JPH0238370A - Composite powder for ceramic coating and production thereof - Google Patents

Composite powder for ceramic coating and production thereof

Info

Publication number
JPH0238370A
JPH0238370A JP63187623A JP18762388A JPH0238370A JP H0238370 A JPH0238370 A JP H0238370A JP 63187623 A JP63187623 A JP 63187623A JP 18762388 A JP18762388 A JP 18762388A JP H0238370 A JPH0238370 A JP H0238370A
Authority
JP
Japan
Prior art keywords
binder
composite powder
ceramic coating
aggregate
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63187623A
Other languages
Japanese (ja)
Inventor
Mitsuru Yano
矢野 満
Masatoshi Nakamizo
雅敏 中溝
Norio Takahashi
紀雄 高橋
Kanesuke Kido
木戸 兼介
Katsumi Morikawa
勝美 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Proterial Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Hitachi Metals Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP63187623A priority Critical patent/JPH0238370A/en
Publication of JPH0238370A publication Critical patent/JPH0238370A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composite powder for ceramic coating capable of adhering to the inside of a tube and forming uniform coating layer and further providing structure having excellent thermal shock resistance only by feeding a coating material into a cast iron tube by adding adhering properties to a coating material by a specific constitution. CONSTITUTION:A composite powder for ceramic coating is formed by the following a-e processes: (a) An aggregate such as mica or film-shaped glass or pulverized piece of inorganic hollow particle is blended with a curing agent consisting of powdery burned aluminum phosphate, binder consisting of a liquid alkali metal silicate and water at desired amounts. (b) The above-mentioned blend is irradiated with a microwave to dehydrate and solidify the blend. (c) The solidified blend is crudely crushed. (d) The crushed blend is finely pulverized and (e) further classified. In the obtained composite powder, the aggregate and curing agent are uniformly included in the binder and the curing agent and binder exist in unreacted state and the binder has water absorbing structure because of having pores opened to air.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高温酸化を抑制する酸化防止被覆層を形成す
るのに適したセラミックコーティング用複合粉末及びそ
のW1’Zl法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a ceramic coating composite powder suitable for forming an antioxidant coating layer that suppresses high-temperature oxidation, and a W1'Zl method thereof.

[従来の技術] 乾式粉末を用いて鋳鉄にセラミックコーティングを行う
方法として溶射、あるいはガラスフリットを高温に加熱
した鋳鉄に振りかける琺瑯等がある。しかしながらいず
れの方法においてもコーティング用粉末に結合剤が含ま
れてな(、骨材の結合は高温での固溶現象を必要とする
[Prior Art] Methods of applying ceramic coating to cast iron using dry powder include thermal spraying, or enameling, which involves sprinkling glass frit onto cast iron heated to a high temperature. However, in both methods, the coating powder does not contain a binder (the bonding of the aggregate requires a solid solution phenomenon at high temperatures).

[発明が解決しようとする問題点] このようにして出来た被覆層の熱膨張係数は骨材の物性
値に近似し鋳鉄の熱膨張係数と著しく異なるため、耐熱
衝撃に乏しいという問題がある。
[Problems to be Solved by the Invention] The thermal expansion coefficient of the coating layer thus formed approximates the physical properties of aggregate and is significantly different from the thermal expansion coefficient of cast iron, resulting in a problem of poor thermal shock resistance.

更に上記の方法では、特に管径が50 m m程度の鋳
鉄管内面にコーティングを行うには技術的に極めて困難
である。
Furthermore, the above method is technically extremely difficult to coat the inner surface of a cast iron pipe with a diameter of approximately 50 mm.

単にコーティング材料を管内へ送給しても供給側のコー
ティング層が成長し均一なコーティングが出来ない。
Simply feeding the coating material into the pipe will cause the coating layer on the supply side to grow, making it impossible to achieve uniform coating.

本発明の目的は、鋳鉄管内へコーティング材料を送給す
るだけで、管内面に付着し均一な被’FnMが形成でき
、更にコーティング層が耐熱衝撃性に優れた構造になり
うるセラミックコーティング用複合粉末及びその製造法
を提供するものである。
The object of the present invention is to provide a ceramic coating composite that can adhere to the inner surface of a cast iron pipe and form a uniform coat of FnM by simply feeding the coating material into a cast iron pipe, and that the coating layer can have a structure with excellent thermal shock resistance. The present invention provides a powder and a method for producing the same.

[問題点を解決するための手段] 本発明のセラミックコーティング用複合粉末は、骨材と
してのマイカ、又は膜状ガラス、又は無機質中空粒子の
粉砕片と、硬化剤としての焼成燐酸アルミニウムとが、
結合剤としてのアルカリ金属球a塩中に均一に包含され
、硬化剤と結合剤が未反応の状態で存在することを特徴
とするものである。
[Means for Solving the Problems] The composite powder for ceramic coating of the present invention includes crushed pieces of mica, film glass, or inorganic hollow particles as an aggregate, and calcined aluminum phosphate as a hardening agent.
It is characterized in that it is uniformly included in the alkali metal sphere a salt as a binder, and the curing agent and binder exist in an unreacted state.

また、骨材は配合比が40〜50重量%で、硬化剤は配
合比が11〜12重量%で、結合剤は配合比が30〜5
0重量%である事が望ましい。
In addition, the blending ratio of the aggregate is 40 to 50% by weight, the blending ratio of the curing agent is 11 to 12% by weight, and the blending ratio of the binder is 30 to 5% by weight.
It is desirable that it be 0% by weight.

さらに、本発明のセラミックコーティング用複合粉末の
製造法は、 (a)マイカ、又は膜状ガラス、又は 無
機質中空粒子の粉砕片等の骨材と、粉状の焼成燐酸アル
ミニウムからなる硬化剤と。
Furthermore, the method for producing a composite powder for ceramic coating of the present invention includes: (a) an aggregate such as mica, film glass, or crushed pieces of inorganic hollow particles; and a hardening agent made of powdered calcined aluminum phosphate.

液状のアルカリ金属珪酸塩からなる結合剤と水をそれぞ
れ所望量混合し、 (b)上記混合物にマイクロ波を照
射し、脱水、及び固化し(c)粗粉砕し(d)次に微粉
砕し(e)更に分級することを特徴とするものである。
Mix desired amounts of a liquid alkali metal silicate binder and water, (b) irradiate the mixture with microwaves to dehydrate and solidify, (c) coarsely pulverize, and (d) finely pulverize. (e) It is characterized by further classification.

また、脱水、固化する手段として、スプレードライヤー
を用いる方法、あるいは凍結真空乾燥する方法も効果的
である。
Furthermore, as a means for dehydrating and solidifying, a method using a spray dryer or a method of freeze-vacuum drying is also effective.

本発明者等は創意研究を重ねた結果、コーティング材料
に結合性を付加する事により、送給のみの作用で鋳鉄内
面のコーティングが出来るようになした。更に耐熱衝撃
性を向上させる手段として、骨材の接合を直接ではなく
熱膨張率が鋳鉄に近い結合材料を介して構成することで
コーティング層全体の熱膨張率を鋳鉄に近似させ、熱応
力を緩和させる構造とした。結合性を付加する方法とし
て骨材の周囲に結合剤を被覆し、更にその結合剤を固め
る硬化剤を結合剤中に均一に分散させた。この材料を鋳
鉄管内に送給した場合骨材に被覆された結合剤が鋳鉄に
付着し、更に骨材どうしが結合剤を介して積層される。
As a result of repeated creative research, the inventors of the present invention have made it possible to coat the inner surface of cast iron with only the action of feeding by adding bonding properties to the coating material. Furthermore, as a means to improve thermal shock resistance, the aggregates are joined not directly but through a bonding material whose coefficient of thermal expansion is close to that of cast iron. This allows the coefficient of thermal expansion of the entire coating layer to approximate that of cast iron, reducing thermal stress. The structure has been designed to relieve the stress. As a method of adding bonding properties, a binder is coated around the aggregate, and a curing agent that hardens the binder is uniformly dispersed in the binder. When this material is fed into a cast iron pipe, the binder coated on the aggregate adheres to the cast iron, and the aggregates are further laminated together via the binder.

しかしながらこの状態では、結合力が乏しく外力により
容易に脱落する7そこで、微電の水分を添加し可溶性の
結合剤を溶かし、結合剤中に含まれる硬化剤と化学反応
をおこさせ、シラン結合により骨材どうしの結合力を増
大させコーティング層の保形性を維持させることにした
However, in this state, the bonding strength is poor and it easily falls off due to external force7.Therefore, a small amount of water is added to dissolve the soluble binder, causing a chemical reaction with the hardening agent contained in the binder, and silane bonding We decided to maintain the shape retention of the coating layer by increasing the bonding force between the aggregates.

コーテイング材の配合は骨材を重量比で40〜50%が
適しており、40%未満では強度が不足し50%を超え
ると亀裂が入る。硬化剤は重量比で11〜12%が好ま
しく、11%未満では結合剤の膨れ現象が生じ、12%
を超えると亀裂が入る。結合剤の配合比は重量%で30
〜50%が適当で30%未満では強度が低下し50%を
超えると膨れ現象がでやすくなる。
A suitable proportion of the coating material is 40 to 50% aggregate by weight; if it is less than 40%, the strength is insufficient, and if it exceeds 50%, cracks will occur. The curing agent preferably has a weight ratio of 11 to 12%; if it is less than 11%, the binder will swell;
If it exceeds this, cracks will appear. The blending ratio of the binder is 30% by weight.
~50% is suitable; if it is less than 30%, the strength will decrease, and if it exceeds 50%, blistering will tend to occur.

[実施例] 本発明を以下の実施例により、更に詳細に説明するが、
本発明はそれらに限定するものではない。
[Example] The present invention will be explained in more detail by the following example.
The present invention is not limited thereto.

実」1泗」− ポット直径 :     200mm 回転数   ・    60  rpm磁性ボール径:
     30mm ボール挿入量:      12kg のボールミルに かさ比重  :     0.2  g/cm3粒  
 径   : 44〜150 μmのシラスバルーンを
800g挿入し3.5時間かけて粉砕した粉末と、モル
比2.5、濃度40%の珪酸ナトリウム溶液を重量比で
1= 3の割合で混合した。
Fruit "1" - Pot diameter: 200mm Rotation speed: 60 rpm Magnetic ball diameter:
30mm ball insertion amount: 12kg ball mill with bulk specific gravity: 0.2 g/cm3 grains
The powder, which was pulverized over 3.5 hours by inserting 800 g of Shirasu balloons having a diameter of 44 to 150 μm, was mixed with a sodium silicate solution having a molar ratio of 2.5 and a concentration of 40% in a weight ratio of 1=3.

次に、焼成リン酸アルミニウムの粉末(平均粒径: 2
0μ)と蒸留水を重量比で17: 2の割合で混合した
Next, calcined aluminum phosphate powder (average particle size: 2
0μ) and distilled water at a weight ratio of 17:2.

次に上記で作成した28類の混合液を、更に混ぜ合わせ
た泥 を作成した。次にこの泥 を耐熱シートを敷いた
蒸発皿へ移し、周波数:  2450M Hzのマイク
ロ波を30分間照射した。
Next, we created mud by further mixing the 28 types of mixed liquids created above. Next, this mud was transferred to an evaporation dish covered with a heat-resistant sheet and irradiated with microwaves at a frequency of 2450 MHz for 30 minutes.

このようにして得た塊状物を、ジヨウクラッシャーにか
け粗粉砕した後、ボールミル(ボット径:280mm、
回転数= 60rpm)で5時間粉砕した。次にこの粉
体を開口率90μmのふるいで分級してセラミックコー
ティング用複合粉末を得た。
The thus-obtained lumps were coarsely pulverized using a mechanical crusher, and then milled using a ball mill (bot diameter: 280 mm,
The mixture was ground for 5 hours at a rotation speed of 60 rpm. Next, this powder was classified using a sieve with an aperture ratio of 90 μm to obtain a composite powder for ceramic coating.

裏」0叱ス ポット直径 :     200mm 回転数゛  :     60rpm 磁性ボール径:      30mm ボール挿入量:12kg のボールミルに かさ比重  =    0.2 よ/。m3粒   径
   :44〜150  μmのシラスバルーンを80
0g挿入し3.5時間かけて粉砕した粉末と、モル比2
.5、濃度40%の珪酸ナトリウム溶液を重量比で1:
 3の割合で混合した。
Back 0 spot diameter: 200mm Rotation speed: 60rpm Magnetic ball diameter: 30mm Ball insertion amount: 12kg Bulk specific gravity = 0.2 for a ball mill. m3 particle size: 80 Shirasu balloons with a diameter of 44 to 150 μm
Powder inserted for 0g and crushed for 3.5 hours, molar ratio 2
.. 5. Sodium silicate solution with a concentration of 40% in a weight ratio of 1:
They were mixed at a ratio of 3.

次に、焼成リン酸アルミニウムの粉末(平均粒径: 2
0μ)と蒸留水を重量比で17: 2の割合で混合した
Next, calcined aluminum phosphate powder (average particle size: 2
0μ) and distilled water at a weight ratio of 17:2.

次に上記で作成した28類の混合液を、更に混ぜ合わせ
た泥 を作成した。
Next, we created mud by further mixing the 28 types of mixed liquids created above.

次にこの泥 100gに対し、泗留水60gを添加しス
プレードライヤーで顆粒状にした。スプレードライヤー
の条件は下記に示す通りである。
Next, 60 g of distilled water was added to 100 g of this mud and granulated using a spray dryer. The conditions of the spray dryer are as shown below.

アトマイザ−11,000rpm 熱風人口温度    240℃ 熱風出口温度    110 ℃ 風      量       10  m”/m i
 nスラリー流ffi   15,0OOcc/Hr次
に顆粒状粉末をボールミルで粉砕した粉砕条件 ポット直径  :    200mm 磁性ボール (径30mm):    5.4 kgアルミナボール (径5mm)   :    3.6kg原    料
   :        2kg回  輯  数   
:       60  rpm時    間   :
       5 時間次に粉体を開口率90μmのふ
るいで分級してセラミックコーティング用複合粉末を得
た。
Atomizer: 11,000 rpm Hot air population temperature: 240°C Hot air outlet temperature: 110°C Air volume: 10 m”/mi
n Slurry flow ffi 15,000cc/Hr Next, the granular powder was crushed in a ball mill.Crushing conditions: Pot diameter: 200mm Magnetic balls (diameter 30mm): 5.4kg Alumina balls (diameter 5mm): 3.6kg Raw materials: 2kg Number of turns
: 60 rpm time :
The powder was then classified using a sieve with an opening ratio of 90 μm to obtain a composite powder for ceramic coating.

夫立五l ポット直径 :     200mm 回転数   +    6Orpm 磁性ボール径:      30mm ボール挿入量:      12kg のボールミルに かさ比重  :     0.2  g/cm3粒  
 径   :44〜150  μmのシラスバルーンを
800g挿入し3.5時間かけて粉砕した粉末と、モル
比2.5、濃度40%の珪酸ナトリウム溶液を重量比で
1:3の割合で混合した。
5L Pot diameter: 200mm Rotation speed + 6Orpm Magnetic ball diameter: 30mm Ball insertion amount: 12kg Ball mill with bulk specific gravity: 0.2 g/cm3 grains
800 g of Shirasu balloons having a diameter of 44 to 150 μm were inserted and the powder was pulverized for 3.5 hours, and a sodium silicate solution having a molar ratio of 2.5 and a concentration of 40% was mixed in a weight ratio of 1:3.

次に、焼成リン酸アルミニウムの粉末(平均粒径: 2
0μ)と蒸留水を重量比で17= 2の割合で混合した
Next, calcined aluminum phosphate powder (average particle size: 2
0μ) and distilled water were mixed in a weight ratio of 17=2.

次に上記で作成した2種類の混合液を、更に混ぜ合わせ
た泥 を作成した。
Next, we created mud by further mixing the two types of liquid mixtures created above.

この泥 をバット内にいれ凍結真空乾燥器にいれ、−6
0℃に冷却し、真空圧7X10−’Torrまで減圧し
た。 その状態で昇温して0℃で1時間保持した後、さ
らに40℃まで20時間かけて昇温した。
Put this mud in a vat and put it in a freeze-vacuum dryer, -6
It was cooled to 0° C. and reduced to a vacuum pressure of 7×10 −’ Torr. In this state, the temperature was raised and held at 0°C for 1 hour, and then further heated to 40°C over 20 hours.

このようにして得た塊状物を、ジヨウクラッシャーにか
け粗粉砕した後、ボールミル(ポット径:φ2801回
転数: 60rpm)で5時間粉砕した。次に粉体を開
口率90μmのふるいで分級してセラミックコーティン
グ用複合粉末を得た。
The thus obtained lumps were coarsely pulverized using a Joe crusher, and then pulverized for 5 hours using a ball mill (pot diameter: φ2801, number of revolutions: 60 rpm). Next, the powder was classified using a sieve with an aperture ratio of 90 μm to obtain a composite powder for ceramic coating.

[発明の効果コ[Effects of invention

Claims (1)

【特許請求の範囲】 (1)骨材としてのマイカ、又は膜状ガラス、又は無機
質中空粒子の粉砕片と、硬化剤としての焼成燐酸アルミ
ニウムとが、結合剤としてのアルカリ金属珪酸塩中に均
一に包含され、硬化剤と結合剤が未反応の状態で存在し
、かつ結合剤は、大気に開口する気孔を有し、水分の吸
収が可能な構造とする事を特徴とするセラミックコーテ
ィング用複合粉末。 (2)上記骨材は配合比が40〜50重量%で、上記硬
化剤は配合比が11〜12重量%で上記結合剤は配合比
が30〜50重量%である請求項1記載のセラミックコ
ーティング用複合粉末(3)セラミックコーティング用
複合粉末を製造するにあたり、 (a)マイカ、又は膜状ガラス、又は無機 質中空粒子の粉砕片等の骨材と、粉状の焼成燐酸アルミ
ニウムからなる硬化剤と、液状のアルカリ金属珪酸塩か
らなる結合剤と水をそれぞれ所望量混合し、 (b)上記混合物にマイクロ波を照射し、脱水、及び固
化し (c)粗粉砕し (d)次に微粉砕し (e)更に分級する ことを特徴とするセラミックコーティング複合粉末の製
造法。 (4)セラミックコーティング用複合粉末を製造するに
あたり、 (a)マイカ、又は膜状ガラス、又は無機質中空粒子の
粉砕片等の骨材と粉状の焼成燐酸アルミニウムからなる
硬化剤と、液状のアルカリ金属珪酸塩からなる結合剤と
水をそれぞれ所望量混合し、 (b)上記混合物をスプレードライヤで顆粒状にし (c)次に微粉砕する、 ことを特徴とするセラミックコーティング用複合粉末の
製造法。 (5)セラミックコーティング用複合粉末を製造するに
あたり、 (a)マイカ、又は膜状ガラス、又は無機質中空粒子の
粉砕片等の骨材と粉状の焼成燐酸アルミニウムからなる
硬化剤と、液状のアルカリ金属珪酸塩からなる結合剤と
水をそれぞれ所望量混合し、 (b)上記混合物を凍結真空乾燥して、脱水、及び固化
し (c)粗粉砕し (d)次に微粉砕し (e)更に分級する ことを特徴とするセラミックコーティング用複合粉末の
製造法。
[Scope of Claims] (1) Pulverized pieces of mica, film glass, or inorganic hollow particles as an aggregate and calcined aluminum phosphate as a hardening agent are uniformly mixed in an alkali metal silicate as a binder. A composite for ceramic coating, characterized in that the curing agent and the binder exist in an unreacted state, and the binder has a structure that has pores that open to the atmosphere and can absorb moisture. powder. (2) The ceramic according to claim 1, wherein the aggregate has a blending ratio of 40 to 50% by weight, the curing agent has a blending ratio of 11 to 12% by weight, and the binder has a blending ratio of 30 to 50% by weight. Composite powder for coating (3) In producing composite powder for ceramic coating, (a) Aggregate such as crushed pieces of mica, membrane glass, or inorganic hollow particles, and a hardening agent consisting of powdered calcined aluminum phosphate. , a binder consisting of a liquid alkali metal silicate, and water are mixed in desired amounts, (b) the above mixture is irradiated with microwaves to dehydrate and solidify, (c) coarsely pulverized, and (d) then finely ground. A method for producing a ceramic coating composite powder, which comprises pulverizing and (e) further classifying. (4) In producing a composite powder for ceramic coating, (a) a curing agent consisting of aggregate such as mica, membrane glass, or crushed pieces of inorganic hollow particles, powdered calcined aluminum phosphate, and liquid alkali; A method for producing a composite powder for ceramic coating, comprising: mixing desired amounts of a binder made of a metal silicate and water, (b) granulating the above mixture using a spray dryer, and (c) pulverizing the mixture into fine particles. . (5) In producing a composite powder for ceramic coating, (a) a curing agent consisting of aggregate such as mica, membrane glass, or crushed pieces of inorganic hollow particles, powdered calcined aluminum phosphate, and liquid alkali; A binder made of a metal silicate and water are mixed in desired amounts, (b) the above mixture is freeze-vacuum dried to dehydrate and solidify, (c) coarsely pulverized, (d) then finely pulverized, (e) A method for producing a composite powder for ceramic coating, which comprises further classification.
JP63187623A 1988-07-27 1988-07-27 Composite powder for ceramic coating and production thereof Pending JPH0238370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63187623A JPH0238370A (en) 1988-07-27 1988-07-27 Composite powder for ceramic coating and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63187623A JPH0238370A (en) 1988-07-27 1988-07-27 Composite powder for ceramic coating and production thereof

Publications (1)

Publication Number Publication Date
JPH0238370A true JPH0238370A (en) 1990-02-07

Family

ID=16209346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63187623A Pending JPH0238370A (en) 1988-07-27 1988-07-27 Composite powder for ceramic coating and production thereof

Country Status (1)

Country Link
JP (1) JPH0238370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512269A2 (en) * 1991-04-08 1992-11-11 ECI- European Chemical Industries Ltd. Process and mixture for preparing large area coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512269A2 (en) * 1991-04-08 1992-11-11 ECI- European Chemical Industries Ltd. Process and mixture for preparing large area coating
EP0512269A3 (en) * 1991-04-08 1993-03-31 Eci- European Chemical Industries Ltd. Process and mixture for preparing large area coating

Similar Documents

Publication Publication Date Title
JP2996354B2 (en) Hollow borosilicate microspheres and manufacturing method
ES2331522T3 (en) INSULATING GRANULATES FOR CONTINUOUS METAL COLADA AND ITS PRODUCTION PROCEDURE.
EP3412640A1 (en) Low-shrinkage, high-strength, and large ceramic plate and manufacturing method thereof
JPH07187736A (en) Method of coloring building material
JPH0234685A (en) Coated silicon carbide abrasive particle
TWI645050B (en) Nano-sized true spherical ferrous iron particles and manufacturing method thereof
JP2001327849A (en) Granule consisting of dispersible fine solids and their manufacturing method
AU2005328583A1 (en) Method for the production of foamed glass granulate
JPH0238370A (en) Composite powder for ceramic coating and production thereof
JPH0250982A (en) Mixed powder for ceramic coating and its production
US3197323A (en) Admixture for cementitious grouts and method of making same
KR100278140B1 (en) Method for producing granular strontium carbonate using strontium-containing binder
JP3895831B2 (en) Method for producing a foamable ceramic material
JPH068199B2 (en) Method and apparatus for manufacturing ceramic powder
JPH04367349A (en) Manufacture of spherical molding sand
JP3109972B2 (en) Granulation of raw materials for ceramics
JP3579806B2 (en) Porous granulated cement and method for producing the same
JP2001253741A (en) Additive for concrete
IE910486A1 (en) Spherical granules of hydrated alkali metal silicates,¹process for preparing them and their application in¹detergent compositions
JPH0292842A (en) Production of granulated substance for inorganic glass form
JPS6149741A (en) Mold coating material for casting
JPH0513099B2 (en)
JPS6133879B2 (en)
JPH08253377A (en) Highly strong inorganic foamed granule and its production
JPH09268039A (en) Production of artificial lightweight aggregate