JPH068199B2 - Method and apparatus for manufacturing ceramic powder - Google Patents

Method and apparatus for manufacturing ceramic powder

Info

Publication number
JPH068199B2
JPH068199B2 JP59242909A JP24290984A JPH068199B2 JP H068199 B2 JPH068199 B2 JP H068199B2 JP 59242909 A JP59242909 A JP 59242909A JP 24290984 A JP24290984 A JP 24290984A JP H068199 B2 JPH068199 B2 JP H068199B2
Authority
JP
Japan
Prior art keywords
granulated powder
granulated
powder
ceramic
spray dryer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59242909A
Other languages
Japanese (ja)
Other versions
JPS61122151A (en
Inventor
昭宏 高見
耐三 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59242909A priority Critical patent/JPH068199B2/en
Publication of JPS61122151A publication Critical patent/JPS61122151A/en
Publication of JPH068199B2 publication Critical patent/JPH068199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はセラミック部品の作製に用いるセラミック粉粒
体の製造方法およびその製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a ceramic powder used for manufacturing a ceramic part.

従来例の構成とその問題点 通常、セラミック電子部品の製造工程は、主原料と微量
添加物原料を最適組成配分に秤量する配合工程、配合し
た原料を微粉に粉砕すると同時に主原料と添加物原料を
よく混合する粉砕混合工程がある。通常、粉砕混合工程
はポットを用い、原料と水と有機バインダーと玉石を加
え、ポットを回転させることによって行う。次に、粉砕
混合工程を終えた原料はスラリー状態になっているが、
これをスプレードライヤーを用い、乾燥すると同時に成
形に適した球状の造粒粉にする造粒工程がある。次に、
造粒粉を金型に充填し、圧力を加えて所望の形状にする
成形工程、そして成形物を焼き固めると同時に化学反応
を起させ、所望の電気性能を有する焼結物を得る焼成工
程、さらに電気性能を引出すための電極付工程等があ
る。
Structure of conventional example and its problems Normally, the manufacturing process of ceramic electronic parts is a compounding process in which the main raw material and a small amount of additive raw material are weighed in the optimum composition distribution, and the main raw material and the additive raw material are simultaneously pulverized into fine powder. There is a crushing and mixing step for mixing well. Usually, the crushing and mixing step is performed by using a pot, adding the raw material, water, an organic binder and cobblestone, and rotating the pot. Next, the raw material that has finished the crushing and mixing step is in a slurry state,
There is a granulation step in which this is dried using a spray dryer and at the same time, a spherical granulated powder suitable for molding is formed. next,
Filling the mold with the granulated powder, applying a pressure to form a desired shape, and firing the molded product to cause a chemical reaction at the same time to cause a chemical reaction to obtain a sintered product having desired electrical performance, Further, there is a step of attaching electrodes for drawing out electrical performance.

以上述べたようにセラミック電子部品の製造工程は概略
的に配合工程,粉砕混合工程,造粒工程,成形工程,焼
成工程,電極付工程からなる。これらの工程の中で、所
望の電気性能を出す最重要なのは配合工程,焼成工程で
あるが所望の形状を作り出し、構造物として強固であ
り、そのことが品質を向上させ、長期信頼性を確保する
上で重要な工程は造粒工程,成形工程である。そして、
成形性には造粒粉の性質が大きな影響を及ぼし、特に造
粒粉の含水率が適当でない場合、成形物を焼成して得ら
れた焼結物の収縮率がバラツキ、さらに成形時に成形物
の中に生じた圧力分布等により、焼結物の内部にボイド
等の内部欠陥を生じる。このことからセラミック電子部
品の品質,長期信頼性の面で大きな悪影響を及ぼすこと
になっていた。上述のように、通常造粒工程にはスプレ
ードライヤーを用いる。これはスラリー状の混合物をノ
ズルを通じて、熱風中にスプレー状にして吹き上げ、霧
状になった混合物が上昇,降下の過程で乾燥されると共
に球状に造粒される。しかしながら、元来スプレードラ
イヤーは洗剤,調味料等の造粒粉それ自体が最終製品で
あるものを製造するために用いられるものであり、造粒
粉の含水率は通常0.1%以下である。ところがセラミ
ック電子部品をつくる場合、造粒粉を金型に充填し、圧
力を加えて成形し、成形物をつくり、次に焼成工程で焼
き固めると同時に化学反応を起させ、所望の電気性能を
有する焼結物に仕上げる。この場合、成形物が適度な強
度をもち、成形体内部での圧力分布を小さくしておかな
いと、焼成工程で収縮率のバラツキや焼結体内部にボイ
ド等の内部欠陥を発生させる。このように優れた成形物
を作る上で、造粒粉の粒度分布,含水率等が重要な役割
を果たすが、特に含水率が重要である。これは造粒粉中
の水分が、成形時に加えられる圧力を成形物の中心部ま
で伝える機能を果たすと考えられるからである。このた
め含水率が少ない時、圧力が成形物の中心部まで伝わら
ず、成形物の表面部分にだけ集中し、大きな圧力分布を
生じ、これが焼成時に成形体の各部分での収縮率の違い
を生じさせ、これがボイド等の内部欠陥を生じることに
なる。逆に含水率が高いと、成形時に成形物から水がに
じみ出す等の問題があり、成形後に成形物の乾燥工程が
必要になったりして、リードタイムが長くなる等の問題
がある。このようなことから、造粒粉の最適含水率は
0.5〜1.0%となるのである。
As described above, the manufacturing process of the ceramic electronic component roughly includes a mixing process, a pulverizing and mixing process, a granulating process, a molding process, a firing process, and an electrode attaching process. Of these processes, the most important step to achieve the desired electrical performance is the compounding process and firing process, but the desired shape is created and the structure is strong, which improves quality and ensures long-term reliability. The important steps in this process are the granulation and molding steps. And
The property of the granulated powder has a great influence on the moldability, and especially when the water content of the granulated powder is not appropriate, the shrinkage rate of the sintered product obtained by firing the molded product varies, and the molded product during molding Internal defects such as voids are generated inside the sintered product due to the pressure distribution and the like generated inside. This has had a major adverse effect on the quality and long-term reliability of ceramic electronic components. As mentioned above, a spray dryer is usually used in the granulation step. This is because a slurry-like mixture is sprayed into hot air through a nozzle and blown up, and the atomized mixture is dried and spherically granulated in the process of ascending and descending. However, the spray dryer is originally used for producing the final product of the granulated powder itself such as detergent and seasoning, and the water content of the granulated powder is usually 0.1% or less. . However, when making a ceramic electronic component, the granulated powder is filled in a mold, pressure is applied to form a molded product, and then a molded product is created, which is then fired in a firing process to cause a chemical reaction at the same time to achieve desired electrical performance. Finish the sintered product. In this case, the molded product has an appropriate strength, and unless the pressure distribution inside the molded product is made small, variations in shrinkage in the firing process and internal defects such as voids occur inside the sintered product. The particle size distribution and the water content of the granulated powder play important roles in producing such an excellent molded product, but the water content is particularly important. This is because the water content in the granulated powder is considered to fulfill the function of transmitting the pressure applied during molding to the center of the molded product. For this reason, when the water content is low, the pressure does not reach the center of the molded product and concentrates only on the surface of the molded product, resulting in a large pressure distribution, which causes a difference in shrinkage ratio between each part of the molded product during firing. Which causes internal defects such as voids. On the other hand, when the water content is high, there is a problem that water oozes out from the molded product during molding, and a drying step of the molded product is required after molding, leading to a problem of a long lead time. From this, the optimum water content of the granulated powder is 0.5 to 1.0%.

上述したように、スプレードライヤーを用いた造粒粉は
含水率が0.1%程度であり、これを0.5〜1.0%
に含水率を調整するためには水を添加しなければならな
い。従来はこの含水率調整のために、Vブレンダーを用
いて造粒粉に適量の水を加え、Vブレンダーを回転させ
ることによって造粒粉の含水率調整を行っていた。しか
しながら、この方式ではどうしても造状粉中の水の混り
が不均一になり、造粒粉の中に水分の多い部分(塊りに
なっている)と水分の少ない部分ができ、実使用の上で
は再度篩によって篩分けし、粒度分布を揃える必要があ
り、大量生産の場合、リードタイムが長くなり、コスト
アップの大きな要因になっていた。
As described above, the granulated powder using the spray dryer has a water content of about 0.1%, which is 0.5 to 1.0%.
Water must be added to adjust the water content. Conventionally, in order to adjust the water content, the V blender is used to add an appropriate amount of water to the granulated powder, and the V blender is rotated to adjust the water content of the granulated powder. However, with this method, the mixing of water in the granulated powder is inevitably non-uniform, and a part with a large amount of water (agglomerated) and a part with a small amount of water are formed in the granulated powder. In the above, it is necessary to make the particle size distribution uniform by sieving again, and in the case of mass production, the lead time becomes long, which is a major factor in cost increase.

発明の目的 本発明の目的は上記欠点に鑑み、セラミック粉粒体の造
粒粉の含水率の調整を容易にするセラミック粉粒体の製
造方法およびその数造装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above drawbacks, an object of the present invention is to provide a method of manufacturing a ceramic powder and a method for manufacturing the ceramic powder that facilitates the adjustment of the water content of the granulated powder of the ceramic powder.

発明の構成 この目的を達成するために、本発明のセラミック粉粒体
の製造方法は、スプレードライヤーにて造粒されたセラ
ミック造粒粉に、超音波霧化装置から発生する液体微粒
子を付着させることによって含水率の調整をするもので
あり、またその製造装置として、貫通する孔を側壁に有
する上下に開いた中空容器と、液体微粒子の吹出し口を
有する超音霧化装置からなり、吹出し口を中空容器の孔
に差し込んだ構造の装置になっている。
To achieve this object, in the method for producing a ceramic powder granule of the present invention, liquid fine particles generated from an ultrasonic atomizer are attached to ceramic granulated powder granulated by a spray dryer. The water content is adjusted by means of this, and as its manufacturing device, it consists of a hollow container that has a through hole in the side wall and is opened up and down, and a supersonic atomization device that has an outlet for liquid particles. The device has a structure in which is inserted into the hole of the hollow container.

まず、スプレードライヤーで造粒された造粒粉が中空容
器を通過し、その時に中空容器の側壁面から液体微粒子
が吹き出され、通過中の造粒粉の表面に液体微粒子が付
着する。通常、スプレードライヤーで造粒された造粒粉
は平均粒径100〜150μmであり、一方超音波霧化
装置により発生した液体微粒子の平均粒径は5〜10μ
mであり、造粒粉に均等に付着し、前述のVブレンダー
での加湿方式のように水分の高い粘土状の塊りができる
ということはない。このため篩分けの必要もなく、リー
ドタイムの長時間化の恐れもない。そして、本発明の装
置は現状のスプレードライヤーの造粒粉取出口に設置す
るだけであり、簡便に構成できるものである。
First, the granulated powder granulated by the spray dryer passes through the hollow container, at which time liquid fine particles are blown out from the side wall surface of the hollow container, and the liquid fine particles adhere to the surface of the granulated powder during passage. Usually, the granulated powder granulated with a spray dryer has an average particle size of 100 to 150 μm, while the liquid microparticles generated by the ultrasonic atomizer have an average particle size of 5 to 10 μm.
Since it is m, it is not evenly adhered to the granulated powder and a clay-like lump having a high water content can be formed unlike the humidification method using the V blender described above. Therefore, there is no need for sieving, and there is no fear of increasing the lead time. The apparatus of the present invention is simply installed at the granulated powder outlet of the current spray dryer, and can be simply constructed.

実施例の説明 以下、本発明の一実施例について図面を参照しながら説
明する。
Description of Embodiments An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明のセラミック粉粒体の製造装置をスプレ
ードライヤーに取付た場合の模式図を示す。1はスプレ
ードライヤー,2は造粒粉,3は貫通する孔4を側壁に
有し、上下に開いた中空容器,5は超音波霧化装置,6
は加湿部,7は加湿された造粒粉,8は造粒粉の収納容
器である。
FIG. 1 shows a schematic diagram of the case where the apparatus for producing ceramic powder particles of the present invention is attached to a spray dryer. 1 is a spray dryer, 2 is a granulated powder, 3 is a hollow container which has a hole 4 penetrating therethrough on the side wall and is opened vertically, 5 is an ultrasonic atomizer, 6
Is a humidifying part, 7 is a humidified granulated powder, and 8 is a container for the granulated powder.

第2図は造粒粉の粒度分布で、Aは加湿しないもの、B
はVブレンダーを用いて加湿したもの、Cは本発明の一
実施例で得た造粒粉の粒度分布である。
Fig. 2 shows the particle size distribution of granulated powder, where A is not humidified and B is
Is humidified using a V blender, and C is the particle size distribution of the granulated powder obtained in one example of the present invention.

まず、ZnOの粉末200KgにBi2O3,Co2O3,MnO2,Sb2O3
等からなる添加物約20Kgを加え、純水、有機バインダ
ーを加え、ディスパーミルを用い、混合した。次に、ス
ラリー状の混合物を、スプレードライヤー1を用い、乾
燥,造粒を行った。ここで、スプレードライヤー1の熱
風温度は250℃〜300℃、排風温度は140〜17
0℃であった。この時の造粒粉の含水率は0.2%であ
った。この粒度分布は第2図のAに示す。次に、この造
粒粉を第1図に示す本発明の含水率調整装置によって加
湿した。つまり、スプレードライヤー1から造粒粉2が
上下に開いた中空容器3の中に注がれる。そして、中空
容器3の壁面の貫通孔4に超音波霧化装置5の液体微粒
子を吹き出す口を差し込み、中空容器3内に霧状の液体
微粒子を注入し、造粒粉2の表面に液体微粒子を付着さ
せる加湿部6を作り出す。そして、加湿された造粒粉7
を収納容器8に入れた。処理量は造粒粉40Kgに対し、
霧化量は500ccであった。このようにして得られた造
粒粉の含水率は0.8%であり粒度分布は第2図のCで
あり、加湿しなかった場合よりも若干粒度が粗くなって
いる。
First, 200 kg of ZnO powder was mixed with Bi 2 O 3 , Co 2 O 3 , MnO 2 , and Sb 2 O 3.
Approximately 20 kg of an additive such as the above was added, pure water and an organic binder were added, and mixed using a Dispermill. Next, the slurry-like mixture was dried and granulated using the spray dryer 1. Here, the hot air temperature of the spray dryer 1 is 250 ° C. to 300 ° C., and the exhaust air temperature is 140 to 17
It was 0 ° C. The water content of the granulated powder at this time was 0.2%. This particle size distribution is shown in A of FIG. Next, this granulated powder was humidified by the water content adjusting device of the present invention shown in FIG. That is, the granulated powder 2 is poured from the spray dryer 1 into the hollow container 3 opened up and down. Then, an opening for ejecting the liquid fine particles of the ultrasonic atomizing device 5 is inserted into the through hole 4 on the wall surface of the hollow container 3, the atomized liquid fine particles are injected into the hollow container 3, and the liquid fine particles are formed on the surface of the granulated powder 2. The humidifying part 6 to which is attached is created. And the humidified granulated powder 7
Was placed in the storage container 8. Treated amount is 40kg of granulated powder,
The atomization amount was 500 cc. The water content of the granulated powder thus obtained is 0.8%, and the particle size distribution is C in FIG. 2, and the particle size is slightly coarser than that in the case where it is not humidified.

さらに、上記と同様の方法で造粒を行い、加湿方法とし
てVブレンダーを用い、まず50Kgの造粒粉に対して5
00ccの水を加え、3時間混合した。そして、大きい塊
りを取り去るため、32#のフルイを通した。その結果、
得られた造粒粉の含水率は0.8%であり、粒度分布は
第2図のBに示すようになり、粒径は大きい方に移動し
ている。
Further, granulation is performed in the same manner as above, and a V blender is used as a humidifying method.
00 cc of water was added and mixed for 3 hours. Then, through a 32 # sieve to remove the big chunks. as a result,
The water content of the obtained granulated powder was 0.8%, the particle size distribution was as shown in FIG. 2B, and the particle size moved to the larger side.

これらの造粒粉を油圧成形機を用い、400Kg/cm2
圧力で直径40mm,長さ40mmに成形し、これを120
0℃,5時間焼成した。こうして得られた焼結体の形状
は直径32mm,長さ32mmである。
Using a hydraulic molding machine, these granulated powders were molded at a pressure of 400 kg / cm 2 into a diameter of 40 mm and a length of 40 mm.
It was baked at 0 ° C. for 5 hours. The shape of the sintered body thus obtained is 32 mm in diameter and 32 mm in length.

次に、X線透視装置によって焼結体(試料数各50ケ)
のボイド等内部欠陥の発生率を調べた。このX線透視装
置は直径1mmの検出能力がある。その結果は下表に示す
ように、本発明の方法によって加湿したものは全数内部
欠陥を生じていない。それに対して、従来通り加湿しな
かったものにおいては内部欠陥を生じたものが50ケ中
13ケ、Vブレンダーで加湿したものにおいては同じく
50ケ中6ケとなり、本発明の製造方法および製造装置
を用いて得られた焼結体は内部欠陥の少ない優れたもの
であることがわかる。
Next, using an X-ray fluoroscope, a sintered body (50 samples each)
The occurrence rate of internal defects such as voids was investigated. This fluoroscope has a detection capability of 1 mm in diameter. As a result, as shown in the table below, the products humidified by the method of the present invention did not generate all internal defects. On the other hand, in the non-humidified ones as in the conventional case, 13 out of 50 had internal defects, and in the one moistened by the V blender, 6 in 50, the manufacturing method and the manufacturing apparatus of the present invention. It can be seen that the sintered body obtained by using is excellent with few internal defects.

発明の効果 以上、詳細に述べたように本発明はスプレードライヤー
にて造粒されたセラミックの造粒粉に、超音波霧化装置
による液体微粒子を付着させることにより、含水率を簡
単に均等に上げることができ、この結果として内部欠陥
のない焼結体を提供することができ、今後のセラミック
電子部品の製造に当り、その価値は大なるものである。
Effects of the Invention As described above in detail, according to the present invention, the water content can be easily and evenly made by adhering the liquid fine particles by the ultrasonic atomizer to the ceramic granulated powder granulated by the spray dryer. Therefore, a sintered body having no internal defect can be provided as a result, and its value will be great in the future production of ceramic electronic components.

尚、実施例としてZnOを用いたが、本発明が原料の種類
に影響されないことは言うまでもない。
Although ZnO was used as an example, it goes without saying that the present invention is not affected by the type of raw material.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のセラミック粉粒体の製造装置をスプレ
ードライヤーに取付けた場合の模式図、第2図は造粒粉
の粒度分布を示す図である。 1……スプレードライヤー、2……造粒粉、3……貫通
する孔を有し上下に開いた中空容器、4……中空容器の
側壁を貫通する孔、5……超音波霧化装置、6……加湿
部、7……加湿された造粒粉、8……造粒粉の収納容
器。
FIG. 1 is a schematic view of the case where the apparatus for producing ceramic powder particles of the present invention is attached to a spray dryer, and FIG. 2 is a view showing the particle size distribution of granulated powder. 1 ... spray dryer, 2 ... granulated powder, 3 ... hollow container having a through hole opened up and down, 4 ... hole penetrating the side wall of the hollow container, 5 ... ultrasonic atomizer, 6 ... Humidifying part, 7 ... Humidified granulated powder, 8 ... Storage container for granulated powder.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】スプレードライヤーにて造粒されたセラミ
ック造粒粉に、超音波霧化装置から発生した液体微粒子
を付着させることを特徴とするセラミック粉粒体の製造
方法。
1. A method for producing a ceramic powder or granular material, characterized in that liquid fine particles generated from an ultrasonic atomizer are adhered to ceramic granulated powder granulated by a spray dryer.
【請求項2】貫通する孔を側壁に有し、スプレードライ
ヤーにて造粒されたセラミック造粒粉を通過させる上下
に開いた中空容器と、液体微粒子の吹出し口を有する超
音波霧化装置からなり、前記吹出し口を前記中空容器の
孔に差し込んだことを特徴とするセラミック粉粒体の製
造装置。
2. An ultrasonic atomizer having a hollow container having a penetrating hole in the side wall thereof, the hollow container opening and closing through which a ceramic granulated powder granulated by a spray dryer passes, and an outlet for ejecting liquid fine particles. The manufacturing apparatus of ceramic powdery particles, wherein the blowout port is inserted into the hole of the hollow container.
JP59242909A 1984-11-16 1984-11-16 Method and apparatus for manufacturing ceramic powder Expired - Fee Related JPH068199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242909A JPH068199B2 (en) 1984-11-16 1984-11-16 Method and apparatus for manufacturing ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242909A JPH068199B2 (en) 1984-11-16 1984-11-16 Method and apparatus for manufacturing ceramic powder

Publications (2)

Publication Number Publication Date
JPS61122151A JPS61122151A (en) 1986-06-10
JPH068199B2 true JPH068199B2 (en) 1994-02-02

Family

ID=17096014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242909A Expired - Fee Related JPH068199B2 (en) 1984-11-16 1984-11-16 Method and apparatus for manufacturing ceramic powder

Country Status (1)

Country Link
JP (1) JPH068199B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022870A (en) * 2005-07-19 2007-02-01 Nippon Shokubai Co Ltd Mixture for manufacturing ceramic green molding
JP5359838B2 (en) * 2009-12-10 2013-12-04 株式会社村田製作所 Humidity control method of ceramic granule powder

Also Published As

Publication number Publication date
JPS61122151A (en) 1986-06-10

Similar Documents

Publication Publication Date Title
CN103833376B (en) The device and method of preparation ceramic tile forming powders
CN109761640A (en) A kind of porous ceramics fever core material and preparation method
EP0728519B1 (en) High speed agitated granulation method and high speed agitated granulating machine
CN115368122B (en) Modified diatomite porous ceramic slurry and ceramic powder
JPH068199B2 (en) Method and apparatus for manufacturing ceramic powder
JP3182648B2 (en) Ceramic granules for molding a ceramic molded body, method for producing or treating the same, ceramic molded body and method for producing the same
JPS6367108A (en) Method and device for manufacturing fine ceramic material having high homogeneity and high fineness
JPH09278534A (en) Production of ceramic granule
US3830661A (en) Process for preparation of cathode mix for alkaline cell
CN87106561A (en) Centrifugal-type automatic granulating method and equipment thereof
JPH0565502A (en) Method for granulating tantalum powder
JPH0152853B2 (en)
JPS6030248B2 (en) Granulation method of ceramic raw material powder
JPH0513099B2 (en)
JPH08311509A (en) Production of flowing tungsten/copper composite powder
JPH0748634A (en) Method of pretreatment of sintered raw material
CN203295371U (en) Environmental-friendly full-automatic production device for aluminum oxide ceramic pelleting powder
JP4479451B2 (en) Method for adjusting moisture content of ceramic granules
JPH0238370A (en) Composite powder for ceramic coating and production thereof
JPS59145701A (en) Granulation of non-flowable metal powder or powder mixture
JPH1112056A (en) Production of foaming ceramic material, foaming ceramic material and production of formed ceramic material
JP5359838B2 (en) Humidity control method of ceramic granule powder
JPH02263901A (en) Powder for metal injection-molding and manufacture thereof
KR20230081601A (en) Device for manufacturing magnesium oxide
JP2652105B2 (en) Tile raw material manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees