.

【0020】[0020]

【発明の効果】以上、詳細に説明したように本発明の多
孔質圧電素子の製造方法によれば、空孔形成材が連結し
たり凝集することがないため、微細な独立空孔を有する
多孔質圧電素子を得ることが出来る。製造された多孔質
圧電素子は、機械強度が高く、微細加工性が優れている
Effects of the Invention As described above in detail, according to the method of manufacturing a porous piezoelectric element of the present invention, the pore-forming material does not connect or agglomerate. A high quality piezoelectric element can be obtained. The manufactured porous piezoelectric element has high mechanical strength and excellent microprocessability.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の多孔質圧電素子の製造方法に用いる造
粒装置の概略側面図である。
FIG. 1 is a schematic side view of a granulation device used in the method of manufacturing a porous piezoelectric element of the present invention.

【図2】本発明の多孔質圧電素子の製造方法で造粒され
た複合粉体の拡大図である。
FIG. 2 is an enlarged view of a composite powder granulated by the method for manufacturing a porous piezoelectric element of the present invention.

【図3】本発明を適用する多孔質圧電素子の製造方法を
示す工程図である。
FIG. 3 is a process diagram showing a method for manufacturing a porous piezoelectric element to which the present invention is applied.

【図4】従来の多孔質圧電素子の製造方法を示す工程図
である。
FIG. 4 is a process diagram showing a conventional method for manufacturing a porous piezoelectric element.

【図5】従来の製造方法における混合粉の混合状態を示
す図である。
FIG. 5 is a diagram showing the mixing state of mixed powder in a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

2は圧電材料粉、3は空孔形成材、4は粘結材、5はス
ラリー、6はスラリー粒、7は複合粉体、10は乾燥チ
ャンバ、11はスラリー容器、12は送液ポンプ、13
は圧搾空気源、14は熱風、15はノズル、16はサイ
クロン、18は排気ポンプである。
2 is a piezoelectric material powder, 3 is a pore forming material, 4 is a binding material, 5 is a slurry, 6 is a slurry grain, 7 is a composite powder, 10 is a drying chamber, 11 is a slurry container, 12 is a liquid pump, 13
14 is a compressed air source, 14 is hot air, 15 is a nozzle, 16 is a cyclone, and 18 is an exhaust pump.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  圧電材料粉と粘結材と加熱気化性の空
孔形成材とを混合した混合液を、前記空孔形成材の気化
温度以下に温度設定された熱風中に圧搾空気とともに噴
霧して乾燥させ、前記空孔形成材の表面を圧電材料粉で
被覆した複合粉体を造粒した後、該複合粉体を成形した
成形体を空孔形成材の気化温度以上の温度で焼成するこ
とを特徴とする多孔質圧電素子の製造方法。
1. Spraying a liquid mixture of a piezoelectric material powder, a caking material, and a heat-vaporizable pore-forming material together with compressed air into hot air whose temperature is set below the vaporization temperature of the pore-forming material. After drying and granulating a composite powder in which the surface of the pore-forming material is coated with piezoelectric material powder, a molded body made of the composite powder is fired at a temperature higher than the vaporization temperature of the pore-forming material. A method for manufacturing a porous piezoelectric element, characterized by:
【請求項2】  前記圧電材料粉がPb(Zr,Ti)
O3 であることを特徴とする請求項1に記載の多孔質
圧電素子の製造方法。
[Claim 2] The piezoelectric material powder is Pb (Zr, Ti).
The method for manufacturing a porous piezoelectric element according to claim 1, wherein the porous piezoelectric element is O3.
【請求項3】  前記圧電材料粉の最大粒径が1μmで
あることを特徴とする請求項1に記載の多孔質圧電素子
の製造方法。
3. The method for manufacturing a porous piezoelectric element according to claim 1, wherein the piezoelectric material powder has a maximum particle size of 1 μm.
【請求項4】  前記空孔形成材の気化温度が200〜
1000℃であることを特徴とする請求項1に記載の多
孔質圧電素子の製造方法。
4. The pore-forming material has a vaporization temperature of 200 to
The method for manufacturing a porous piezoelectric element according to claim 1, wherein the temperature is 1000°C.
【請求項5】  前記空孔形成材が平均粒径2〜30μ
mのポリメチルメタクリレート樹脂球であることを特徴
とする請求項1に記載の多孔質圧電素子の製造方法。
5. The pore-forming material has an average particle size of 2 to 30 μm.
The method for manufacturing a porous piezoelectric element according to claim 1, wherein the porous piezoelectric element is a polymethyl methacrylate resin sphere of m.
【請求項6】  前記粘結材がポリビニルアルコールの
1〜5%水溶液であることを特徴とする請求項1に記載
の多孔質圧電素子の製造方法。
6. The method for manufacturing a porous piezoelectric element according to claim 1, wherein the binder is a 1 to 5% aqueous solution of polyvinyl alcohol.
JP6283091A 1991-03-27 1991-03-27 Method for manufacturing porous piezoelectric element Expired - Fee Related JP2994778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6283091A JP2994778B2 (en) 1991-03-27 1991-03-27 Method for manufacturing porous piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6283091A JP2994778B2 (en) 1991-03-27 1991-03-27 Method for manufacturing porous piezoelectric element

Publications (2)

Publication Number Publication Date
JPH04300253A true JPH04300253A (en) 1992-10-23
JP2994778B2 JP2994778B2 (en) 1999-12-27

Family

ID=13211631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6283091A Expired - Fee Related JP2994778B2 (en) 1991-03-27 1991-03-27 Method for manufacturing porous piezoelectric element

Country Status (1)

Country Link
JP (1) JP2994778B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017478A1 (en) 2018-07-17 2020-01-23 清 永井 Porous piezoelectric material molded body, method of manufacturing same, and probe using said molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017478A1 (en) 2018-07-17 2020-01-23 清 永井 Porous piezoelectric material molded body, method of manufacturing same, and probe using said molded body

Also Published As

Publication number Publication date
JP2994778B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US3896196A (en) Method of producing spherical thermoplastic particles
JP2001327849A (en) Granule consisting of dispersible fine solids and their manufacturing method
US3942903A (en) Unitary porous themoplastic writing nib
CN101745972A (en) Manufacturing method of straight-bore ceramic filter and manufacturing system thereof
JP3182648B2 (en) Ceramic granules for molding a ceramic molded body, method for producing or treating the same, ceramic molded body and method for producing the same
JPH04300253A (en) Production of porous piezoelectric element
US5001088A (en) Method for producing porous form bodies
JPH11319534A (en) Granulating apparatus
JPS63274647A (en) Production of ceramics granules
JPS63262453A (en) Ceramic-glass particle for thermal spraying and its production
RU2058963C1 (en) Method for production of piezoceramic materials
JP2002128570A (en) Manufacture of granules for forming ceramics and equipment thereof, and granules, shaped compact and sintered compact
JPH0364182B2 (en)
JP3109972B2 (en) Granulation of raw materials for ceramics
JPH07257958A (en) Granulating method of raw material for ceramics
CN115974579B (en) Ceramic powder, preparation method thereof and porous ceramic matrix
JPH02217348A (en) Raw material for slip of ceramics
JPH01234352A (en) Far-infrared radiating sintered body and its production
JP3313427B2 (en) Method for producing ceramic granules
JPH068199B2 (en) Method and apparatus for manufacturing ceramic powder
JPH03215374A (en) Production of porous sintered material of silicon carbide
JP4479451B2 (en) Method for adjusting moisture content of ceramic granules
CN115650762A (en) Ceramic slurry and preparation method of porous ceramic atomizing core
JPH0482083B2 (en)
JPH04100532A (en) Fluidizing compression granulator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees